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Abstract

BACKGROUND—Birth defects are a leading cause of infant morbidity and mortality. Studies 

suggest associations between environmental contaminants and some structural anomalies, 

although evidence is limited and several anomalies have not been investigated previously.

METHODS—We used data from the California Center of the National Birth Defects Prevention 

Study and the Children's Health and Air Pollution Study to estimate the odds of 26 congenital 

birth defect phenotypes with respect to quartiles of seven ambient air pollutant and traffic 

exposures in California during the first 2 months of pregnancy, 1997 to 2006 (874 cases and 849 

controls). We calculated odds ratios (adjusted for maternal race/ethnicity, education, and vitamin 

use; aOR) for 11 phenotypes that had at least 40 cases.

RESULTS—Few odds ratios had confidence intervals that did not include 1.0. Odds of 

esophageal atresia were increased for the highest versus lowest of traffic density (aOR = 2.8, 95% 

confidence interval [CI], 1.1–7.4) and PM10 exposure (aOR 4.9; 95% CI, 1.4–17.2). PM10 was 

associated with a decreased risk of hydrocephaly (aOR= 0.3; 95% CI, 0.1–0.9) and CO with 

decreased risk of anotia/microtia (aOR = 0.4; 95% CI, 0.2–0.8) and transverse limb deficiency 

(aOR = 0.4; 95% CI, 0.2–0.9), again reflecting highest versus lowest quartile comparisons.

CONCLUSION—Most analyses showed no substantive association between air pollution and the 

selected birth defects with few exceptions of mixed results.
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INTRODUCTION

Birth defects are a leading cause of infant mortality and an important contributor to 

childhood and adult morbidity. Major structural birth defects are diagnosed in 2 to 4% of 
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infants (Canfield et al., 2006). Although some can be attributed to chromosomal 

abnormalities or known teratogenic agents, the etiologies of most cases remain unknown. 

Environmental contaminants have been suggested as risk factors for some anomaly groups; 

however, few studies have investigated the full spectrum of major structural birth defects in 

specific phenotypic groupings (Rankin et al., 2009; Dolk et al., 2010).

Epidemiologic studies of the past decade have identified associations between air pollution 

and adverse birth outcomes, including low birth weight, preterm birth, and infant mortality 

(Glinianaia et al., 2004; Maisonet et al., 2004; Sram et al., 2005). Studies focusing on birth 

defects (Ritz et al., 2002; Gilboa et al., 2005; Kim et al., 2007; Hwang et al., 2008; Hansen 

et al., 2009; Rankin et al., 2009; Strickland et al., 2009; Marshall and Lock, 2010; Marshall 

et al., 2010; Dolk et al., 2010; Ritz, 2010; Dadvand et al., 2010, 2011; Forastiere et al., 2011; 

Li et al., 2011; Lupo et al., 2011) and their potential relation with air pollutants have not 

produced clear results (Vrijheid et al., 2011). Many studies have been limited to residential 

information at birth rather than early in pregnancy, a known critical exposure period for 

birth defects. Only one previous study has incorporated data on traffic exposure (Dadvand et 

al., 2011). A recent systematic review suggested future studies address the following 

advances: (1) more precise spatiotemporal models of exposure with a focus on traffic-related 

pollutants; (2) careful classification of cases; and (3) focused investigation of anomalies for 

which there may be an environmental etiology (Vrijheid et al., 2011).

In two previous analyses we examined associations between traffic-related air pollution and 

neural tube defects, orofacial clefts, gastroschisis (Padula et al., 2013a), and several 

congenital heart defects (Padula et al., 2013b) with data from the California Center of the 

National Birth Defects Prevention Study (Yoon et al., 2001) and the Children's Health and 

Air Pollution Study. The aim of the current analysis was to investigate whether ambient air 

pollution and traffic metrics contributed to the risks of other structural anomalies in the San 

Joaquin Valley of California. The current study provides thorough case ascertainment and 

classification in a population-based case-control study with detailed exposure assessment in 

a region of the United States with poor air quality.

METHODS

Study Population

The California Center of the National Birth Defects Prevention Study is a collaborative 

partnership between Stanford University and the California Birth Defects Monitoring 

Program in the Department of Public Health. Since 1997, the Center has been collecting data 

from women residing in eight counties (San Joaquin, Stanislaus, Merced, Madera, Fresno, 

Kings, Tulare, and Kern) in the San Joaquin Valley. The California Birth Defects 

Monitoring Program is a well-known surveillance program that is population-based (Croen 

et al., 1991). To identify cases with birth defects, data collection staff visit all hospitals with 

obstetric or pediatric services, cytogenetic laboratories, and all clinical genetics prenatal and 

postnatal outpatient services.

Cases in the current analysis included infants or fetuses with birth defects confirmed by 

clinical, surgical, or autopsy reports. Cases resulting from known single gene or 
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chromosomal abnormalities or with identifiable syndromes were ineligible, given their 

presumed distinct underlying etiology. Eligible cases included live births, stillbirths, and 

pregnancy terminations.

Controls included nonmalformed live-born infants randomly selected from birth hospitals to 

represent the population from which the cases arise (approximately 150 per study year). 

Maternal interviews were conducted using a standardized, computer-based questionnaire, 

primarily by telephone, in English or Spanish, between 6 weeks and 24 months after the 

infant's estimated date of delivery. Estimated date of conception was derived by subtracting 

266 days from expected date of delivery. Expected date of delivery was based on self-report; 

if unknown, it was estimated from information in the medical record (<2% of participants) 

(Yoon et al., 2001). Interviews were conducted with mothers of 70% of eligible cases and 

69% of controls. Mothers reported a full residential history from 3 month before conception 

through delivery, including dates occupying each residence. Addresses were geocoded using 

the Centrus Desktop (Stamford, CT), which combines reference street networks from Tele 

Atlas (′s-Hertogenbosch, Netherlands) and United States Postal Service data. Geocodes were 

available for 95% of cases and 93% of controls. Mothers with diabetes (Type 1 or 2) before 

gestation were excluded from analyses.

Case phenotypes for analysis included: anotia/microtia (n = 106), anorectal atresia/stenosis 

(n = 91), craniosynos tosis (n = 87), hypospadias second or third degree (n = 67), 

diaphragmatic hernia (n = 66), transverse limb deficiency (n = 63), intestinal atresia/stenosis 

(n = 52), amniotic band syndrome and limb body wall complex (ABS-LBWC) (n = 49), 

hydrocephaly (n = 46), longitudinal limb deficiency (n = 45), esophageal atresia (n = 44), 

and 853 controls with an estimated delivery date between October 1, 1997 and December 

31, 2006. Birth defects with less than 40 cases were analyzed but not presented due to 

insufficient power. These defects included omphalocele (n = 38), bilateral renal agenesis or 

hypoplasia (n = 24), Dandy-Walker malformation (n 516), duodenal atresia/stenosis (n = 

16), cataracts (n = 15), anophthalmos/microphthalmos (n = 15), holoprosencephaly (n = 14), 

biliary atresia (n = 14), colonic atresia/stenosis (n = 9), cloacal exstrophy (n = 8), sacral 

agenesis or caudal dysplasia (n 58), glaucoma/anterior chamber defects (n = 7), choanal 

atresia (n = 7), bladder exstrophy (n = 6), cerebellar hypoplasia (n = 3).

Exposure Assessment

As part of the Children's Health and Air Pollution Study, ambient air pollution 

measurements and traffic metrics were assigned to each of the geocoded residences reported 

by study subjects corresponding to their first and second month of pregnancy. If there was 

more than one address during the first or second months, exposure assignments were 

calculated for number of days at each residence. Exposure assignments were made if the 

geocodes were within the San Joaquin Valley and the mother resided there for at least 75% 

of each month. Daily 24-hr averages were averaged over the first 2 months of pregnancy for 

the following pollutants: nitrogen dioxide (NO2), nitrogen oxide (NO), carbon monoxide 

(CO), particulate matter with aerodynamic diameter ≤than 10 μm (PM10), and PM ≤ than 2.5 

μm (PM2.5), and a daily 8-hr maximum of ozone (O3).
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Ambient air quality data have been collected routinely at over 20 locations in the San 

Joaquin Valley since the 1970s, and these data were acquired from U.S. Environmental 

Protection Agency's Air Quality System database (www.epa.gov/ttn/airs/airsaqs). The 

station-specific daily air quality data were spatially interpolated using inverse distance-

squared weighting. Data from up to four air quality measurement stations were included in 

each interpolation. Owing to the regional nature of O3, NO2, PM10, and PM2.5 

concentrations, a maximum interpolation radius of 50 km was used. NO and CO were 

interpolated using a smaller maximum interpolation radius of 25 km, because they are 

directly emitted pollutants with larger spatial gradients. When a residence was located 

within 5 km of one or more monitoring stations, the interpolation was based solely on the 

nearby values.

Gaseous pollutants were measured using Federal Reference Method continuous monitors. 

Particulate matter data were primarily limited to those collected with Federal Reference 

Method samplers and Federal Equivalent Method monitors. The national air monitoring 

networks began measuring PM2.5 in 1999, therefore, births with dates of conception before 

1999 were not part of the analyses of PM2.5.

The traffic metric is an indicator of traffic density calculated from distance-decayed annual 

average daily traffic volumes (Kan et al., 2008) surrounding the geo-coded maternal 

residences. Roadway link-based traffic volumes were derived from Tele-Atlas/Geographic 

Data Technology traffic count data in 2005 using methodologies similar to those used in 

other health effects studies (Gauderman et al., 2005; Kan et al., 2008). The Geographic Data 

Technology traffic count data were scaled to represent year 2003 traffic levels, based on 

county average vehicle-miles-traveled growth rates (California Department of 

Transportation, 2004). Density plots were generated within a geographic information system 

using a linear decay function that approximates the fall-off of ambient concentrations with 

increasing distance away from roadways (i.e., decays to background within a given 

distance). Traffic density represents distance-decayed annual average daily traffic volume in 

both directions from all roads within the circular buffer. Traffic density is computed as if the 

wind directions were uniformly distributed around the compass and is symmetric on both 

sides of each roadway. The values are computed using the density function using a kernel 

with a 300-m search radius and 5-m grid resolution. We considered a radius of 150 m, 

though in early analyses, the estimates were not considerably different.

Statistical Analysis

Analyses were conducted to examine the association between the pollutants and the traffic 

metric. Each pollutant and traffic density was examined by quartile as determined by the 

distribution in the controls. Quartiles were chosen so that the results could be more easily 

compared with previous studies and the controls were the best representation of the general 

population. Distributions of several potential covariates were examined in relation to the 

exposures and the outcomes: maternal race/ethnicity (non-Hispanic white, U.S.-born 

Hispanic, foreign-born Hispanic, or other); maternal education (less than high school, high 

school, more than high school); age (<25, 25–35, >35 years); parity (0, 1, >1); early 

pregnancy multi-vitamin use (1 month before and/or first 2 months of pregnancy); active 
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and/or passive smoking during pregnancy; year of estimated delivery category (1997–2000, 

2001–2003, 2004–2006); and infant sex.

Multivariable logistic regression analyses were conducted to estimate adjusted odds ratios 

(aORs) and 95% confidence intervals (CI) reflecting the association between ambient air 

pollutants and traffic density and specific birth defects. Multivariable analyses were 

performed adjusting for maternal race/ethnicity, education and early prenatal vitamin use. 

These covariates were selected a priori and based on causal assumptions derived from 

subject matter knowledge (Hernan et al., 2002). The remaining covariates (age, parity, active 

and/or passive smoking, year of birth, infant sex) were examined as potential confounders in 

bivariate analyses (results not shown).

Analyses were conducted using SAS 9.3 (SAS Institute Inc., Cary, NC, 2011–2012). The 

study protocol was reviewed and approved by the institutional review boards of Stanford 

University and the California Department of Public Health.

RESULTS

All 874 cases and 849 of 853 controls were assigned at least one exposure metric for the first 

2 months of pregnancy. Completeness for exposure assignments was 75% for CO, 85% for 

NO, 98% for NO2, 98% for PM10, 99% for ozone and 91% for traffic density. Among those 

born after January 1st 1999, 98% of the participants were assigned an estimate for PM2.5 

exposure.

A majority of study subjects were Hispanic and had at least a high school education (Table 

1). A quarter of the population was exposed to active or passive smoke. Case mothers were 

less likely than control mothers to take multi-vitamins in early pregnancy.

Correlations of CO with NO (r = 0.81), NO2 (r = 0.73) and PM2.5 (r = 0.84) were high, 

which reflects the common source of motor vehicles. Ozone was negatively correlated with 

the traffic-related pollutants and traffic density was not strongly correlated with pollutants 

(data not shown).

Table 2 displays the results from the multivariable logistic regression models of each 

exposure and each birth defect phenotype. Only a few odds ratios had confidence intervals 

that did not include 1.0. The odds of esophageal atresia were increased for the highest versus 

lowest quartile of traffic density (aOR = 2.8; 95% CI, 1.1– 7.4) and PM10 exposure (aOR = 

4.9; 95% CI, 1.4–17.2).

PM10 was associated with a decreased risk of hydrocephaly (aOR = 0.3; 95% CI, 0.1–0.9) 

and CO with decreased risk of anotia/microtia (aOR = 0.4; 95% CI, 0.2–0.8) and transverse 

limb deficiency (aOR = 0.4; 95% CI, 0.2–0.9), again reflecting highest versus lowest 

quartile comparisons.
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DISCUSSION

In general, our findings did not indicate associations between traffic-related air pollutants 

and a spectrum of birth defect phenotypes, although there were a few exceptions. Increased 

odds of esophageal atresia were associated with higher exposure during the first 2 months of 

pregnancy to PM10 and high levels of traffic. Exposures to traffic-related air pollution were 

inconsistent and some were associated with decreased risks of some defects (e.g., 

hydrocephaly, anotia/microtia and transverse limb deficiencies), though these results were 

based on a very small number of cases. There was no correction for multiple testing; 

therefore, these associations may have arisen from chance alone.

The current study adds to a quite limited body of research on traffic-related air pollution and 

birth defects. Previous studies have not found consistent results examining air pollution and 

birth defects (Ritz et al., 2002; Gilboa et al., 2005; Kim et al., 2007; Hwang et al., 2008; 

Hansen et al., 2009; Rankin et al., 2009; Strickland et al., 2009; Dolk et al., 2010; Ritz, 

2010; Dadvand et al., 2010, 2011; Marshall and Lock, 2010; Lupo et al., 2011; Padula et al., 

2013a,2013b).

Of the previous studies examining air pollution and the birth defect phenotypes in this 

analysis, one study in England found suggestive but not statistically significant associations 

between SO2, NO2, and PM10, and limb deficiencies, diaphragmatic hernia and 

hydrocephaly (Dolk et al., 2010). The observed levels of NO2 in England were higher than 

those in the San Joaquin Valley of California, but the levels of PM10 were lower. The other 

studies focused generally on birth defects not included in this analysis (e.g., oral clefts and 

cardiac anomalies), considered all birth defects as a single outcome, or examined pollutants 

not included in this analysis.

There are potential limitations to this study. There is measurement error in the exposure 

assignment based on distance-weighted averages of the nearest monitors. Furthermore, it is 

unknown how much time the mother spent at her home during the first 2 months of 

pregnancy. For example, this could lead to potential exposure misclassification if a mother 

worked at a location of different exposure levels. The ambient air pollution levels also do 

not account for indoor sources of the studied air pollutants that may have been present. This 

misclassification of exposure would bias results in an unknown direction. Traffic density 

within a 300-m radius had spatial, but not temporal variation within the study. The traffic 

counts were scaled to the middle of the time period of the study.

It is unknown whether women who did versus did not participate in the study were 

systematically different with respect to air pollution exposure. In addition, some women had 

to be excluded from various aspects of the analysis because of missing data on exposure 

levels. Whether these considerations incurred some bias in our results is unknown. Lastly, 

many of the comparisons were based on relatively small sample sizes and therefore resulted 

in rather imprecise estimates of effect.

Strengths of the present study include the rigorous, population-based design and careful case 

ascertainment. The study also allowed for detailed information to be gathered as potential 

covariates specifically during the critical period of the first 2 months of pregnancy including 
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maternal residence, multi-vitamin use, and smoking. These study characteristics limited 

potential selection bias and confounding. This study covered a wide geographic area where 

some of the highest levels of air pollution exposure exist in the United States. Our study 

benefited from detailed air pollution metrics with precise spatial and temporal considerations 

and traffic density metrics based on traffic counts.

Our results contribute to a modest body of epidemio-logic evidence regarding associations 

between air pollution exposure and birth defects. Many of the birth defect phenotypic groups 

investigated have not been previously investigated for these ambient exposures.
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Table 1

Demographic Characteristics as Percent of Subjects between 1997 and 2006 in Eight Counties in the San 

Joaquin Valley of California (N = 1723)

Percent of cases
a
 (n=874) Percent of controls

a
 (n=849) p Value of chi-square test

Maternal education (years) 0.20

    <12 36 32

    12 25 27

    >12 38 40

    Missing <1 <1

Maternal race/ethnicity 0.36

    White 29 31

    Foreign-born Hispanic 33 29

    U.S.- born Hispanic 26 26

    Other 12 14

    Missing <1 <1

Multi-vitamin use
b 0.08

    Yes 61 65

    No 37 33

    Missing 2 2

Smoking
c 0.41

    None 75 75

    Active only 7 8

    Passive only 12 10

    Active and passive 6 6

    Missing 1 <1

Maternal age (years) 0.32

    <25 42 46

    25–35 47 44

    >35 11 10

Infant sex 0.01

    Male 58 52

    Female 42 48

    Missing <1 0

Plurality <0.01

    Singletons 95 99

    Multiples 5 1

Parity 0.51

    0 40 38

    1 29 31

    >1 31 32

Year of expected delivery date 0.12
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Percent of cases
a
 (n=874) Percent of controls

a
 (n=849) p Value of chi-square test

    1997–2000 33 37

    2001–2003 32 33

    2004–2006 35 31

a
Percentages may not equal 100 owing to rounding.

b
Any folate-containing multi-vitamin use during 1 month before through 2 months after conception.

c
Any smoking during 1 month before through 2 months after conception.
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Table 2

Adjusted
a
 Odds Ratios (aOR) and 95% Confidence Intervals (CI) of Birth Defects and Exposure to Pollutants

b 

and Traffic Density
c
 for Subjects Born between 1997 and 2006 in Eight Counties in the San Joaquin Valley of 

California

Exposure levelsb Amniotic band 
syndrome and limb body 

wall complex

Hydrocephaly Anotia/microtia Esophageal atresia

N AOR (95% CI) N AOR (95% CI) N AOR (95% CI) N AOR (95% CI)

CO (ppm) 0.13–0.39 11 Reference 15 Reference 27 Reference 7 Reference

0.40–0.52 7 0.6 (0.2,1.7) 4 0.2 (0.1,0.8) 24 0.9 (0.5,1.6) 10 1.4 (0.5,3.8)

0.53–0.71 8 0.8 (0.3,2.0) 9 0.6 (0.2,1.4) 20 0.7 (0.4,1.3) 5 0.7 (0.2,2.3)

0.72–1.37 7 0.6 (0.2,1.6) 8 0.5 (0.2,1.2) 10 0.4 (0.2,0.8) 9 1.3 (0.5,3.6)

NO (ppb) 0.69–4.14 15 Reference 12 Reference 20 Reference 10 Reference

4.15–8.15 6 0.4 (0.2,1.1) 9 0.7 (0.3,1.8) 30 1.5 (0.8,2.7) 8 0.8 (0.3,2.0)

8.16–20.19 12 0.8 (0.4,1.9) 9 0.7 (0.3,1.8) 27 1.4 (0.7,2.6) 8 0.7 (0.3,1.9)

20.20–67.34 6 0.4 (0.2,1.1) 10 0.8 (0.3,1.9) 15 0.8 (0.4,1.6) 10 1.0 (0.4,2.4)

NO2 (ppb) 2.40–13.36 14 Reference 11 Reference 21 Reference 10 Reference

13.37–16.81 10 0.8 (0.3,1.8) 13 1.2 (0.5,2.7) 41 1.9 (1.1,3.3) 14 1.4 (0.6,3.2)

16.82–20.53 9 0.7 (0.3,1.7) 8 0.8 (0.3,1.9) 26 1.2 (0.7,2.3) 8 0.8 (0.3,2.0)

20.54–38.94 12 0.9 (0.4,2.0) 12 1.1 (0.5,2.5) 16 0.8 (0.4,1.6) 12 1.2 (0.5,2.8)

PM10 (μg/m3) 7.90–25.24 13 Reference 18 Reference 22 Reference 3 Reference

25.25–33.43 10 0.7 (0.3,1.8) 10 0.5 (0.2,1.2) 36 1.6 (0.9,2.9) 13 4.1 (1.2,14.8)

33.44–44.08 5 0.4 (0.1,1.2) 10 0.6 (0.3,1.3) 24 1.1 (0.6,2.1) 12 3.9 (1.1,14.0)

44.09–95.32 16 1.3 (0.6,2.7) 6 0.3 (0.1,0.9) 21 1.0 (0.5,1.8) 15 4.9 (1.4,17.2)

PM2.5 (μg/m3) 3.57–10.93 10 Reference 15 Reference 23 Reference 12 Reference

10.94–14.82 9 0.9 (0.4,2.4) 3 0.2 (0.1,0.7) 17 0.7 (0.4,1.4) 6 0.5 (0.2,1.4)

14.83–26.12 7 0.7 (0.3,2.0) 9 0.6 (0.3,1.5) 29 1.2 (0.6,2.1) 11 0.9 (0.4,2.1)

26.13–66.29 4 0.4 (0.1,1.4) 7 0.5 (0.2,1.2) 16 0.6 (0.3,1.3) 8 0.7 (0.3,1.7)

O3 8–hour 
maximum (ppb)

10.49–29.05 7 Reference 11 Reference 24 Reference 12 Reference

29.06–46.94 10 1.4 (0.5,3.8) 13 1.2 (0.5,2.7) 28 1.1 (0.6,2.0) 9 0.8 (0.3,1.9)

46.95–62.64 15 2.1 (0.8,5.3) 15 1.3 (0.6,3.0) 27 1.2 (0.7,2.1) 10 0.8 (0.4,2.0)

62.65–91.92 13 1.8 (0.7,4.7) 5 0.5 (0.2,1.3) 25 1.0 (0.6,1.9) 13 1.1 (0.5,2.5)

Traffic density
c 0 10 Reference 8 Reference 31 Reference 7 Reference

1–5031 11 1.5 (0.6,3.6) 10 1.9 (0.7,4.9) 17 0.8 (0.4,1.5) 11 2.6 (1.0,6.8)

5032–16717 12 1.6 (0.7,3.8) 11 2.0 (0.8,5.2) 28 1.3 (0.7,2.3) 9 2.1 (0.7,5.7)

16718–135991 8 1.1 (0.4,3.0) 12 2.4 (1.0,6.1) 17 0.8 (0.4,1.4) 12 2.8 (1.1,7.4)

Exposure levels
b Intestinal atresia/stenosis Anorectal atresia/stenosis Hypospadias (2nd or 

3rd degree)
d

Longitudinal limb deficiency

N AOR (95% CI) N AOR (95% CI) N AOR (95% CI) N AOR (95% CI)

CO (ppm) 0.13–0.39 12 Reference 22 Reference 15 Reference 11 Reference

0.40–0.52 9 0.7 (0.3,1.8) 13 0.6 (0.3,1.2) 15 1.1 (0.5,2.5) 6 0.6 (0.2,1.7)
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Exposure levels
b Intestinal atresia/stenosis Anorectal atresia/stenosis Hypospadias (2nd or 

3rd degree)
d

Longitudinal limb deficiency

N AOR (95% CI) N AOR (95% CI) N AOR (95% CI) N AOR (95% CI)

0.53–0.71 6 0.5 (0.2,1.3) 17 0.8 (0.4,1.5) 10 0.6 (0.3,1.5) 8 0.8 (0.3,1.9)

0.72–1.37 9 0.7 (0.3,1.8) 13 0.6 (0.3,1.2) 15 1.4 (0.6,3.0) 9 0.9 (0.4,2.2)

NO (ppb) 0.69–4.14 11 Reference 24 Reference 12 Reference 14 Reference

4.15–8.15 9 0.8 (0.3,2.0) 17 0.7 (0.4,1.4) 15 1.2 (0.5,2.7) 8 0.6 (0.2,1.4)

8.16–20.19 12 1.1 (0.5,2.5) 18 0.7 (0.4,1.4) 13 0.9 (0.4,2.0) 4 0.3 (0.1,0.9)

20.20–67.34 10 0.9 (0.4,2.1) 16 0.7 (0.3,1.3) 19 1.7 (0.8,3.7) 13 0.9 (0.4,2.0)

NO2 (ppb) 2.40–13.36 16 Reference 24 Reference 14 Reference 13 Reference

13.37–16.81 11 0.7 (0.3,1.5) 32 1.3 (0.8,2.3) 20 1.3 (0.6,2.7) 10 0.8 (0.3,1.8)

16.82–20.53 12 0.7 (0.3,1.5) 21 0.9 (0.5,1.6) 14 0.9 (0.4,2.0) 12 0.9 (0.4,2.1)

20.54–38.94 11 0.6 (0.3,1.4) 12 0.5 (0.2,1.0) 16 1.1 (0.5,2.4) 10 0.8 (0.3,1.8)

PM10 (μg/m3) 7.90–25.24 12 Reference 20 Reference 19 Reference 15 Reference

25.25–33.43 12 1.0 (0.4,2.2) 22 1.1 (0.6,2.0) 18 0.9 (0.5,1.9) 8 0.5 (0.2,1.3)

33.44–44.08 11 0.9 (0.4,2.0) 28 1.4 (0.8,2.6) 14 0.8 (0.4,1.7) 13 0.8 (0.4,1.8)

44.09–95.32 15 1.1 (0.5,2.5) 19 0.9 (0.5,1.8) 15 0.8 (0.4,1.8) 9 0.6 (0.2,1.4)

PM2.5 (μg/m3) 3.57–10.93 9 Reference 21 Reference 14 Reference 14 Reference

10.94–14.82 13 1.4 (0.6,3.3) 21 1.0 (0.5,1.9) 9 0.6 (0.2,1.5) 6 0.4 (0.2,1.1)

14.83–26.12 10 1.1 (0.4,2.7) 20 0.9 (0.5,1.8) 18 1.2 (0.6,2.6) 10 0.7 (0.3,1.6)

26.13–66.29 10 1.0 (0.4,2.7) 15 0.7 (0.3,1.4) 11 0.8 (0.3,2.0) 9 0.6 (0.3,1.5)

O3 8–hour 
maximum 
(ppb)

10.49–29.05 15 Reference 24 Reference 17 Reference 12 Reference

29.06–46.94 5 0.3 (0.1,1.0) 24 1.0 (0.6,1.9) 20 1.0 (0.5,2.0) 10 0.8 (0.4,2.0)

46.95–62.64 13 0.9 (0.4,1.9) 21 0.9 (0.5,1.6) 16 0.9 (0.4,1.9) 9 0.8 (0.3,1.8)

62.65–91.92 17 1.2 (0.6,2.4) 21 0.9 (0.5,1.6) 12 0.7 (0.3,1.5) 14 1.2 (0.5,2.7)

Traffic density
c 0 18 Reference 28 Reference 17 Reference 12 Reference

1–5031 11 0.9 (0.4,2.0) 18 0.9 (0.5,1.7) 6 0.6 (0.2,1.7) 5 0.6 (0.2,1.9)

5032–16717 8 0.6 (0.3,1.5) 12 0.6 (0.3,1.2) 18 1.7 (0.8,3.5) 9 1.1 (0.5,2.8)

16718–135991 6 0.5 (0.2,1.2) 19 1.0 (0.5,1.9) 18 2.0 (1.0,4.3) 14 1.8 (0.8,4.1)

Exposure levels
b Transverse limb deficiency Craniosynostosis Diaphragmatic hernia

N AOR (95% CI) N AOR (95% CI) N AOR (95% CI)

CO (ppm) 0.13–0.39 19 Reference 26 Reference 9 Reference

0.40–0.52 9 0.5 (0.2,1.1) 8 0.3 (0.1,0.7) 14 1.6 (0.7,4.0)

0.53–0.71 11 0.5 (0.2,1.2) 11 0.4 (0.2,0.9) 10 1.1 (0.4,2.8)

0.72–1.37 7 0.4 (0.2,0.9) 21 0.8 (0.4,1.5) 14 1.6 (0.6,3.7)

NO (ppb) 0.69–4.14 18 Reference 16 Reference 12 Reference

4.15–8.15 15 0.8 (0.4,1.7) 20 1.2 (0.6,2.5) 12 1.0 (0.4,2.4)

8.16–20.19 12 0.7 (0.3,1.4) 15 0.9 (0.4,1.9) 14 1.1 (0.5,2.5)

20.20–67.34 8 0.4 (0.2,1.1) 19 1.2 (0.6,2.3) 16 1.3 (0.6,2.9)

NO2 (ppb) 2.40–13.36 14 Reference 23 Reference 12 Reference

13.37–16.81 20 1.4 (0.7,2.9) 17 0.7 (0.4,1.4) 22 1.9 (0.9,3.9)

16.82–20.53 16 1.2 (0.6,2.5) 23 1.0 (0.5,1.8) 17 1.5 (0.7,3.3)
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Exposure levels
b Transverse limb deficiency Craniosynostosis Diaphragmatic hernia

N AOR (95% CI) N AOR (95% CI) N AOR (95% CI)

20.54–38.94 12 0.9 (0.4,2.0) 19 0.8 (0.4,1.5) 13 1.1 (0.5,2.5)

PM10 (μg/m3) 7.90–25.24 16 Reference 16 Reference 13 Reference

25.25–33.43 16 1.0 (0.5,2.1) 23 1.4 (0.7,2.7) 20 1.6 (0.8,3.3)

33.44–44.08 17 1.1 (0.5,2.2) 22 1.3 (0.7,2.6) 17 1.4 (0.6,2.9)

44.09–95.32 12 0.7 (0.3,1.6) 22 1.3 (0.7,2.6) 14 1.1 (0.5,2.5)

PM2.5 (μg/m3) 3.57–10.93 16 Reference 18 Reference 10 Reference

10.94–14.82 11 0.7 (0.3,1.6) 11 0.6 (0.3,1.3) 16 1.7 (0.8,4.0)

14.83–26.12 13 0.8 (0.4,1.7) 10 0.5 (0.2,1.1) 14 1.4 (0.6,3.4)

26.13–66.29 8 0.5 (0.2,1.2) 24 1.2 (0.6,2.4) 12 1.2 (0.5,2.9)

O3 8–hour maximum (ppb) 10.49–29.05 15 Reference 24 Reference 16 Reference

29.06–46.94 12 0.8 (0.4,1.7) 21 0.9 (0.5,1.7) 20 1.2 (0.6,2.4)

46.95–62.64 18 1.2 (0.6,2.5) 16 0.7 (0.3,1.3) 13 0.8 (0.4,1.7)

62.65–91.92 17 1.1 (0.5,2.3) 22 1.0 (0.5,1.8) 15 0.9 (0.5,2.0)

Traffic density
c 0 13 Reference 25 Reference 22 Reference

1–5031 19 2.3 (1.1,4.8) 18 1.2 (0.6,2.2) 20 1.3 (0.7,2.5)

5032–16717 12 1.4 (0.6,3.2) 23 1.5 (0.8,2.7) 10 0.6 (0.3,1.4)

16718–135991 10 1.1 (0.5,2.7) 13 0.9 (0.4,1.9) 6 0.4 (0.2,1.1)

The number of controls were as follows: CO (N=624), NO (N=697), NO2 (N=814), PM10 (N=804), PM2.5 (N=646), O3 (N=815), Traffic 

(N=762).

NC = not calculated.

a
Analyses are adjusted for maternal race/ethnicity, education, and vitamin use (for the month prior to and/or the first 2 months of pregnancy).

b
Pollutant levels are reflect quartiles of exposure among controls. They are based on 24–hr average measurements (except ozone, which is a 

daytime 8–hr maximum) and then averaged over 1st and 2nd months of pregnancy.

c
Dimensionless indicator based on traffic volumes within a 300–m radius and analyzed in tertiles among non–zero values.

d
Controls for hypospadias were only male (n=443).
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