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Abstract

Geographically distributed environmental factors influence the burden of diseases such as asthma. 

Our objective was to identify sparse environmental variables associated with asthma diagnosis 

gathered from a large electronic health record (EHR) dataset while controlling for spatial 

variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal 

Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a 

three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census 

block groups. Over one thousand block group variables were obtained from a commercial 

database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, 

the environmental variables were first dimensionally reduced with sparse principal component 

analysis. Logistic thin plate regression spline modeling was then used to identify block group 

variables associated with asthma from sparse principal components. The addresses of patients 

from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. 

Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse 

principal components identified via model selection consisted of food at home, dog ownership, 

household size, and disposable income variables. In rural areas, dog ownership and renter 

occupied housing units from significant sparse principal components were associated with asthma. 

Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially 

added sparse principal components to Logistic thin plate regression spline modeling. This method 

allowed association of geographically distributed environmental factors with asthma using EHR 

and environmental datasets. SASEA can be applied to other diseases with environmental risk 

factors.
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INTRODUCTION

While there is continued interest in associating genes with disease using methods such as 

genome-wide association studies [1], approximately 23% of disease burden and death can be 

attributed to environmental factors [2]. It is important to associate diseases with a strong 

environmental component, including respiratory infections, cardiovascular disease, 

cerebrovascular disease, and asthma [2], with geographical environmental factors. Methods 

that consider spatial variation and interpretability of results will increasingly be utilized as 

clinical, environmental, and geographical datasets become more readily available. Our paper 
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applies sparsity with spatial modeling to study the association of environmental factors and 

asthma.

1.1 Asthma risk factors

Asthma is a chronic respiratory disease with variable and recurring symptoms, airflow 

obstruction, bronchial hyperresponsiveness, and inflammation [3]. Its prevalence rose by 

15% in the last 10 years [4]. Based on a Wisconsin Department of Health Services asthma 

surveillance report, approximately 14% of adults and 10% of children have been diagnosed 

with asthma in Wisconsin [5]. In 2009, 5,300 people were hospitalized and 21,000 went to 

an emergency department with a principal diagnosis of asthma. Eleven percent of adults 

with asthma had an emergency department visit and 20% had urgent care visits for 

symptoms [5].

Asthma onset is associated with multiple, complex factors. While some are non-modifiable 

such as sex and age [6], many others are associated with the environment and residential 

location. These include educational attainment, household income, health insurance, 

smoking, physical activity, and obesity [6]. Medical conditions influenced by the 

environment and associated with asthma include atopy [7], allergic reactions [8], airway 

hyperreactivity [9], and airway responsiveness [10]. Over 370 outdoor and indoor 

environmental factors have been associated with asthma including substances from building 

materials, cleaning products, personal care products, central heating systems, maintenance, 

and humidification devices [11].

1.2 Geographical analysis of asthma

Geographic information system (GIS) analyses have been used to study geographic 

environmental variables associated with asthma. The most studied variable was air pollution 

[12], which has been measured via passive measurement, direct measurement, proximity to 

roadways, and traffic carbon emissions. Besides air pollution, asthma was associated with 

climate differences [13], latitude [14], and socioeconomic status [15]. Socioeconomic status, 

specifically male employment, was positively associated with asthma in a Southern 

California study, where access to care and the hygiene hypothesis—the idea that limited 

exposure to bacterial and viral pathogens during childhood result in a predisposition to 

allergy [16,17]—were proposed as explanations.

Fewer asthma studies have incorporated local environmental variables aggregated at the 

level of census tracts or block groups. Census tracts and block groups are geographic areas 

developed by the United State Census Bureau and contain 1,500–8,000 and 600–3,000 

people, respectively. Using census tract data, asthma diagnosis was correlated with houses 

facing highway intersection [18] and sociodemographic characteristics of race, sex, and 

education [19]. Fewer studies have used block group level variables. Socioeconomic status 

was associated with asthma diagnosis using block group level data [15]. Many of these 

analyses used questionnaire data to determine asthma diagnosis, which may be limited by 

self-report bias [20]. These analyses involved less than 5700 participants, 10 environmental 

variables, and census geographic regions from only a portion of a state.
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1.3 Environmental variables associated with EHR data

Environmental variables and built environments have been studied using EHR data. For 

example, nitrogen oxides were tested for association with diseases including asthma 

diagnoses obtained from EHR datasets in primary care [21]. Body mass index (BMI) 

calculated from EHR data was positively associated with the number of fast food restaurants 

near a person’s home [22].

Schwartz et al. [23] used an EHR dataset, environmental community-level variables, and 

multilevel statistical analysis to demonstrate that lower BMI was associated with higher 

socioeconomic status and areas with more venues for physical activity.

1.4 Spatial Statistics to Study Disease

Spatial statistics offer methods to incorporate geographic location to identify risk factors 

associated with disease [24]. The spatial statistics utilized in this study included a 

generalized additive model. Generalized additive models [25] are generalized linear models 

with predictors that involve a linear sum of smooth functions.

Previous health studies that utilized spatial generalized additive models investigated the 

association of air pollution and mortality, tuberculosis drug resistance patterns in Peru [26], 

and geographic distribution of heart disease [27].

Spatial statistics, specifically additive models, have been combined with sparsity. COSSO 

[28] and SpAM [29] extended the lasso estimator [30] while another approach created a new 

sparsity-smoothness penalty [31].

1.4 Objective

Our goal was to identify an interpretable set of environmental risk factors of asthma 

distributed geographically. Other studies have combined environmental variables and EHR 

data, spatial statistics and disease, and spatial statistics and sparsity. Our main contribution 

is the addition of sparsity to spatial statistics. As applied to geographically distributed EHR 

and environmental datasets, we describe this methodology as Sparse Spatial Environmental 

Analysis (SASEA).

MATERIAL AND METHODS

2.1 Source of Clinical Data

Our research group developed the University of Wisconsin Electronic Health Record - 

Public Health Information Exchange (UW eHealth-PHINEX), an EHR data exchange 

between University of Wisconsin (UW) Departments of Family Medicine, Internal 

Medicine, and Pediatrics and the Wisconsin Division of Public Health. Further details have 

been described previously [32]. Briefly, the database contains clinical care variables such as 

disease diagnoses, medications, and laboratory test results. Patient home addresses from 

year 2012 were geocoded to year 2000 block groups, the smallest geographic area the US 

Census Bureau publishes. Block groups were linked to detailed demographic and 

environmental data from the ESRI Business Analyst database [33]. The data exchange is a 
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HIPAA Privacy Rule compliant-limited dataset, and the Wisconsin Division of Public 

Health is blinded to patient/provider specific information. All patient identifiers were 

removed from the data except birth month and year, ZIP code, and census block group of the 

patient’s address. Random accession numbers were used for patients, primary care 

providers, and clinics. This study was approved by the UW Institutional Review Board 

protocol M2009-1273 and UW Health with data use agreements.

UW Departments of Family Medicine, Internal Medicine and Pediatrics provide care in 42 

clinics throughout Wisconsin, but most are located in southcentral Wisconsin. Patients 

represent various environmental and socioeconomic strata in rural and urban regions.

The dataset study period was from 2007–2009. Patients were identified as asthma cases 

when an asthma ICD-9 code of 493.xx was associated with a Current Procedural 

Terminology (CPT) codes for hospital discharges (CPT codes 99238 and 99239) or office 

visits (CPT codes 99201–99205 and 99211–99215). Patients were identified as controls if 

they did not have a hospital discharge or office visit associated with an asthma ICD-9 code 

over the study period, but were seen at least once in the UW Departments of Family 

Medicine, Internal Medicine, or Pediatrics. Participants in the study were restricted to be 5 

to 50 years of age. There were no additional exclusion criteria.

This study included 199,220 participants [32]. There were 103,690 patients living in 2,186 

block groups with sufficient data also linked with ESRI data to perform the analysis 

described in section 2.3.

The ESRI Business Analyst environmental database [33] consisted of 1,117 variables, which 

included demographics (age, income, education), living conditions (household members, 

rental property, pets, rural living), behaviors (food consumption, transportation, smoking, 

television), health (drug prescriptions), and businesses (types of employees and employers). 

Most variables (992 of the 1,117) represented data from year 2010 while the remaining 

variables represented data from the year 2000 (please see Appendix Table 1). Variables 

were normalized to the number of participants or number of households when appropriate 

and standardized to (0,1).

2.2 Spatial Variation of Asthma

The large-scale spatial variation of asthma was estimated using a Logistic generalized 

additive model with a thin plate regression spline smoothing term [34], which we refer to as 

a Logistic thin plate regression spline model. As described in the Introduction, generalized 

additive models [25] are generalized linear models with predictors that involve a linear sum 

of smooth functions. Smooth functions allow a more flexible model specification that can 

account for the spatial location of variables. A thin plate regression spline is considered an 

optimal smooth function as it was developed for optimal smoothness and data fitting using a 

more computationally feasible low rank approximation [34]. Thin plate regression splines do 

not require user-specified locations of knots and are multivariate, penalized low rank 

approximations of a smooth function with optimal data fitting and smoothness [34]. Tensor 

product smooths were not used as both longitude and latitude were scaled similarly. The 

geographic area of Wisconsin was small and did not necessitate pseudosplines on a sphere 
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[35]. The thin plate regression spline was represented by a bivariate smooth term with the 

longitude and latitude of the block group centroid.

ArcGIS software [36] was used to map the total number of patients, prevalence, and Logistic 

thin plate regression spline modeling predicted prevalence per block group. Block groups 

with ≤ 20 total participants (asthmatic and non-asthmatic) were mapped with a different 

coloring scheme than block groups with > 20 total participants.

2.3 Association of environmental variables with asthma

The Logistic thin plate regression spline model with covariates was:

(1)

where i is a participant and j is the block group participant i’s home address is geocoded to. 

The thin plate regression spline is  where ck(xi, yi) is the kth 

basis function, ζk is an unknown parameter, and xi and yi are the latitude and longitude for 

the centroid of the block group participant’s geocoded home address. αjblockj is the block 

group random effect allowing for hierarchical0 structuring of the model. The basis 

dimension, q, was chosen to be 80, which was twice the estimated degrees of freedom to 

allow for appropriate smoothness. BMI was the body mass index at first encounter. The 

encounter days covariate was defined as the number of days between a patient’s first and last 

encounter in the EHR dataset. Encounter days controlled for the differences between 

patients who utilized the University of Wisconsin’s hospitals and clinics over a short amount 

of time (e.g., those who had one visit to the emergency department) versus patients who 

utilized the hospitals and clinics over a longer amount of time (e.g., those who received the 

majority of their medical care at the University of Wisconsin). The distance covariate was 

defined as the Euclidean distance between a patient’s home address and the address of the 

primary care office with the most frequent visits.

An adapted Logistic generalized additive model fitting with subsampling for smoothing 

spline fitting was used to accommodate the large dataset [37,38]. Subsampling was a 

technique used for faster computation and did not cause parameter estimate variability. The 

smoothing splines were first set using a subsample of the data. In each subsequent step of 

the penalized iteratively re-weighted least squares (PIRLS) algorithm, the weighted model 

matrix was constructed in blocks with the corresponding QR decomposition so as not to 

form the entire model matrix. This method is justified for restricted maximum likelihood 

estimation because of asymptotic multivariate normality of Q’z, where z is the pseudodata. 

This adapted method was previously implemented in the R package mgcv using the bam 

function with tp parameter [34].

The 1,117 environmental variables from ESRI were dimensionally reduced using sparse 

principal component analysis (SPCA) [39] before testing for association with asthma. SPCA 

is in contrast to principal component analysis (PCA). In PCA, the principal components are 
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a linear combination of the original variables. SPCA uses only a small number of non-zero 

weighted original variables to create each principal component. By having a small number 

of the original variables constitute each principal component, we can more easily discuss 

groupings of variables. The simplest SPCA implementation first identifies principal 

components with traditional PCA. Each principal component can then be regressed using the 

original variables with a lasso penalty. We chose twenty as the number of non-zero variables 

to be included for each sparse principal component for ease of interpretability. The SPCA 

algorithm determined which environmental variables were chosen. We utilized the spca 

function in the elasticnet package from R [39].

The sparse principal components were used to determine how environmental variables were 

associated with asthma. Starting with the first sparse principal component, which 

represented the greatest variance of the ESRI dataset, sparse principal components were 

added sequentially to the Logistic thin plate regression spline model with covariates as 

shown below.

(2)

where r = {1, …, 18} and (SPC)j,m is the value of sparse principal component m at block 

group j. The largest model tested included the thin plate regression spline, covariates, and 

sparse principal components one through eighteen. Bayesian Information Criterion (BIC) 

was used to compare models without sparse principal components and with r = {1, …, 18}. 

Eighteen was chosen as the maximum number of sparse principal components we would be 

willing to investigate, as interpretability of environmental variables was a major goal. As 

models with increasing parameters can have a greater likelihood, BIC is a score used in 

model selection that penalizes the likelihood by the number of parameters. BIC = −2 * ln(L) 

+ k * ln(N), where L is the likelihood, k is the number of parameters estimated and N is the 

number of observations [40]. The model with the lowest BIC is optimal.

We summarize the number of variables used in modeling. There are 1,117 environmental 

variables. Using sparse principal components analysis, 20 environmental variables were 

selected to represent each sparse principal component (SPC). By using SPCA, SPCs were 

ranked by importance based on the variance each SPCs represented from the original 

environmental variable dataset. To determine which SPCs to add to the model, we added the 

SPCs in order from rank #1 to rank #18. For example, we tested if the model was best fit if 

SPC 1 was added; if SPC 1 and 2 were added; if SPC 1, 2, and 3 were added; etc…; and if 

SPC 1 through 18 were added. The model also included 6 non-environmental covariates to 

control for variables that likely affect asthma diagnosis.

The change in log odds of asthma diagnosis per unit measure of sparse principal component 

m, δm(SPC)j,m, was examined for each Wisconsin block group j. As 
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 where EV is an environmental variable from the ESRI database, 

the associated effect on the change in log odds of asthma diagnosis for an individual 

environmental variable could be assessed via the sign of ηn and ηm. All statistical analyses 

were performed in R.[34,41]

The graphical abstract summarizes the SASEA methods integrated in this study. We began 

with electronic health record data (covariates, asthma diagnosis as defined above, and the 

block group participants resided in) and environmental variables from Esri (values represent 

measurements from a block group). We applied sparse principal component analysis to the 

environmental variables. We combined the EHR dataset with the sparse principal 

components from the environmental variable dataset. We ran a logistic thin plate regression 

spline model on this combined dataset. Bayesian information criterion was used to select the 

number of sparse principal components added to the model. The odds ratios for variables in 

the logistic regression model were reported. The change in log odds value was color coded 

and mapped to block groups.

RESULTS

Figure 1a shows major cities and population by county in Wisconsin. Figure 1b shows the 

total number of patients from the EHR dataset per block group. The majority of patients 

were in Dane County, WI and eight southern counties. Most participants were near the four, 

more urban cities including Madison, Eau Claire, Wausau, and Appleton. The median and 

maximum number of participants per block was 5 and 2,673, respectively. 927 out of 3,307 

block groups had greater than 20 total participants. The asthma period prevalence from 

2007–2009 was 8.4% (16,739 out of 199,220).

Figure 2 shows asthma prevalence and the Logistic thin plate regression spline model 

predicted prevalence for each block group using only a coordinate bivariate smooth term, 

log(asthmai,j) = f(xi, yi) + εi,j. The median and maximum prevalence estimates were 0% and 

100%, which was expected as many block groups had a low total number of participants 

(Figure 3a). However, the regression model was intended to smooth prevalence and decrease 

extreme values (Figure 3b). The predicted prevalence had a minimum, median, and 

maximum prevalence of 2.3%, 6.8%, and 12%. Spatially, higher prevalence was modeled in 

the urban southcentral, rural southwestern, and central regions of the state. Lower 

prevalence was modeled in rural areas of the state.

The Logistic thin plate regression spline model with covariates had the lowest BIC when 

four sparse principal components were added to the model (56,511) compared with the 

model containing no sparse principal components (63,974) or 2–3 and 5–18 sparse principal 

components (56,528–56,581). The four sparse principal components accounted for 0.9%, 

0.7%, 0.5% and 0.2% of the variance from the original dataset. The odds ratios of asthma 

diagnosis for covariates and the four sparse principal components are shown in Table 1. 

Race had the greatest effect size. The odds of asthma diagnosis for black participants were 

highest at 1.78 (1.63–1.94) compared with the odds of asthma diagnosis for white 

participants. The odds of asthma diagnosis for Asian participants were lowest at 0.66 (0.57–

0.77) compared with the odds of asthma diagnosis for white participants. Hispanic ethnicity 
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compared to non-Hispanic ethnicity and age per 10 years had a moderate decrease in the 

odds ratio of asthma diagnosis. Sex, encounter days, and distance to clinic had no or smaller 

effect size on asthma diagnosis odds ratio. Of the sparse principal components, sparse 

principal components 2 with an odds ratio of 0.95 (0.89–0.99) and 4 with an odds ratio of 

1.13 (1.01–1.27) were significant. The range of data values for sparse principal components 

1, 2, 3, and 4 was 30.9, 14.4, 21.1, and 10.6, respectively.

Table 2 shows representative, high loading environmental variables of the four sparse 

principal components. Variable loadings and model coefficients are shown as well. 

Variables of significant sparse principal components with positive loadings and positive 

model coefficients, including households with disposable income less than $15,000, were 

positively associated with asthma. Variables of significant sparse principal components with 

negative loadings and negative model coefficients, including renter occupied housing units, 

were positively associated with asthma. Variables of significant sparse principal components 

with positive loadings and negative model coefficients, including dog ownership, were 

negatively associated with asthma (please see Appendix Table 2 for all variables and 

loadings of these four sparse principal components).

The change in log odds of asthma diagnosis per unit measure of sparse principal components 

2 and 4 are shown in Figure 3. The change in log odds was calculated for sparse principal 

component m, Wisconsin block group j, and model coefficient δ as δm(SPC)j,m. The urban 

areas of Wisconsin include Madison, Milwaukee, Eau Claire, La Crosse, and Appleton, 

whose locations are shown in Figure 2a. For sparse principal component 2, rural areas of the 

state had a positive change in log odds of asthma diagnosis (Figure 3a). The two southern 

urban areas with a negative change in log odds included Madison and Milwaukee. As the 

SPC loading for dog ownership was positive and the model coefficient of SPC 2, δ2, was 

negative (Table 2), less dog ownership contributed to the positive change in log odds of 

asthma diagnosis in rural areas. As the SPC loading for renter occupied housing units was 

negative (Table 2), more renter occupied housing units contributed to the positive change in 

log odds of asthma diagnosis in rural areas. For sparse principal component 4, eastern areas 

of the state had a positive change in log odds of asthma diagnosis (Figure 3b). As the SPC 

loading for households with a disposable income less than $15,000 was positive and the 

model coefficient of SPC 4 δ4, was positive (Table 2), more households with a disposable 

income less than $15,000 contributed to the positive change in log odds of asthma diagnosis 

in eastern Wisconsin.

DISCUSSION

It is estimated that the lack of medical care accounts for 10 percent of early deaths in the 

United States. The remaining determinants of health contributing to early deaths include 

genetics, social circumstances, environmental exposure, and behavioral patterns [42]. Our 

work utilizing SASEA is unique in the application of sparsity to spatial statistics. We use of 

a large EHR dataset to identify sparse environmental variables associated with asthma. This 

methodology was able to identify several location-specific, environmental risk factors 

associated with asthma. Specifically, less dog ownership and more renter occupied housing 
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units were associated with increased asthma in rural areas. More households with low 

disposable income were associated with increased asthma in eastern Wisconsin.

4.1 SASEA

We attempted to account for multiple comparisons of the many variables and identify a 

smaller set of interpretable risk factors. The SASEA method performs sparse principal 

component analysis outside of the regression model as a means to prevent overfitting. 

Twenty non-zero loading variables for each sparse principal component were chosen to 

consider small groups of variables. Sparse principal components were sequentially added 

using BIC for model selection given the greater variance represented by higher ranked 

components. The sequential addition allowed for further structured and sparse variable 

evaluation. Although a set of sparse principal components were selected by BIC (four in this 

study), only some may be significant based on the odds ratio (two in this study). This feature 

of SASEA enhances sparsity as well.

The integrations of various scalable methods accommodated analysis of the EHR, 

environmental, and geographical datasets. Use of adaptable statistical model fitting based on 

well-studied algorithms was an asset that allowed for simple extension to the large number 

of patients and variables.

4.2 Community variables associated with asthma

Similarly to our study, two additional studies [14,15] investigated community environmental 

variables associated with asthma. In our study, asthma was defined based on EHRs 

compared to survey data in the other two studies [14,15]. Many variables overlapped among 

these three studies. Our study and Krstić’s study [14] used latitude and longitude. We did 

not use insolation, air temperature or air pollution. Shankardass et al. [15] and our study had 

the individual variables of age, race, gender, and BMI. Shankardass et al. [15] included more 

individual variables including freeway distance while our study included more community 

environmental variables. We did not have male unemployment, which Shankardass et al. 

[15] found significantly associated with asthma. However we had other variables similar to 

socioeconomic status such as disposable income and employed civilian population in sparse 

principal components.

For analyses, Krstić [14] used linear regression, Shankardass et al. [15] used multilevel 

logistic random effect modeling, and our study used logistic thin plate regression spline 

modeling. The random effect modeling likely was more applicable to Shankardass et al. [15] 

as communities were concentrated. In our study the random effect in addition to thin plate 

regression spline based on latitude and longitude was chosen because of the distribution of 

patients throughout the state of Wisconsin.

4.3 Sparse principal components associated with asthma

As seen in other studies [6,40], higher asthma prevalence was associated with increased 

BMI, female sex, and black race, while lower asthma prevalence was associated with 

Hispanic ethnicity. Age, encounter days in the EHR dataset, and distance to most frequented 

clinic had little association with asthma diagnosis. Sparse principal component 2 represented 
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by dog ownership and renter occupied housing units in addition to sparse principal 

component 4 represented by disposable income less than $15,000 were significantly 

associated with asthma. The individual variables representing sparse principal components 

likely contributed a small effect size.

Previous studies support the association of asthma and the environmental variables 

representing the sparse principal components in this study. In this study, dog ownership had 

a negative association with asthma. Other studies have shown perinatal and early life 

exposure to dog allergen was associated with reduced allergy and asthma risk later in life 

[43,44]. Renter occupied housing units were positively associated with asthma in a Brazil 

study [45]. Rental housing was associated with cold and damp housing, which in turn were 

associated with increased asthma [46]. Lastly, lower socioeconomic status as reflected by 

disposable income less than $15,000 was associated with greater asthma. Previously 

mentioned studies came to similar conclusion [5,6]. However, these results contradicted the 

positive association of socioeconomic status with asthma found in the Shankardass et al. 

[15]. Thus, the SASEA method used in this study identified variables that were previously 

associated with asthma risk, suggesting that these methods may have a role to studying 

chronic disease.

Mapping the associated change in log odds of asthma for a sparse principal component 

highlighted the geographic distribution of these sparse principal components and high 

loading environmental variables. The urban and rural discrepancy seen in differences in 

renter occupied housing units may be driven by the built environment, the human-made 

space where people live and work [47].

4.4 EHR as a measure of clinical data

The use of EHR and block group characteristics merits comparison with traditional forms of 

health surveys including self-report and public health measured data. Canadian studies 

suggested census aggregate-level measures of income and education did not approximate 

individual level measures well [48–51]. There was similarity between self-reported variables 

and clinically measured variables. Self-reported colon cancer screening was similar to EHR 

imputed data [52]. Public health measured data were similar to EHR measured data. For 

example, BMI-based childhood obesity was 18% in both an EHR dataset and the National 

Health and Nutrition Evaluation Survey [53].

Agreement between disease prevalence based on health surveys and disease prevalence 

based on EHR datasets varies depending on disease. EHR datasets had prevalence similar to 

that from surveys for test-based conditions (e.g. diabetes) and decreased prevalence for 

minor conditions (e.g. back pain, headache, skin conditions) [54–56]. Specifically, two 

Spanish studies showed that the asthma prevalence calculated from an EHR dataset was 

lower compared with asthma prevalence calculated from population surveys [54,55]. 

However asthma prevalence based on UW eHealth-PHINEX (8.4%) was similar to the 

Wisconsin health survey, Behavioral Risk Factor Surveillance System (8.0%) [20]. As there 

is no single lab test for diagnosis of asthma, ICD-9 codes likely under-identify asthma when 

compared with “gold standard” manual record review [57] but may be more objective 

compared with population surveys.
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CONCLUSIONS

5.1 Future work and alternative methods

Further analysis to determine the individual variables from sparse principal components that 

are associated with asthma could be performed using traditional methods such as stepwise 

model selection with BIC. This analysis could be performed with UW eHealth-PHINEX 

data from other years (e.g. 2009–2012), a UW eHealth-PHINEX hold out dataset, or a non-

UW eHealth-PHINEX EHR dataset in another geographic region.

There are many future directions for this work regarding diseases and methods. Our methods 

could be applied to asthma control, other chronic diseases, and different communities. The 

census block groups and ESRI environmental data are already available nationwide. It is 

foreseeable that with the integration of a national EHR dataset, this type of analysis will be 

utilized to identify spatial risk factors to allow investigation or evaluation of interventions in 

any geographic region [58].

Alternative methods could have been used in this study. Traditional Logistic regression 

without the smoothing term does not account for the unknown orientation of spatial 

correlation among asthma due to geography, nor does it directly address difficulties in high 

dimensional data by constructing sparse models. Other spatial models included conditional 

auto-regressive models [59]. As the four sparse principal components accounted for a small 

percentage of variance from the original dataset, other methods such as traditional principal 

components analysis or clustering could have been utilized. However, traditional principal 

component analysis maintained all variables in each principal component preventing sparse 

interpretation, and clustering environmental variables added complexity. Few variables 

could have been associated more directly with the Logistic thin plate regression spline 

model using least absolute shrinkage and selector operator [30] such as COSSO [28]. 

However, a new set of variables would be identified for different diseases and variables 

could not be grouped. Allowing regression coefficients to vary over space as in 

geographically weighted regression [60] could be accomplished with spatial smoothing 

spline interaction terms.

5.2 Limitations

There were limitations to the study. Although measures were taken to prevent overfitting 

and accommodate high dimensionality, this was an ecological, data-mining study without a 

priori variable hypotheses. This additive non-linear model likely does not fully capture the 

complexity of environmental factors influencing asthma.

The associations noted in the study may be due to confounding factors. One must be 

cognizant of ecological bias, because results about groups of people do not necessarily 

translate to the same findings about individuals. However, the neighborhood in which an 

individual lives in has been associated with health outcomes [61].

Multiple studies have shown the importance of EHR disease phenotype definitions, 

algorithm development, and validation [62–64]. In this study, asthma cases were defined 

based on ICD-9 codes. Some have argued this may under-estimate asthma prevalence [57]. 
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Aside from this study’s EHR asthma phenotype definition, which is similar to the validated 

definition of Gershon et al. [65], other definitions such as the Healthcare Effectiveness Data 

and Information Set [66], have not been validated. We are currently validating alternative 

EHR phenotype definitions, which will also be used to segment asthma severity.

The results may be biased as UW eHealth-PHINEX data is not a complete representation of 

all block groups or persons in the state of Wisconsin. UW Family Medicine, Internal 

Medicine, and Pediatrics departments are an integrated health care system, but patients can 

receive care in at least two other major systems in the same catchment area. Because many 

hospitals and clinics have, or will soon have, an EHR system, sharing data through a 

statewide information exchange could mitigate this issue.

Another potential limitation is that the analysis included data elements from different years. 

While the EHR dataset represented years 2007–2009, the patient addresses were from the 

date of EHR data extraction in year 2012. However, compared with other states, Wisconsin 

residents tend to move less frequently. Wisconsin is the fifth “stickiest” state, with 68.6% of 

the current residents having been born in Wisconsin, an indicator of decreased residential 

mobility [67]. Patient addresses were geocoded to year 2000 block groups to match the 

ESRI database. ESRI database variables were mostly from year 2010, while some census 

variables were from year 2000. There is minimal change in block group from year to year 

and the goal was to identify general trends of larger geographic areas. The ESRI year 2010 

variables were closest to the EHR database dates and the census year 2010 variables were 

not yet available.

Our main contribution is the incorporation of sparsity in spatial modeling. The sequential 

addition of sparse principal components to Logistic thin plate regression allowed 

interpretable analysis of geographically distributed EHR and environmental datasets. 

Understanding spatial disease variation and environmental risk factors using methods such 

as SASEA can allow better explanation of geographical disease disparity.
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Supplementary data associated with this article can be found in the online version.
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HIGHLIGHTS

• We geocode patients from an electronic health record to their corresponding 

block group.

• We identify sparse environmental variables associated with asthma considering 

spatial variation.

• Sparse principal component analysis and logistic thin plate regression splines 

were utilized.

• Dogs and rental housing were associated with asthma in specific regions.
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Figure 1. Major Cities and County Population in Wisconsin and Total Number of Participants 
Per Block Group from UW eHealth-PHINEX
Major Wisconsin cities and population by county (a) and the total number of participants per 

block group in UW eHealth-PHINEX (b) are shown. White block groups do not contain any 

patient data. The light yellow block groups in (b) correspond to block groups with ≤ 20 total 

participants.
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Figure 2. Asthma Prevalence and Logistic Thin Plate Regression Spline Model Predicted 
Prevalence
Asthma prevalence (a) and Logistic thin plate regression spline model predicted prevalence 

(b). The Logistic model only contains the thin plate regression spline smooth term. Two 

color maps are used to highlight areas of less or more confidence: blue for block groups with 

≤ 20 participants and red for block groups with > 20 total participants. White block groups 

do not contain any patient data. As intended, the regression model creates a smoother 

spatially predicted prevalence and decreases extreme values, resulting in more moderate 

(less extremely dark and extremely light) blue and red coloring.
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Figure 3. Spatial Change in Log Odds for Sparse Principal Components 2 and 4
The change in log odds of asthma diagnosis per unit measure of sparse principal components 

2 and 4 is shown at each block group. White represents a change in log odds between 0 and 

0.01. The blue gradient represents a change in log odds <0, and the red gradient represents a 

change in log odds >0.01. There was a positive change in log odds of asthma diagnosis in 

rural areas while there was a negative change in log odds in the urban areas of Madison and 

Milwaukee for sparse principal component 2 (a). There was a positive change in log odds of 

asthma diagnosis in eastern areas of Wisconsin (b).
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Table 1

Odds ratios for variables in the Logistic thin plate regression spline model

OR (95% CI)

Sex

Male reference

Female 1.00 (0.96, 1.05)

Age (per 10 years) 0.84 (0.82, 0.85)

Race

White reference

Black 1.78 (1.63, 1.94)

Asian 0.66 (0.57, 0.77)

American Indian 1.25 (1.00, 1.56)

Hawaiian or Pacific Islander 1.29 (0.77, 2.18)

Unknown 0.81 (0.68, 0.96)

Ethnicity

Non-Hispanic reference

Hispanic 0.79 (0.69, 0.90)

Unknown 0.81 (0.68, 0.96)

BMI (per 5 kg/m2) 1.18 (1.16, 1.20)

Encounter days in EHR dataset (per 30 days) 1.05 (1.04, 1.05)

Distance to clinic (per 10 mile) 1.02 (1.00, 1.03)

Sparse Principal Component 1 (per 5 units) 1.00 (0.96, 1.05)

Sparse Principal Component 2 (per 5 units) 0.95 (0.89, 0.99)

Sparse Principal Component 3 (per 5 units) 0.94 (0.86, 1.03)

Sparse Principal Component 4 (per 5 units) 1.13 (1.01, 1.27)

OR, odds ratio, CI, confidence interval, BMI, body mass index, EHR, electronic health record Age, BMI, encounter days in EHR, distance to 

clinic, and sparse principal component odds ratios are scaled by 10 years, 5 kg/m2, 30 days, 10 miles, and 5 units, respectively
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Table 2

Representative Variables from Sparse Principal Components

Sparse Principal Component Variable SPC Loading Model Coefficient (δ)

1 Food at Home: Average 0.36 6.1×10−4

2 Household owns 1 dog 0.49 −1.1×10−2

Renter Occupied Housing Units −0.41

3 Average Household Size 0.51 −1.2×10−2

4 Households with Disposable Income less than $15,000 0.76 2.5×10−2

SPC, sparse principal component
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