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In this appendix, we derive the formulas for FMDM price elasticities. The STATA codes for
estimating the fixed-effect 2SLS conventional DM, quasi-FMDM, and FMDM models and SAS
codes for generating the analysis file, calculating elasticities, and conducting counterfactual
simulations are posted online as supplementary data.

FMDM Elasticities

For brevity of notation, we drop the market and time subscripts h and t from the FMDM

elasticities. The Marshallian price elasticity conditional on total beverage expenditures is
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where g; is the quantity of product i; 5; =1 for i= j, and 0 otherwise. Note that, following the

approach in Green and Alston (1990),
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Substituting (A2) through (A4) into (Al) gives
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Equation (A5) can be written in matrix form as
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where the matrix elements are H; =7, in H (nxn matrix), A; =-3; +7; /W, — Bw, /w, in A
m " 'mij

(nxn matrix), B de rIn przk:w;;ik in B, (nxn diagonal matrix), D,; =d, wy; In p,

in D, (nxn matrix), C_; de mie NP, in C o (nxn diagonal matrix), F; in F

mlj m

(nxn matrix), U; = & /w, in U (nx1 vector), V, =w;Inp, inV (1xn vector),and | isa

nxn identity matrix.

Solving equation (A6) for H gives the conditional price elasticity matrix:
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The expenditure elasticities for the FMDM model are also more complicated than those for the
conventional DM model because of the presence of current budget shares on the right-hand side

of the demand equation. The expenditure elasticity is
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Substituting (A9) through (A11) into (A8) gives
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Equation (Al12) can be expressed in matrix form as
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where, in addition to matrices defined in equation (A5), the matrix elements are E, =¢, in E

(nx1 vector), and ¢ isa nx1 vector of ones. Solving (A13) for the vector of expenditure

elasticities E gives
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