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Abstract

We present a simple graphical framework to illustrate the potential welfare gains from a “top-up” 

health insurance policy requiring patients to pay the incremental price for more expensive 

treatment options. We apply this framework to breast cancer treatments, where lumpectomy with 

radiation therapy is more expensive than mastectomy but generates similar average health 

benefits. We estimate the relative demand for lumpectomy using variation in distance to the 

nearest radiation facility, and estimate that the “top-up” policy increases social welfare by $700–

2,500 per patient relative to two common alternatives. We briefly discuss additional tradeoffs that 

arise from an ex-ante perspective.

1 Introduction

Medical expenditures in the United States are high and increasing. Policy and academic 

discussions of strategies to reduce health care spending have largely focused on increasing 

cost sensitivity either on the demand side through consumer cost-sharing, or on the provider 

side by making providers the residual claimant on cost savings. A natural economic solution 

which has not received as much attention is a “top-up” design in which health insurance 

contracts would cover the cost of a baseline treatment, and patients could choose to pay the 

incremental cost of more expensive treatments out of pocket.

This type of “top-up” design contrasts with the standard “full coverage” insurance design 

that is typical in the United States, where consumers face essentially no incremental cost of 

choosing a more expensive treatment (other than perhaps some minimal consumer cost-

sharing). Other high-income countries have taken an alternative approach: individual 

medical treatments deemed “cost-effective” are fully covered, and treatments deemed not to 

be cost effective are not covered at all. In the United Kingdom, for example, the National 

Institute for Health and Care Excellence (NICE) determines which medical technologies will 

be covered by the National Health Service (NHS), using – in recent years – a threshold of 

HHS Public Access
Author manuscript
Am Econ J Econ Policy. Author manuscript; available in PMC 2016 February 18.

Published in final edited form as:
Am Econ J Econ Policy. 2016 February ; 8(1): 52–79.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



around $50,000 per quality-adjusted year of life saved (McCabe, Claxton and Culyer, 2008). 

This threshold rule results in the NHS not covering some medical treatments. For example, 

in 2010 NICE refused coverage for the drug Avastin as a treatment for metastatic colorectal 

cancer on the basis that the drug improved average life expectancy by only six weeks 

(relative to the preexisting standard of care) at a cost of around $115,000 per quality-

adjusted year of life saved.1 As a result, patients in the UK who want to choose a treatment 

like Avastin must pay the full cost of that treatment. Such UK-style “no top-up” designs 

have recently been introduced in Australia, France, and Germany (Chalkidou and Anderson, 

2009), and received a great deal of negative publicity in the US under the name of “death 

panels” during the debate over the 2010 Affordable Care Act.2

Relative to either the US “full coverage” or the UK “no top up” regimes, a “top-up” design 

provides a natural middle ground. In a “top-up” setting, individuals are allowed coverage of 

the more expensive treatment, but are required to pay out of pocket the incremental cost 

(relative to the fully covered baseline treatment). By making patients internalize treatment 

costs on the margin, such a top-up design would result in more efficient sorting of patients 

across treatments. Conceptually, this simple point is not new. It has been made in other 

contexts, such as public subsidies for education (Peltzman, 1973), pricing of employer-

provided health insurance plans (Enthoven and Kronick, 1989), public health insurance 

subsidies (Cutler and Gruber, 1996; Gans and King, 2003; Baicker, Shephard and Skinner, 

2012), and incentives for patients to see specific providers within health insurance plans 

(Robinson and MacPherson, 2012). Closest in spirit to our paper is the work of Chernew, 

Encinosa and Hirth (2000), who theoretically explore the optimal “top up” insurance 

coverage for different treatments of a given disease, and quantitatively illustrate the 

implications of their model by calibrating the key parameter values in the context of a binary 

treatment choice facing prostate cancer patients.

In this paper, we make two contributions to this line of work. First, we present a simple 

graphical framework that illustrates the welfare consequences of alternative insurance 

designs for reimbursement of different treatment choices. This simple framework helps 

visualize the key points made by the previous literature, and at the same time highlights the 

relative demand curve for the more expensive treatment as (arguably) the key underlying 

economic object of interest. As we show, knowledge of the relative demand curve is critical 

to any attempt to assess the welfare consequences of alternative policy designs. Our second, 

perhaps more important, contribution is to estimate this demand curve, and quantify the 

resultant welfare effects of alternative policy designs in the specific context of treatment 

choices among breast cancer patients.

Most patients diagnosed with breast cancer receive surgery as an initial course of treatment. 

The key treatment choice is between two types of surgery: mastectomy, which removes the 

cancerous breast, and lumpectomy, which removes the tumor while preserving the breast 

1See http://www.nice.org.uk/media/E58/E7/2010182BevacizumabForColorectalCancerFinalGuidance.pdf and the discussion in 
Chandra, Jena and Skinner (2011).
2Such negative publicity notwithstanding, Pollack (2014) describes some groups of US medical specialists (in particular, for 
cardiology and oncology) who are recommending that costs be taken into account when developing medical guidelines; insurance 
companies often use medical guidelines to determine reimbursement policies.
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and is generally followed by a course of radiation therapy. While evidence from randomized 

clinical trials has suggested no average difference in survival between mastectomy relative 

to lumpectomy with radiation (Fisher et al., 1985), mastectomy tends to be considerably less 

expensive (Polsky et al., 2003).

Public and private insurance in the US typically covers the costs of both treatments fully (or 

nearly fully) so that patients do not internalize the difference in treatment costs. In principle 

(if not in practice), under comparative effectiveness regulations – where the goal is stated as 

covering the lowest-cost option attaining the best health outcome (Chandra, Jena and 

Skinner, 2011) – mastectomy would therefore be covered by insurance whereas lumpectomy 

with radiation would not. Because the latter is a more costly treatment with no evidence of 

superior average health outcomes, patients choosing it would face the full cost of the 

treatment.3 In contrast, a top-up policy in this context is analogous to an indemnity 

insurance policy that pays out if a patient is diagnosed with breast cancer, at a fixed sum 

equal to the cost of a mastectomy.

The key empirical object needed to evaluate the welfare consequences of these three 

insurance designs is the (relative) willingness to pay curve for the more expensive treatment 

option, which in this case is lumpectomy. We make a (standard) revealed preference 

assumption, and use the demand curve for welfare analysis. Because we know of no useful 

variation in the relative price for lumpectomy, we estimate this demand curve using 

variation across patients in the distance between their residence at the time of diagnosis and 

the nearest radiation clinic. A standard course of post-lumpectomy radiation therapy requires 

25 round-trips to a radiation facility, spread over 5 weeks. Our key economic assumptions 

are that travel time can be monetized and that preferences for reduction in travel time are 

analogous to preferences for any other equivalent price difference. These assumptions allow 

us to use the variation in distance to the radiation facility as if it were variation in the 

relative price of lumpectomy, thus identifying the demand curve.

We analyze administrative cancer registry data on the characteristics and treatment choices 

of over 300,000 breast cancer patients initially diagnosed in California between 1997 and 

2009, linked to data on the location of radiation treatment facilities over the same time 

period. Building on similar results in the medical literature (Schroen et al., 2005), we 

document that women living further away from radiation facilities at the time of their breast 

cancer diagnosis are more likely to choose mastectomies rather than lumpectomies. Our key 

econometric assumption is that there are not omitted patient characteristics correlated with 

both distance and demand for lumpectomy.4 We observe a rich set of patient demographic 

and clinical characteristics and find that while some of these variables vary with distance, 

the magnitude of the relationship between treatment choice and travel time is not very 

sensitive to their inclusion. Our baseline estimates imply that a 10 minute increase in one-

3Although the comparative effectiveness literature recognizes that health benefits may be heterogeneous, in principle (if not in 
practice) that limitation could be solved by randomized clinical trials that are sufficiently powered to detect such heterogeneity. Such 
approaches could not however, even in principle, address heterogeneity in preferences over non-health aspects of treatment. Recent 
work in social insurance has emphasized the potential importance of heterogeneous preferences both conceptually (Feldstein, 1995) 
and empirically (Einav, Finkelstein and Schrimpf, 2010).
4The use of distance between patients and providers as identifying variation for health care treatment is reasonably common, and dates 
back in the health economics literature at least to the work of McClellan, McNeil and Newhouse (1994).
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way travel time (approximately two-thirds of a standard deviation in our data) reduces the 

probability of a lumpectomy by about 0.7 to 1.1 percentage points, relative to a baseline 

lumpectomy rate of about 58 percent.

We then use the estimated demand curve to illustrate how the welfare effects of alternative 

insurance designs can be quantified, albeit highly out of sample relative to our observed 

variation in the implied price. We estimate, for example, that the efficient “top-up” policy – 

in which patients pay $10,000 on the margin for a lumpectomy – increases the lumpectomy 

rate by 15–25 percentage points relative to the UK-style “no top-up” regime, and decreases 

the lumpectomy rate by 35–40 percentage points relative to the US-style “full coverage” 

regime. Our estimates suggest total welfare gains from the “top-up” policy of between $700 

and $1,800 per patient relative to a “no top-up” UK-style policy and between $700 and 

$2,500 per patient relative to a “full coverage” US-style policy.

The preceding welfare analysis considers the (ex post) efficiency of treatment choice under 

different insurance designs. In the final section of the paper, we briefly consider the 

additional tradeoffs faced when the welfare analysis is done from an ex-ante perspective, 

thus accounting for differential risk exposure across regimes. Qualitatively, the top-up 

policy continues to dominate the UK-style no top-up policy, but the relative ranking of the 

top-up policy and the US-style full coverage policy is now ambiguous. We present a simple 

and highly stylized calibration which shows that, for high enough levels of risk aversion, ex-

ante welfare can be higher under a US-style full coverage policy than under a top-up policy 

that produces the ex-post efficient treatment decisions. This exercise is conceptually quite 

similar to that performed by Chernew, Encinosa and Hirth (2000) for prostate cancer, except 

that in our case the key input to this exercise – the relative demand curve for lumpectomy – 

is estimated rather than assumed.

In addition to offering a tractable source of empirical variation with which to estimate the 

relative demand for different treatments, the breast cancer context presents two useful, 

simplifying features from an analytic perspective. First, this context focuses attention on a 

binary treatment choice, which cleanly maps to the graphical framework we present. 

Second, the fact that average survival does not differ across the two treatments allows us to 

focus on the difference in treatment costs and to abstract from any attempt to monetize 

quality adjusted years of life. However, it is important to note that the same qualitative 

analysis could be done for other treatments, including those with differences in health 

benefits. We conclude the paper by briefly discussing how one could carry out a similar type 

of analysis in other settings, including contexts in which the more expensive treatment 

provides incremental average health benefits or other attributes valued by the social planner, 

as long as the social planner is willing and able to attribute a given monetized value to these 

other benefits.5

The paper is organized as follows. Section 2 details our empirical setting – treatments for 

breast cancer – and describes our data. Section 3 outlines our conceptual framework, and 

describes our empirical strategy. Section 4 presents our main results. Section 5 briefly 

5The UK’s NICE/NHS policy discussed above provides one example of how health benefits may be monetized in practice.
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discusses implications for ex-ante welfare. Section 6 concludes by discussing how one could 

carry out a similar type of analysis in other settings.

2 Setting and data

2.1 Treatment choices for breast cancer

Our analysis is focused on the treatment choice made by breast cancer patients.6 Most 

patients diagnosed with breast cancer have surgery to attempt to remove the cancer from the 

breast; in our data, 95 percent of women diagnosed with breast cancer receive surgery as an 

initial course of treatment. For women receiving surgery, the key treatment choice is 

between two alternatives, lumpectomy and mastectomy. Lumpectomies are breast-

conserving surgeries that remove the cancer but not the breast itself, and are generally 

followed by a course of radiation therapy. Mastectomies, in contrast, remove the entire 

cancerous breast and are generally not followed by a course of radiation therapy. Other 

forms of treatment such as chemotherapy are commonly administered either before or after 

(or both) either type of surgery.

In terms of clinical effectiveness, the key comparative evidence on these treatments comes 

from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B06 clinical trial, 

which enrolled women with stage I and stage II breast tumors. The initial results of this trial 

were released in 1985 (Fisher et al., 1985), with subsequent follow-up results (with longer-

term mortality outcomes) published in 1989 (Fisher et al., 1989), 1995 (Fisher et al., 1995), 

and 2002 (Fisher et al., 2002). The results of this clinical trial suggested there were no 

detectable differences in survival outcomes across random assignment to more invasive 

(total mastectomy) versus less invasive (lumpectomy with or without radiation therapy) 

treatments.7

In terms of overall financial costs (shared by both patients and insurers), there is a consensus 

that lumpectomy with radiation is more expensive than mastectomy. Mastectomy is cheaper 

primarily because of the add-on cost of the radiation therapy which accompanies 

lumpectomies. A common argument is that the more relevant costs are not those associated 

with the initial course of treatment, but rather the total, subsequent “lifetime” costs over the 

following years. While comparing these longer-run costs of the two treatments is more 

difficult due to various selection concerns – for example, co-morbidities that vary with 

treatment choice – the evidence on lifetime costs also strongly suggests that mastectomy is 

cheaper, even after attempting to correct for potential selection bias. For example, Polsky et 

al. (2003) compare five-year total Medicare payments across Medicare patients with breast 

cancer receiving lumpectomy relative to mastectomy: the unadjusted difference between 

mastectomy and lumpectomy was $8,389 (relative to a baseline of $40,130 for mastectomy), 

the risk-adjusted difference was $13,775 (relative to a baseline of $38,623 for mastectomy), 

and the propensity score-adjusted difference was $14,054 (relative to a baseline of $38,664).

6Many of the clinical details in this section are drawn from the National Cancer Institute’s guide to the treatment of breast cancer; see 
http://www.cancer.gov/cancertopics/pdq/treatment/breast/Patient/.
7These trials have also not uncovered evidence of a difference in disease-free survival (which measures recurrence of the cancer).
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8 In all three versions of their analysis, the 95-percent confidence intervals can reject cost 

differences smaller than $4,500.9

An additional difference in cost between the two treatments, which our empirical exercise 

will focus on, is the time cost of traveling to receive post-surgery radiation therapy 

associated with lumpectomy.10 A standard course of radiation therapy requires 25 

treatments spread over 5 weeks.11 Motivated by this substantial time commitment required 

for radiation therapy, several papers in the medical literature have explored whether women 

living further away from radiation facilities are more likely to choose to have mastectomies 

rather than lumpectomies with radiation. For example, Schroen et al. (2005) use data from 

the Virginia cancer registry from 1996–2000 (~20,000 patients) and document that the 

probability of patients choosing mastectomy increases with distance from the radiation 

facility: in their full sample, 43% of women choose mastectomy if they live within 10 miles 

of a radiation facility, whereas among women living more than 50 miles from a radiation 

facility the share is 58%.12 Our empirical work will build on this medical literature by 

confirming a relationship between distance from radiation facilities and treatment choice in 

a much larger sample of over 300,000 patients in California, and using this variation to 

estimate a demand curve for lumpectomy. This estimated demand curve will in turn be the 

key input into policy counterfactual exercises investigating how patients might respond to 

changes in the financial costs of treatments induced by different health insurance contract 

designs.

2.2 Data

Our empirical analysis uses two datasets from the state of California: a patient-level cancer 

registry dataset, and data on radiation treatment facility locations.

8It is worth noting that the relative costs of mastectomy and lumpectomy have changed somewhat over time as post-mastectomy 
breast reconstruction surgery has become more common. At the start of our data in the mid-1990s, which roughly matches the timing 
of the data used by Polsky et al. (2003) (which includes women diagnosed with cancer between 1992–1994), the share of breast cancer 
patients receiving early or immediate breast reconstruction post-mastectomy has been estimated to be around 8 percent (Morrow et al., 
2001). A study of California patients near the time period at the end of our sample documented that post-mastectomy breast 
reconstruction rates were less than 30 percent (Kruper et al., 2011). While some lumpectomy patients also receive post-lumpectomy 
breast reconstruction surgery, in general this trend towards increasing rates of post-mastectomy breast reconstruction has likely pushed 
the relative prices of mastectomy and lumpectomy closer together over the time period of our data. Unfortunately, we are unaware of a 
study like the Polsky et al. (2003) that has formally compared the total costs of the two procedures in more recent data. An informal 
survey of costs for post-mastectomy breast reconstruction suggested a range of $5,000–$10,000, which – scaled by the roughly 20 
percentage point change in the share of women receiving post-mastectomy breast reconstruction over the time period of our data – 
seems too small to substantively change the ballpark cost differentials that we consider in our counterfactuals later in this paper.
9In our illustrative quantitative welfare analyses below, we assume that the higher payments for lumpectomy relative to mastectomy 
reflect differences in underlying resource costs (i.e. social marginal cost). To the extent that prices paid are distorted relative to social 
marginal costs, our results below would naturally need to be adjusted.
10While our cancer registry data offers an incomplete set of information on cancer treatments, as observed in our data more than 60 
percent of patients choosing lumpectomy receive radiation therapy during their initial course of treatment, compared to less than 20 
percent of mastectomy patients. As one point of comparison, 38 percent of women choosing mastectomy also receive chemotherapy in 
our data, as do 25 percent of women choosing lumpectomy. Differences in radiation therapy as well as other cancer treatments such as 
chemotherapy will both be captured in the total cost estimates cited above.
11See this US National Cancer Institute Cancer Bulletin from 2010: http://www.cancer.gov/aboutnci/ncicancerbulletin/archive/
2010/022310/page2.
12Nattinger et al. (2001) and Celaya et al. (2006) document similar patterns in the SEER cancer registry (1991–1992, ~17,000 
patients) and the New Hampshire cancer registry data (1998–2000, ~3,000 patients), respectively. Athas et al. (2000) investigate this 
relationship in the New Mexico tumor registry data (1994–1995, ~1,000 patients) and do not find evidence of a similar relationship, 
although they do find that the probability of receiving radiation post-lumpectomy falls with distance from a radiation facility.
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Our patient-level data is drawn from the California Cancer Registry (CCR), a program of the 

California Department of Public Health. The CCR was established in 1985, and every cancer 

diagnosis made in California from 1988 forward is required by law to be reported to the 

CCR.13 Data are collected directly from cancer patients’ medical records at the time of the 

cancer diagnosis, rather than by interviewing patients. Available variables in the CCR 

research database include demographic covariates such as age, race, and sex; diagnostic 

information such as cancer type and stage of disease; and treatment information on the first 

course of treatment received by the patient (if any). A key advantage of the CCR research 

database relative to other cancer registry databases such as the SEER cancer registry is that 

the CCR data include patients’ exact address of residence at the time of diagnosis, which 

enables our empirical analysis to rely on a more precise measure of how far patients live 

from radiation treatment facilities than would be possible if we only observed county of 

residence, as is available in the SEER data.

Our data on radiation treatment facility locations comes from the private firm IMV. IMV 

aims to identify all hospital and non-hospital sites in the US performing radiation therapy, 

and queries these sites with a telephone survey. The sampling frame for the telephone survey 

is constructed from several sources, including federal and state nuclear licensing lists.14 We 

obtained data on the full sampling frame of California sites, including exact street address 

for all institutions, for all available survey years (1996 to 2011).15 Because survey response 

rates vary across years (ranging from 45 to 87 percent), we use all institutions in the 

sampling frame as our set of facilities of interest, regardless of whether the institution 

responded to the survey.

We restrict the CCR data to female breast cancer patients diagnosed between 1997 and 

2009, which covers all years after the first IMV survey (1996) and until the last year of the 

CCR cancer registry data (2009). Following sample restrictions used in National Cancer 

Institute analyses of breast cancer registry data (Gloeckler Ries and Eisner, 2007), we 

exclude cases identified through autopsy and death certificate only (<0.5% of observations), 

and cases where the age at diagnosis was less than 20 (<0.1% of observations). Given our 

empirical strategy, we also limit the sample to patients with non-missing data on treatment 

(<0.3% of observations) and non-missing data on residence at the time of diagnosis (<0.2% 

of observations).

For ease of presentation, because our primary analysis is focused on the choice between 

lumpectomy and mastectomy, we also omit from the baseline sample the 5.8 percent of the 

cases in which the patient chose neither of these two surgical treatments. Our results are not 

13See http://www.ccrcal.org/pdf/Reports/Physicians.pdf for more details on these reporting requirements, which fall under California 
Health and Safety Code 103885.
14Specifically, IMV reports that it identifies candidate sites from nuclear licensing lists compiled by the Nuclear Regulatory 
Commission, lists from state licensing agencies, the American Hospital Association Guide to the Health Care Field database, internal 
IMV lists, previous IMV data collections, and internal IMV internet research. Because many radiation facilities are based at non-
hospital sites, the IMV data are preferable to relying solely on hospital-based datasets such as the American Hospital Association 
annual survey data. The IMV data have been used in several previous papers, such as Baker (2001), Baker and Atlas (2004), and 
Baker, Atlas and Afendulis (2008).
15Surveys are conducted approximately every one to two years over this time period. Specifically, IMV’s data collection periods are 
1996 (covering 2/96 to 1/97), 1998 (covering 3/98 to 9/98), 2000 (covering 3/00 to 10/00), 2001 (covering 11/01 to 7/02), 2003 
(covering 11/02 to 1/04), 2004 (covering 8/04 to 12/05), 2006/08 (covering 9/06 to 10/08), and 2010/11 (covering 12/09 to 11/11).
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sensitive to this sample selection, and the appendix presents analogous results for the full 

sample (Appendix Table A.1).

Finally, combining these two datasets, for each patient we computed (using Google Maps in 

summer of 2012) the distance between her residence at the time of diagnosis and the nearest 

facility offering radiation treatment as recorded in the IMV sampling frame as of January 1st 

in the year of diagnosis. Our baseline analysis uses driving time, while the appendix reports 

results that are based on driving distance and spherical distance; our results are not sensitive 

to the choice of distance measure (see Appendix Figures A.1 and A.2, and Appendix Tables 

A.2 and A.3).

To summarize, our baseline sample covers 323,612 breast cancer patients that were 

diagnosed between 1997 and 2009 and chose either mastectomy or lumpectomy as their 

initial treatment, with each patient matched to her nearest radiation facility.

3 Conceptual framework and empirical strategy

Consider a woman i recently diagnosed with breast cancer, facing a binary choice between 

receiving a mastectomy (M) or receiving a lumpectomy together with radiation therapy (L). 

The key input into the analysis of the welfare effect of alternative reimbursement policies in 

our revealed preference-based approach is the relative valuation (or willingness to pay) for 

L, given by

(1)

and its distribution across cancer patients, which is given by the cumulative distribution 

function F(υi). That is, our main empirical object of interest can be summarized by the 

demand curve for lumpectomy, which is illustrated in Figure 1, and is given by F−1(·). 

Variation in the relative valuation of L across patients may reflect heterogeneity in relative 

health benefits, or heterogeneity in relative valuation of non-health attributes of the two 

treatments, or both.

Abstracting from income effects, this demand curve F−1(·) is sufficient to evaluate the 

welfare effects of alternative policy structures. Note that our discussion of welfare and 

efficiency here refers to efficiency of treatment choice, or ex-post efficiency, a point we 

return to in Section 5. With that in mind, the efficient policy is to cover both treatments, but 

to require cancer patients to incur the incremental costs associated with lumpectomy. We 

denote this policy by “top-up” in Figure 1, which denotes the incremental (social) cost of L 

by c, and the incremental price the patient faces for L by p. The top-up policy sets p = c. The 

resultant allocation, point E in Figure 1, occurs when F−1(·) = c. Since patients internalize 

the social marginal cost of treatment, the allocation is efficient; all patients whose 

incremental willingness to pay for lumpectomy (υi) is above the social marginal cost of the 

lumpectomy (c) would choose it, and all those for whom υi < c would not.

The US-style “full coverage” policy is given by point D in Figure 1; cancer patients can 

choose between M and L and do not face any of the incremental financial cost associated 

with L (p = 0). Because lumpectomy is more expensive than mastectomy, this policy 
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produces inefficient treatment decisions. A set of cancer patients whose relative valuation 

for L is lower than c inefficiently choose L because they do not pay the cost c (paid by the 

insurer) associated with it. This welfare loss is summarized in Figure 1 by the triangle CDE.

Finally, we consider a third possible policy (denoted “No top-up” in Figure 1) in which the 

insurance policy covers only the choice of the cheaper treatment M. In this situation, cancer 

patients may still choose L, but if they do so will have to pay its entire cost out of pocket. As 

detailed in the introduction, the UK uses this type of “no top-up” insurance regime, and 

other high-income countries have been moving towards similar frameworks. In our setting, 

such a “no top-up” policy would cover the patient’s full cost of mastectomy, but would not 

reimburse any costs if the patient chooses lumpectomy. This would lead to a welfare loss 

that is summarized in Figure 1 by triangle ABE: a set of cancer patients who prefer 

lumpectomy would opt into mastectomy in order to avoid the financial cost, despite the fact 

that υi > c, thus implying that a choice of L would have been socially efficient. This is 

analogous to the classic welfare analyses of requiring individuals who opt out of the public 

schools to pay the full cost of private schooling (Peltzman, 1973) or requiring individuals 

who opt out of public insurance to pay the full cost of private insurance (Cutler and Gruber, 

1996).

In the rest of the paper we explore these tradeoffs quantitatively. Figure 1 makes clear that 

the key empirical object for welfare analysis is the demand curve for lumpectomy (relative 

to mastectomy). The demand curve is derived from υi, individuals’ incremental willingness 

to pay for L. Our empirical strategy is therefore focused on estimating this demand curve.

Estimation of the demand curve requires identifying variation in the relative price of 

lumpectomy. Motivated by the medical literature discussed in Section 2.1, which has 

documented an empirical relationship between distance from radiation facilities and breast 

cancer treatment choices, we use variation across patients in the distance to the nearest 

radiation facility in order to estimate the demand curve. Specifically, we normalize patient 

i’s utility from mastectomy to zero and assume that her (relative) utility from lumpectomy is 

given by

(2)

where αi and βi are the (potentially patient-specific) preference parameters, di is the distance 

of patient i to the nearest radiation facility, and p is the incremental price she would need to 

pay for lumpectomy (relative to mastectomy). Distance is denominated in miles or travel 

hours while price is denominated in dollars, so the parameter θi captures the opportunity cost 

of time, and thus serves as a simple conversion factor that allows us to monetize distance/

time. The patient would choose lumpectomy if and only if ui > 0. From the econometrician’s 

perspective, we obtain

(3)

An important assumption in this specification, and one that is crucial for our empirical 

strategy, is that θi can be calibrated using external information so that, conditional on θi, 

Einav et al. Page 9

Am Econ J Econ Policy. Author manuscript; available in PMC 2016 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



price and (monetized) distance have the same effect on individual utility. This assumption 

allows us to estimate the distribution of αi and βi in the data using variation in distance only, 

but then use the estimated distributions to assess the impact of counterfactual policy designs 

that change price. Because the out-of-pocket price from either treatment is effectively zero 

in our California data, this assumption or the choice of θi does not affect estimation; it only 

becomes relevant in the counterfactual exercises. To see this, replace p = 0 in equation (2), 

and define , to obtain

(4)

which has a familiar form. We assume that  and that  and that εi 

follows a type I extreme value distribution. These assumptions lend themselves to a standard 

logit regression when  and to a random-coefficient logit model otherwise.

4 Results

4.1 Summary statistics and initial evidence

Table 1 presents some summary statistics for the baseline sample. We aggregate the detailed 

treatment information in the cancer registry data into indicator variables for whether the 

patient received a lumpectomy or a mastectomy as their initial course of treatment: 58% of 

women receive lumpectomy and 42% receive mastectomy.16 A standard course of radiation 

consists of 25 round trips. Patients would need, on average, to drive eight miles (11 minutes) 

each way to the nearest radiation facility. However, there is a fair amount of variation along 

this dimension, with many patients living within a few minutes of a facility, while others 

would be required to drive more than half an hour each way for each treatment.

An attraction of our data is the availability of a relatively rich set of covariates measuring 

patient demographics and clinical characteristics. Specifically, we observe patient age, race, 

marital status, and some information on type of insurance coverage. While the data lack 

individual-level measures of co-variates such as income or educational attainment, the 

cancer registry data matches on these and other characteristics at the census-block level. In 

terms of clinical covariates measuring cancer severity, we observe data on the two primary 

measures of the extent of the disease at the time of diagnosis which are used by physicians 

to guide patient treatment decisions: stage and grade. In situ corresponds to an early stage 

(sometimes called “pre-cancer”), and local, regional, and remote correspond to increasing 

extents of disease.17 Grade is an alternative measure of the extent of disease at the time of 

diagnosis, with higher values corresponding to increasing extents of disease.18

Table 2 splits the sample by above and below median travel time from a radiation facility. 

Women who live further from a radiation facility are more likely to receive mastectomies 

and less likely to receive lumpectomies. However, as in Schroen et al. (2005) and other 

16Only the initial course of treatment is recorded in the cancer registry data. Our coding of lumpectomy and mastectomy follows 
Roetzheim et al. (2008).
17For more details, see the SEER training website: http://training.seer.cancer.gov/ss2k/staging/review.html.
18For more details, see the SEER instructions for coding grade: http://seer.cancer.gov/tools/grade/.
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previous work, women closer to and further from radiation facilities also appear to differ on 

observable characteristics. In terms of demographic characteristics, women living closer to 

radiation facilities tend to be older, less likely to be white, less likely to be married, and 

more likely to have Medicaid as a primary payment source.19 In terms of neighborhood 

characteristics, women living closer to radiation facilities tend to live in slightly poorer 

neighborhoods (as measured by income), but also in areas with slightly higher median home 

values. In terms of clinical characteristics, the above- and below-median distance samples 

appear relatively more balanced on stage and grade of disease: while several of the 

differences in grade indicators are statistically significant, no clear pattern emerges in terms 

of one group being in “better” health in terms of cancer progression at the time of diagnosis. 

Overall, Table 2 provides preliminary support for the idea that distance may affect treatment 

choices among breast cancer patients, but also highlights the need to examine the robustness 

of this relationship to conditioning on demographic, neighborhood, and clinical 

characteristics, as distance to radiation facility is clearly correlated with other patient 

characteristics which may themselves affect treatment choice.

To explore how travel distance to a radiation facility affects the treatment choice of breast 

cancer patients in our sample, Figure 2(a) plots the probability of mastectomy and the 

probability of lumpectomy by travel time to the nearest radiation facility. The histogram in 

light gray displays the number of observations (patients) in each travel time bin in our 

sample. These raw data on treatment choices display the expected pattern: women who live 

further from radiation facilities are more likely to receive mastectomies and less likely to 

receive lumpectomies.

Figure 2(b) investigates whether this relationship between distance and treatment choice can 

be explained by the differences in demographic or health characteristics of the patients that 

we saw in Table 2. It presents a series of plots which residualize the y-axis (lumpectomy) for 

various covariates; to retain comparability with Figure 2(a) we do not residualize the x-axis 

(distance), but our regression specifications below which condition out these covariates 

paint a similar picture. The first line (dashed and square denoted) presents the de-meaned 

lumpectomy rates for each travel time bin as a point of comparison. The other two lines 

show the residualized lumpectomy estimates after sequentially adding more covariates. The 

second line (solid and triangle denoted) conditions out patient characteristics, and the third 

(dashed and circle denoted) adds neighborhood-level covariates and clinical characteristics. 

Consistent with what we will document in the regression specifications below, Figure 2(b) 

suggests that the overall relationship between treatment choice and travel time is not very 

sensitive to the inclusion of these covariates.

4.2 Treatment choices by distance

Table 3 quantifies the treatment-distance relationship, estimating different specifications of 

the logit regression in equation (4). For ease of interpretation, Table 3 reports our estimate of 

the average marginal effect on lumpectomy probability of a ten-minute increase in (one 

way) travel time, with bootstrapped standard errors clustered at the county level (50 

19The California cancer registry data also includes information on non-Medicaid payment sources: around 16% of women are covered 
by Medicaid, 26% by Medicare, 56% by private payers, and the small remainder (<2%) self-pay or other sources.
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iterations); recall from Table 1 that this ten-minute increment is about two-thirds of a 

standard deviation of travel time in our sample. We also report the standard deviation of this 

effect across patients. In the appendix, we report the parameter estimates (and their standard 

errors) that give rise to these average marginal effects (see Appendix Table A.4).

Column (1) of Table 3 reports the simplest specification, where we estimate a logit model of 

whether the patient chose lumpectomy on travel time with no controls. Using the notation of 

Section 3, column (1) assumes that neither αi nor βi are affected by any patient-specific 

variables. Columns (2), (3), and (4) retain the same (homogenous logit) assumption for βi 

but increasingly add covariates that shift αi, thus affecting the mean utility from 

lumpectomy. In column (5) we also allow these observables to change βi by adding 

interaction terms between these covariates and distance. Finally, column (6) reports results 

from a specification that allows random coefficients on distance: it assumes that βi follows a 

lognormal distribution, thus relaxing the assumption of  that is assumed in all other 

specifications.

The effect of distance is statistically significant and is quantitatively reasonably stable across 

all specifications, as would be expected given the patterns we documented in Figure 2. The 

specification of column (6) leads to the largest effect, but this estimate is quite noisy (as the 

estimated parameters that govern the distribution of the random coefficient are imprecisely 

estimated; see Table A.4). Overall, we find that having the nearest radiation facility ten 

minutes further from the patient’s residence makes her less likely to choose lumpectomy by 

about 0.7 to 1.1 percentage points (or about 1.2 to 1.9 percent relative to the mean 

lumpectomy probability of 58 percent). Observable characteristics do not appear to have an 

important effect on this distance estimate, as can be seen from the fact that the heterogeneity 

in this estimate does not change much in column (5) relative to the preceding columns.

Taken together, these estimates suggest a reasonably robust relationship between the 

distance from womens’ place of residence at the time of their diagnosis with breast cancer to 

the nearest radiation treatment facility, and their choice of cancer treatments. In the 

appendix, we show that these basic results are robust to a variety of alternative 

specifications, including alternative (mileage-based rather than time-based) measures of 

distance (Appendix Figures A.1 and A.2, and Appendix Tables A.2 and A.3), non-linear 

parameterizations of distance (Appendix Table A.5), and estimation with linear probability 

models (Appendix Table A.6). In the next section, we build on these estimates to use this 

distance measure as a shifter in the effective relative price women face for breast cancer 

treatments in order to investigate how breast cancer patients would respond to various (out 

of sample) policy counterfactuals.

4.3 Policy counterfactuals: estimating treatment choices and ex-post welfare

Following the conceptual framework depicted in Figure 1, our estimated demand curve for 

lumpectomy allows us to perform quantitative exercises of the impact of alternative 

insurance designs which vary the price the consumer faces for L. .To see what the exercise 

is, one can think of each demand specification as estimating a distribution of the willingness 
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to pay for lumpectomy. To do so, we can use equation (2), which defines patient i’s 

willingness to pay for lumpectomy to be

(5)

and, as before, denote the estimated demand by the distribution F(υi). A given demand 

specification provides estimates for the joint distribution of αi and βi, and di is observed. We 

assume throughout this section that θi is equal to $1,150 for all patients. To arrive at this 

estimate for θi, we rely on the fact (see Section 2.1) that a typical course of radiation therapy 

treatment involves 25 round trips to the radiation facility, and that the average hourly wage 

as reported by the Bureau of Labor Statistics is just over 23 dollars (so 23 · 25 · 2 = $1, 150).
20 Of course, one could (and should) raise plausible concerns that the opportunity cost of 

time may be heterogeneous across patients, or that the opportunity cost of time of a breast 

cancer patient may be higher or lower than that of a healthy working individual.21 

Fortunately, the transformation is sufficiently simple and transparent that one could fairly 

easily use our results to obtain quantitative estimates that rely on alternative values of θi.

Equipped with an estimate of F(υi) and given an (incremental) price of lumpectomy p 

defined by the insurance design, the share of patients choosing lumpectomy is given by 1 − 

F(p) and consumer surplus (per patient, relative to everyone being forced to choose 

mastectomy) is given by (1 − F(p))E(υi|υi > p). The total incremental cost is given by (1 − 

F(p))c.

Figure 3 illustrates the nature of this exercise. In Figure 3(a) we plot the implied demand 

system for lumpectomy using the simplest specification - column 1 of Table 3 - and in 

Figure 3(b) we plot the implied demand system for lumpectomy using our richest 

specification - column (6) of Table 3. These figures are the empirical analogs to our 

conceptual Figure 1, and we indicate the analogous points along them. We also use Figure 3 

to illustrate the variation (in distance) used to estimate the demand function by plotting the 

empirical distribution of the monetized distance (that is, distance in hours multiplied by θ = 

$1, 150), illustrating the point we emphasized in the introduction: our key counterfactual 

exercises are quite far out of sample, and therefore should be treated with caution. For this 

illustrative purpose, we use the information discussed in Section 2.1 to approximate the 

incremental cost of lumpectomy (c) at $10,000 and the total cost of lumpectomy at $50,000, 

which is the incremental cost together with the baseline cost of $40,000 for mastectomy.

Figure 3(a) is based on specification (1) of Table 3, which does not include any controls. 

This specification indicates that the US-style “full coverage” policy (given by point D) in 

which consumers do not pay on the margin for lumpectomy raises the lumpectomy rate by 

about 37 percentage points relative to the efficient level (given by point E) of about 21 

20Specifically, this Bureau of Labor Statistics figure is for average hourly earnings in October 2012: http://www.bls.gov/news.release/
empsit.t19.htm.
21For example, two recent papers (Gowrisankaran, Nevo and Town, 2015; Ho and Pakes, 2014) estimate the relationship between 
distance and patients’ hospital choice. Unlike us, each of these papers has available a separate source of variation in price, and hence 
can compare the distance and price coefficients. Their results suggest much more important distance effects than the 23 dollars per 
hour benchmark we assume, although of course distance may play a very different role for a “one time” hospital visit than for a 
repeated trip to a radiation facility for a “routine” course of radiation.
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percent; the associated welfare cost is about $2,000 per patient relative to the efficient 

allocation. Figure 3(b) is instead based on the richest model (column (6) of Table 3), which 

allows heterogeneity in the response to price and thus make the demand curvature much 

greater, leading to more elastic demand for small price changes but to a much lower 

elasticity for large changes. This specification suggests that the US-style “full coverage” 

policy raises the lumpectomy rate by only about 10 percentage points relative to the efficient 

level of 48 percent, with a resultant welfare cost of about $710 per patient.

Likewise, the estimates without controls in Figure 3(a) suggest that a UK-style “no top-up” 

policy (given by point A) in which insurance only covers mastectomies and patients must 

pay the full cost of a lumpectomy reduces the lumpectomy rate from about 21 percent under 

the efficient top-up policy to nearly zero, and reduces welfare by about $1,400 per patient, 

relative to the efficient outcome. When we use the richest model, Figure 3(b), however, a 

large fraction of the patients are estimated to be not very price sensitive, so lumpectomy 

rates fall by only about 4.5 percentage points from the efficient level of 48 percent, with a 

welfare cost of about $800 per patient relative to the efficient level.

For completeness, Table 4 reports additional estimates for a variety of counterfactuals for 

each of the six demand specifications reported in Table 3. The top panel reports the 

observed outcome (for p = 0), which corresponds to our US-style full coverage benchmark. 

Each of the subsequent panels report a set of estimates for a different (counterfactual) price 

for lumpectomy (retaining a zero price for mastectomy). The first row of each panel reports 

the demand response; that is, the reduction in lumpectomy share (relative to the observed 

level) from the increase in price. The second row of each panel reports the (per patient) 

reduction in consumer surplus (relative to the observed level). The change in surplus 

consists of two components: a set of “marginal” patients change their choice to mastectomy 

as a result of the price change, and their change in consumer surplus is given by integrating 

under this portion of the demand curve; and a set of “inframarginal” patients, who have high 

willingness to pay for lumpectomy, do not change their choices, but now face a higher price 

which reduces their surplus. The third row of each panel uses a cost of $10,000 for the 

incremental costs of lumpectomy to report the change in insurer profit, which consist of not 

paying for lumpectomies for the “marginal” patients and (except for the case of mandate) 

from charging an incremental price for lumpectomies from the “inframarginal” patients. 

Finally, the fourth row of each panel reports the overall change in welfare by adding up the 

change in consumer surplus and the change in insurer profits. We chose the counterfactuals 

to illustrate price changes of $5,000 as a figure that is close to the lower 95% confidence 

interval of cost differences from Polsky et al. (2003), and is a smaller change that is less out 

of sample; $10,000 as a figure that is close to the midpoint of the cost difference range from 

Polsky et al. (2003); and $50,000 as a figure that is close to the “full” (no top-up) cost based 

on the figures from Polsky et al. (2003).

5 Ex ante efficiency

Our analysis thus far has focused on the impact of alternative insurance designs for the (ex-

post) efficiency of treatment choice, taking as given the extent of the patient’s risk exposure. 

We would be remiss, however, to analyze the welfare consequences of insurance designs 
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without considering their impact on risk exposure and hence ex-ante utility. We briefly do so 

here.

5.1 A simple calibration

The different insurance designs have different implications for ex-ante risk exposure, 

making the qualitative ranking of ex-ante efficiency between the US policy and the top-up 

policy a priori ambiguous. This is because the “top up” policy – which produces the (ex-

post) efficient treatment decision – leaves the consumer exposed to risk ex ante. To see this, 

note that under a “top up” policy in which individuals can pay on the margin for L, risk 

exposure is increasing in υi (up to c).

To evaluate ex-ante utility of a given individual, the key empirical object will once again be 

the individual’s willingness to pay for lumpectomy relative to mastectomy υi, which we 

assume is known to the individual at the beginning of the coverage year. In addition, we 

assume individuals are expected-utility maximizers with CARA utility w(x) = −exp(−rx) 

with a (homogeneous) coefficient of absolute risk aversion r, and (homogeneous) annual 

probability of illness ρ. Assuming mastectomy is fully covered and the lumpectomy out-of-

pocket price is p, the individual is faced with a risk of losing min(p, υi) with probability ρ. 

She will either choose lumpectomy and face a financial risk of p, or choose mastectomy and 

incur a monetized risk of υi, whichever is smaller.

The individual’s ex-ante utility is given by (the negative of) πi, which is the solution to: w(x 

− πi) = (1 − ρ)w(x) + ρw(x − min(p, υi)). For υi > 022 this yields:

(6)

The price p depends on the insurance design.

We can now consider the ex-ante utility properties of the three policies we have explored so 

far. The “full coverage” (US) policy sets p = 0; it removes ex-ante risk exposure (πi = 0) and 

maximizes consumer surplus (−πi) but, as discussed, produces ex-post socially inefficient 

treatment choices. Under the “top up” policy p = c, and although, as shown, it produces ex-

post efficient treatment choices, equation (6) indicates that it leaves the individual exposed 

to ex-ante risk (πi > 0). The “no top up” UK policy sets p = TC, the total cost of L; it 

therefore not only produces ex-post inefficient treatment choices but also exposes the 

individual to ex-ante risk. Moreover, since TC > c – by definition the total cost of L is 

greater than the incremental cost – it is clear from equation (6) that consumer surplus is 

lower (πi is higher) under the UK policy than the top-up policy. The higher social welfare 

ranking of the top-up policy relative to the UK policy is thus preserved when ex-ante utility 

is considered. The relative social welfare ranking of the US policy and the top-up policy is a 

priori unclear as is the relative ranking of the US and UK policies; all else equal, the US 

policy’s relative ranking is increasing in risk aversion r.

22For υi < 0 the individual will always choose M and be fully insured under any of the insurance arrangements we consider.
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To quantitatively assess ex-ante social welfare under the alternative insurance designs, 

equation (6) makes clear that in addition to the demand curve F(υi) that we have already 

estimated, we also need values for the risk of breast cancer (ρ) and the coefficient of 

absolute risk aversion (r). Table 5 reports the results from an illustrative calibration exercise. 

We assume a homogeneous annual risk of breast cancer for a 60 year old female of ρ = 

0.48%.23 We calibrate r based on a range of estimates reported in Table 6 of Cohen and 

Einav (2007). We use the estimates of F(υi) from the simplest empirical specification 

reported in column (1) of Table 3.

Table 5 reports the results. The three different panels (A through C) report results for three 

different assumptions regarding r. Column (1) reports the results for the “full coverage” 

(US) policy. Row 1 (in all three panels) reports the share of breast cancer patients choosing 

L, which under the US policy is simply the share of patients with υi > 0 and does not depend 

on the level of risk aversion. The other rows of column (1) are normalized to zero, as we use 

the US policy as a benchmark against which we measure the effects of other policies.

Column (2) of Table 5 reports the results for the “no top up” (UK) policy. The share of L 

(again shown in row 1 of each panel) drops almost to zero once patients are required to pay 

the total cost of $50,000. This leads to insurer cost savings of $50,000 for the small share of 

people who still choose L, and $10,000 for anyone who previously chose L but now chooses 

M (multiplied by the probability of breast cancer, ρ); row 2 in each panel indicates that this 

results in insurer costs savings of $5,443. The no top up policy, however, exposes patients to 

risk, and their utility loss depends on their level of risk aversion, which varies across the 

panels in the table. Row 3 in each panel reports the loss in consumer surplus relative to full 

coverage; we measure this by the change in πi, as defined in equation (6). Note that this loss 

in consumer surplus is associated with all individuals in the population, not only with those 

who are subsequently diagnosed with breast cancer, so even a small magnitude of π could be 

magnified once it affects the entire population of potential breast cancer patients. Naturally 

the reduction in consumer surplus is increasing in risk aversion r. Finally, row 4 in each 

panel reports the total social cost relative to full coverage, by adding up the corresponding 

reduction in consumer surplus relative to full coverage (row 3) and the corresponding social 

cost relative to full coverage (row 2). The results indicate that despite the cost saving 

associated with the UK “no top up” policy, the increased risk exposure is much greater, so 

overall it appears that in this setting the US “full coverage” policy dominates even for mild 

level of risk aversion.

Column (3) of Table 5 reports the results for the (ex-post) efficient top-up policy. The share 

of L is significantly lower (0.35 relative to 0.53) once patients are required to pay $10,000 

for L, but many patients still choose to do so. The insurer cost savings are similar to those in 

the UK policy because under the top-up policy it is the patient who pays for the incremental 

costs. Interestingly, the results indicate that the (total) efficiency ranking of the top-up policy 

relative to the US-style full coverage policy (row 4) depends on risk aversion. For the lowest 

23In our California cancer registry data in 2000, there were 585 60-year-old females diagnosed with breast cancer. Dividing this 
number by the total population of 60-year-old females in California as of 1-July 1999 (120,668; http://www.census.gov/popest/data/
state/asrh/1990s/tables/st-99-10.txt) gives p = 0.48%.
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value of risk aversion we consider, social welfare is higher under the top-up policy, but for 

higher values of risk aversion it is higher under the US-style full coverage policy. This 

illustrative analysis suggests that focusing solely on ex-post efficiency could miss an 

important part of the picture, and that the ex-ante risk exposure generated by top-up policies 

could be much more costly than the allocative efficiencies these policies may provide.

5.2 Additional potential insurance designs

Since the top-up policy does not necessarily dominate the full coverage policy from an ex-

ante perspective, it is interesting to consider other potential insurance contract designs. The 

“first-best” policy naturally creates no ex-ante risk exposure and achieves the ex-post 

efficient treatment choice. This could be implemented by offering a continuum of indemnity 

insurance policies x ∈ (0, c], which, in the event of illness, cover mastectomy costs and pay 

each patient a lump sum of x, and then allow individuals to pay the incremental cost of L out 

of pocket. In a competitive equilibrium a policy that pays x would be priced at ρx and will be 

bought by individuals with willingness to pay υi = x for x < c and by individuals with 

willingness to pay υi ≥ c for x = c, leaving individuals unexposed to risk. Such a policy 

would eliminate both ex-ante and ex-post efficiency losses. From an ex-post perspective, 

patients would obtain the lump sum, but only those patients with υi > c would choose 

lumpectomy, thus replicating the treatment efficiency generated by the previous “top up” 

policy. From an ex-ante perspective, individuals would be fully insured and would not be 

exposed to any risk, which is the efficient outcome (assuming, as is typical, that the 

insurance provider is risk neutral). In row 4 of column (4) of Table 5, we report the gains in 

social costs associated with this policy (relative to the full coverage policy).

The first best is likely not practical. Typical insurance markets offer discrete rather than 

continuous coverage, and coverage tends to be in the form of payment for treatment options, 

rather than lump sum cash transfers. One might naturally consider therefore the possibility 

of a competitive insurance market that would offer coverage for the social incremental cost 

of L in the event of illness. As shown in column (5) of Table 5, this setting improves over 

the full coverage US policy for all the risk aversion levels we consider, but does not achieve 

the first best. To see why, note that any individual with υi > c would purchase the policy, 

face no ex-ante risk exposure and make efficient ex-post treatment decisions. However, 

some individuals with υi < c (but sufficiently close to c) would also purchase the insurance 

to avoid financial risk, and would therefore (inefficiently) choose L ex-post.

In principle, one way to come even closer to the first best within a “practical” setting would 

be to offer only partial “top up” coverage, and to search for the efficiency maximizing cost-

sharing level of L. Yet, once coverage for L is incomplete, a familiar problem of adverse 

selection would arise in which demand for the partial “top up” coverage would be increasing 

in υi. This is not an issue when “top up” coverage is full; in this setting, all 53% of patients 

with υi > 0 who are potential consumers of top-up coverage would choose L with such 

coverage. Therefore, in the language of Einav, Finkelstein and Cullen (2010) – the “average 

cost” curve in the market is flat, and adverse selection is not a problem. However, when top-

up coverage is incomplete, we would have adverse selection in our calibrated setting; a 

higher price for partial top up coverage would increase the average υi of those who bought it 
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and thus the set of people who use it ex-post to purchase lumpectomy; in other words, the 

average cost curve would be downward sloping. Quantitatively, however, adverse selection 

is relatively less important in this specific exercise: 35 percent of patients would always 

purchase the policy (since they have υi > c), while 47 percent would never do so (because υi 

< 0), so the potential change in average composition of top-up insurance buyers in terms of 

their propensity to choose L ex post is limited by the fact that only 18 percent of the 

population has 0 < υi < c. This makes the efficiency cost of adverse selection in this setting 

less important, and echoes recent empirical findings in the context of health insurance 

(Einav, Finkelstein and Cullen, 2010; Bundorf, Levin and Mahoney, 2012). Of course, this 

calibration exercise is extremely stylized, and evaluating this trade-off more systematically 

would require, among other things, better estimates of r and ρ – as well as potential 

heterogeneity in them and selection on them – for our population.

6 Conclusion

We present a simple framework to illustrate the welfare gains from a health insurance policy 

that allows patients to pay the incremental price for more expensive treatment options. Such 

a policy efficiently sorts low willingness-to-pay patients to the cheaper treatment option, in 

contrast with the current status quo in the US where the incentives for such sorting are 

minimal. At the same time, this policy does not “over price” the more expensive treatment, 

as is common in the UK and several other high-income countries; UK-style policies allocate 

too many patients to the less expensive treatment. Our analysis of the choice between 

lumpectomy and mastectomy for breast cancer patients provides an empirical illustration as 

to how such a top-up policy could be evaluated, and what the quantitative welfare gains to 

such a policy might be.

Most of our analysis focused on analyzing the (ex-post) efficiency of treatment choices, 

taking the overall level of risk exposure as given. In the last section of the paper, we also 

briefly discuss ex-ante efficiency, noting that the top-up policy – unlike a US-style “full 

coverage” policy – exposes the individual to ex-ante risk exposure. A stylized calibration 

exercise shows that for high enough levels of risk aversion social efficiency can be higher 

under a US-style “full coverage” policy than a top-up policy since the gains from reduction 

in risk exposure can outweigh the loss from ex-post inefficient treatment choices.

Our empirical analysis in this paper focuses on a particular setting of two breast cancer 

treatments, one of which is more costly with no evidence of superior average mortality 

outcomes. As noted in the introduction of the paper, we chose this setting primarily for the 

empirical traction it provides for estimating demand for alternative treatments. One 

noteworthy feature of this breast cancer application is that it considers two forms of 

treatment that differ in cost, and over which individual consumers may have different 

preferences, but which do not differ in terms of expected outcomes to which the social 

planner is assumed to attach weight. Such a tradeoff may not be common, but it is not 

unique to our setting. Consider, for example, the recent controversy around Sanofi’s new 

cancer drug Zaltrap, which was approved by the US Food and Drug Administration in 

August 2012 to treat metastatic colorectal cancer, and was priced at around $11,000 per 

month. In October 2012, a group of doctors at Memorial Sloan-Kettering Cancer Center 
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announced in a New York Times editorial that Memorial Sloan-Kettering would exclude 

Zaltrap from its formulary because, they argued, there was no evidence that Zaltrap 

improved survival relative to an alternative treatment (Avastin), which costs about half as 

much (Bach et al., 2012).24

More importantly, while our empirical analysis of breast cancer assumes there is no 

incremental benefit to the more expensive treatment that is valued by the social planner, it is 

straightforward to apply the type of analysis we have done to settings in which the 

incremental value to society of an alternative treatment for a disease is judged to be less than 

the incremental cost, even when that incremental value is positive. Instead of considering 

alternative reimbursement schemes for more expensive treatment options with zero 

incremental social value (e.g. no top-up in the UK, or the type of top-up policy we have 

analyzed in this paper), one could instead simply analyze alternative (presumably 

subsidized) reimbursement structures for more expensive treatment options whose 

incremental social value relative to their incremental cost was judged to be below some 

socially-determined threshold. The analysis would be identical to the analytical set-up 

outlined in our paper, except that the social incremental cost would be scaled down by the 

monetized incremental social value provided by the more expensive treatment. Key to this 

exercise would of course be monetization of the incremental benefits of the more expensive 

treatment: in order to apply our empirical strategy, the analyst or the policymaker must agree 

on what benefits the alternative treatment provides, and how to monetize their value.

In our context of breast cancer, we focus on a benchmark comparative effectiveness policy 

which only accounts for survival benefits. Of course, the policy maker could decide that 

other benefits, such as “body integrity” (in the case of breast cancer), should count as well, 

and could include the monetized value of these other benefits in the analysis. Such an 

extension would be conceptually straightforward. The decision as to which patient outcomes 

constitute outcomes that should be internalized by the policy maker, on the other hand, is far 

from obvious, and would presumably be guided by politics and subjective normative views 

rather than by economics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Conceptual framework: Treatment choice
Notes: This figure illustrates conceptually the efficiency consequences of alternative 

insurance designs (i.e. prices for lumpectomy (L) relative to mastectomy (M)). The efficient 

allocation is given by point E and the “top-up” insurance design under which patients pay 

the incremental cost of L relative to M, and fraction Ltop-up choose L. Equilibrium under a 

US-style “full coverage” insurance design in which individuals do not pay on the margin for 

L relative to M is given by point D, where fraction Lfull coverage choose L. The welfare loss 

from this outcome relative to the efficient outcome is given by triangle CDE. Equilibrium 

under a UK-style “no top-up” alternative insurance design in which only M is covered by 

insurance and patients must pay the total cost for L is given by point A, where Lno top-up 

choose L and the welfare loss relative to the efficient outcome is given by triangle ABE.

Einav et al. Page 23

Am Econ J Econ Policy. Author manuscript; available in PMC 2016 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Treatment choice by travel time to nearest radiation facility
Notes: These figures plot the probability of treatment by travel time in minutes to the nearest 

radiation facility, measured from the patients’ address of residence at the time of cancer 

diagnosis, for our baseline sample (N=323,612). Panel (a) plots the raw data, and a 

histogram of the number of patients by travel time. Panel (b) plots the de-meaned 

lumpectomy rate as well as two residualized versions. The first residualizes lumpectomy 

probability using patient characteristics. The second adds neighborhood-level covariates 
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from the 2000 Census and clinical covariates. All covariates are as described in the notes to 

Table 1.
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Figure 3. Empirical analog of conceptual framework: Treatment choice
Notes: These figures represent the empirical analog of Figure 1. The curves plot the implied 

demand system for lumpectomy based on: in Panel (a), the estimates in column (1) of Table 

3; and in Panel (b), the estimates in column (6) of Table 3. The scatterplots in the lower 

right-hand corners of the graphs illustrate the variation (in travel time) used to estimate the 

demand function by plotting the empirical distribution of the monetized distance (that is, 

distance in hours multiplied by θ = $1, 150), using the 7 distance “bins” shown in Figure 2; 
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this illustrates the point we emphasize in the text: our key counterfactual exercises are quite 

far out of sample, and therefore should be taken with caution.
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Table 1

Summary statistics

Mean Std. Dev. 5th Pct. 95th Pct.

Treatment choice:

  Lumpectomy 0.579

  Mastectomy 0.421

Distance to nearest radiation:

  Driving time (minutes) 10.9 14.3 2 32

  Driving distance (miles) 7.9 11.6 1.0 24.9

  Spherical distance (miles) 5.3 7.8 0.7 17.6

Demographics (at time of diagnosis):

  Year of diagnosis 2003.2 3.7 1997 2009

  Age 60.8 13.8 40 83

  Married 0.570

  Medicaid coverage 0.156

  Race: Non-Hispanic White 0.692

  Race: Hispanic 0.141

  Race: Asian or Pacific 0.101

  Race: Other 0.066

Census-block characteristics (using 2000 census):

  Share below twice poverty line 0.253 0.187 0.041 0.636

  Median annual income 58,908 28,525 24,063 110,595

  Share with blue collar job 0.108 0.060 0.020 0.213

  Share unemployed 0.037 0.029 0.001 0.090

  Median monthly rental rate 955.2 404.6 466 1,814

  Median home value 266,417 188,861 76,300 660,300

  Average years of schooling 13.9 1.3 11.3 15.5

Clinical characteristics (at time of diagnosis):

  Cancer Stage:

    In Situ 0.182

    Local 0.533

    Regional spread 0.264

    Remote spread 0.017

  Tumor grade:

    1 0.190

    2 0.379

    3 0.278

    4 0.047

Notes: This table displays the mean and - for non-binary variables - the standard deviation, 5th percentile, and 95th percentile in our baseline 
sample (N=323,612). Distance is one-way distance. Our demographic covariates are year of diagnosis (here continuous; indicator variables in our 
analyses, with 1997 as the omitted year); age (here continuous; indicator variables in our analyses for below 40, 40–44, 45–49, 50–54, 55–59, 60–
64, 65–69, 70–74, 75–79, and above 80, with below 40 as the omitted group); marital status indicators (married; other/missing is omitted in our 
analyses); a Medicaid coverage indicator (=1 if Medicaid covered part of the primary source of payment to the hospital); and race/ethnicity 
indicators (non-Hispanic White, Hispanic, and Asian or Pacific; other/missing is omitted in our analyses). Our census block characteristics are 
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drawn from the 2000 census: percent of population within the census block group that is at or below 200% of the poverty line; median household 
income within the census block group; proportion of those 16 years of age or over within the census block group with a blue collar job; proportion 
of those 16 years of age or over within the census block group in the labor force that are unemployed; median gross rent of renter occupied houses 
within the census block group; median gross home value of owner occupied houses within the census block group; and average years of schooling 
in the census tract. Our clinical characteristics are two measures of the extent of disease at the time of diagnosis: indicators for cancer stage (in situ, 
localized, regional, and remote; missing stage is omitted in our analyses), and indicators for cancer grade (1, 2, 3, and 4; missing grade is omitted in 
our analyses).
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Table 2

Summary statistics by above and below median travel time

Mean
P-val

Above median distance Below median distance

Treatment choice:

  Lumpectomy 0.569 0.588 0.000

  Mastectomy 0.431 0.412 0.000

Distance to nearest radiation:

  Driving time (minutes) 17.4 4.4 0.000

  Driving distance (miles) 13.2 2.6 0.000

  Spherical distance (miles) 8.8 1.9 0.000

Demographics (at time of diagnosis):

  Year of diagnosis 2003.2 2003.1 0.000

  Age 60.5 61.1 0.000

  Married 0.608 0.533 0.000

  Medicaid coverage 0.150 0.163 0.000

  Race: Non-Hispanic White 0.724 0.660 0.000

  Race: Hispanic 0.128 0.155 0.000

  Race: Asian or Pacific 0.088 0.114 0.000

  Race: Other 0.060 0.071 0.000

Census-block characteristics (using 2000 census):

  Share below twice poverty line 24.004 26.613 0.000

  Median annual income 60,245 57,572 0.000

  Share with blue collar job 0.111 0.104 0.000

  Share unemployed 0.037 0.037 0.007

  Median monthly rental rate 952.6 957.9 0.000

  Median home value 253,002 279,832 0.000

  Average years of schooling 14.0 13.9 0.000

Clinical characteristics (at time of diagnosis):

  Cancer Stage: 0.183 0.182 0.386

    In Situ 0.533 0.533 0.981

    Local 0.263 0.265 0.388

    Regional spread 0.017 0.017 0.573

    Remote spread 0.183 0.182 0.386

  Tumor grade:

    1 0.195 0.186 0.000

    2 0.376 0.382 0.000

    3 0.273 0.284 0.000

    4 0.048 0.046 0.068

Notes: This table splits our baseline sample (N=323,612) by above and below median distance from a radiation facility, presents the mean for each 
sub-sample, and presents the p-value from a test for a difference between these means (with unadjusted standard errors). All covariates are as 
described in the notes to Table 1.
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lo
w

ed
” 

po
lic

y 
se

ts
 p

 =
 c

. T
he

 f
ir

st
 r

ow
 in

 e
ac

h 
pa

ne
l r

ep
or

ts
 th

e 
sh

ar
e 

of
 b

re
as

t c
an

ce
r 

pa
tie

nt
s 

ch
oo

si
ng

 lu
m

pe
ct

om
y.

 T
he

 s
ec

on
d 

ro
w

 r
ep

or
ts

 th
e 

in
su

re
r 

co
st

 s
av

in
gs

 r
el

at
iv

e 
to

 f
ul

l c
ov

er
ag

e.
 T

he
 th

ir
d 

ro
w

 r
ep

or
ts

 th
e 

ch
an

ge
 (

re
la

tiv
e 

to
 f

ul
l c

ov
er

ag
e)

 in
 a

ve
ra

ge
 r

is
k 

pr
em

iu
m

 π
i, 

as
 d

ef
in

ed
 in

 e
qu

at
io

n 
(6

).
 T

he
 f

ou
rt

h 
ro

w
 r

ep
or

ts
 th

e 
to

ta
l s

oc
ia

l c
os

t r
el

at
iv

e 
to

 f
ul

l c
ov

er
ag

e,
 b

y 
ad

di
ng

 u
p 

th
e 

se
co

nd
 a

nd
 

th
ir

d 
ro

w
s.

 E
ac

h 
co

lu
m

n 
co

rr
es

po
nd

s 
to

 a
 d

if
fe

re
nt

 m
ar

ke
t d

es
ig

n,
 a

nd
 e

ac
h 

pa
ne

l c
or

re
sp

on
ds

 to
 d

if
fe

re
nt

 c
al

ib
ra

te
d 

le
ve

l o
f 

ri
sk

 a
ve

rs
io

n.
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