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Abstract The 26S proteasome is responsible for the selective, ATP-dependent degradation of

polyubiquitinated cellular proteins. Removal of ubiquitin chains from targeted substrates at the

proteasome is a prerequisite for substrate processing and is accomplished by Rpn11, a

deubiquitinase within the ‘lid’ sub-complex. Prior to the lid’s incorporation into the proteasome,

Rpn11 deubiquitinase activity is inhibited to prevent unwarranted deubiquitination of

polyubiquitinated proteins. Here we present the atomic model of the isolated lid sub-complex, as

determined by cryo-electron microscopy at 3.5 Å resolution, revealing how Rpn11 is inhibited

through its interaction with a neighboring lid subunit, Rpn5. Through mutagenesis of specific

residues, we describe the network of interactions that are required to stabilize this inhibited state.

These results provide significant insight into the intricate mechanisms of proteasome assembly,

outlining the substantial conformational rearrangements that occur during incorporation of the lid

into the 26S holoenzyme, which ultimately activates the deubiquitinase for substrate degradation.

DOI: 10.7554/eLife.13027.001

Introduction
The eukaryotic 26S proteasome is a large multi-enzyme complex that functions as the primary degra-

dation machinery for the selective turnover of aberrant or unneeded proteins within the cell. Proteins

targeted for degradation are covalently labeled with polyubiquitin chains, which are recognized and

removed by the proteasome (Finley, 2009). The barrel-shaped core peptidase complex of the pro-

teasome, which sequesters the proteolytic active sites in an internal chamber (Groll et al., 1997), is

capped on one or both ends by a regulatory particle that acts as a discriminating gateway for tar-

geted protein substrates (Saeki and Tanaka, 2012). The regulatory particle consists of two sub-com-

plexes, known as the ‘base’ and the ‘lid’ (Glickman et al., 1998). The base sub-complex contains the

AAA+ ATPases Rpt1-Rpt6, which form a heterohexameric ring that drives the mechanical substrate

unfolding and translocation of the unstructured polypeptides into the degradation chamber of the

core peptidase. Docked on one side of the base is the lid subcomplex, which contains the deubiqui-

tinating enzyme (DUB) Rpn11 that cleaves polyubiquitin chains from targeted substrates as an essen-

tial step in proteasomal substrate processing (Boehringer et al., 2012).

The lid is an asymmetric, ~370 kDa complex that consists of 9 unique subunits (Rpn3, 5, 6, 7, 8, 9,

11, 12, Sem1) and exhibits a characteristic hand-shaped organization similar to that of the eukaryotic

initiation factor 3 (eIF3) and the COP9 signalosome (CSN) (Lander et al., 2012; Lingaraju et al.,

2014; des Georges et al., 2015). At the center of the lid, six Proteasome-CSN-eIF3 (PCI)-domain
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containing subunits (Rpn3, 5, 6, 7, 9, 12) interact via their winged-helix motifs to form a horseshoe-

shaped scaffold. The amino-terminal domains of these 6 subunits extend radially like fingers from

the central PCI horseshoe. The essential deubiquitinase Rpn11 is positioned in the ‘palm’ of the

hand-shaped lid. Rpn11 is an Mpr1-Pad1 N-terminal (MPN)-domain containing metalloprotease of

the JAB1/MPN/MOV34 (JAMM) family and forms a heterodimer with an enzymatically inactive

MPN-subunit, Rpn8. With the exception of Sem1, a small 87-residue subunit located at the interface

of the N-terminal domains of Rpn3 and Rpn7 (Bohn et al., 2013), all lid subunits contain conserved

C-terminal helices that assemble into a large bundle positioned next to the MPN heterodimer of

Rpn11/Rpn8 in the palm of the complex (Beck et al., 2012).

Previous crystallographic and biochemical studies have focused on the mechanism of Rpn11,

which acts as a highly promiscuous DUB to remove ubiquitins from the wide variety of substrates

during their translocation into the proteasome, likely by cleaving the isopeptide bond between the

substrate lysine and the first ubiquitin moiety of the attached ubiquitin chain (Worden et al., 2014;

Pathare et al., 2014). The Rpn11/Rpn8 heterodimer is active in isolation (Worden et al., 2014), but

is significantly inhibited in the context of the lid sub-complex and regains robust DUB activity in the

assembled 26S proteasome (Verma et al., 2002; Yao and Cohen, 2002). The isolated Rpn11/Rpn8

heterodimer is not present at considerable levels in the cell, whereas the presence of the lid and its

assembly intermediates containing Rpn11/Rpn8 have been previously observed and characterized

(Tomko and Hochstrasser, 2011). The inhibition of Rpn11 activity in the isolated lid and its assembly

intermediates might therefore be important to prevent spurious deubiquitination of proteins in the

cell, given the high promiscuity of this DUB. It has been suggested that interactions with Rpn5 are

possibly involved in Rpn11 inhibition in the isolated lid (Lander et al., 2012), but the specifics of this

regulation and the mechanism by which Rpn11 is activated upon incorporation into the holoenzyme

remain elusive (Verma et al., 2002; Lander et al., 2012; Yao and Cohen, 2002).

Here, we present an atomic model of the isolated lid sub-complex of the yeast proteasome, as

determined by cryo-electron microscopy (cryoEM) (Figure 1A–C, Table 1, Figure 1—figures supple-

ments 1–4), revealing the molecular mechanism for direct inhibition of the DUB active site, as well

eLife digest The proteins contained within cells are constantly under scrutiny by a sophisticated

“quality control” system that tags damaged or malfunctioning proteins with chains made up of a

protein called ubiquitin. These ubiquitin chains serve as markers that target these toxic proteins for

destruction by a molecular complex called the proteasome.

Removing ubiquitin chains from toxic proteins is a critical step in their degradation by the

proteasome. This task is accomplished by an enzyme called a deubiquitinase, whose activity is

tightly controlled. However, it was not clear how this enzyme is kept inactive before it is

incorporated into the proteasome complex.

The deubiquitinase is part of a sub-complex called the “lid”, which attaches to the side of the

proteasome. Dambacher, Worden, Herzik et al. used electron microscopy to solve the structure of

the lid complex in high detail – so that it was almost possible to view individual atoms. This revealed

that the deubiquitinase was in a conformation that was very different from what had previously been

observed in fully assembled proteasomes.

The structures revealed that within the lid complex, a complicated network of interactions causes

the deubiquitinase to be encompassed by neighboring subunits. This prevents the enzyme from

interacting with ubiquitin chains. Importantly, this network of interactions appears to be set on a

hair-trigger, as mutations that disrupt these interactions cause the deubiquitinase to be activated.

As the lid complex integrates into the proteasome, the lid undergoes large-scale structural

rearrangements; Dambacher, Worden, Herzik et al. expect that these disrupt the interactions that

maintain the deubiquitinase in an inhibited conformation.

Due to their ability to regulate the activity of the proteasome, deubiquitinases are becoming

increasingly popular drug targets. Therefore, probing how they are activated in more detail will be

of great importance to cell biologists and also contribute substantially to biomedical research.

DOI: 10.7554/eLife.13027.002
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as Rpn11 activation through extensive conformational changes that occur during lid incorporation

into the 26S holoenzyme.

Results and discussion

Lid architecture
Our cryo-EM reconstruction of the isolated lid shows that the MPN heterodimer, PCI horseshoe, and

helical bundle together comprise a rigid substructure that contains regions resolved to ~3 Å resolu-

tion (Figure 1B, Figure 1—figure supplements 3–5). The N-terminal portions of the PCI-domain

containing subunits progressively decrease in resolution as they extend toward the periphery of the

complex, likely due to intrinsic flexibility (Figure 1—figure supplements 3C, 5). The 3D reconstruc-

tions of the fully assembled lid and the lid lacking Rpn12 (Figure 1—figure supplement 2, top row,

third reconstruction) show that the N-terminal portions of Rpn6 and Rpn5 are fully extended, and

Figure 1. Architecture of the isolated proteasome lid sub-complex. (A) The segmented 3.5 Å resolution cryo-EM density is shown at a low isocontour

level, with each subunit colored differently. Rpn3 is shown in orange, Rpn5 in light blue, Rpn6 in yellow, Rpn7 in purple, Rpn8 in red, Rpn9 in magenta,

Rpn11 in green, Rpn12 in light green, and Sem1 in tan. This coloring scheme is maintained throughout all figures. (B) The unsegmented cryoEM density

is shown at a higher isocontour level (in gold) to demonstrate the molecular details observable in the reconstruction (~3Å in certain regions). The lower

isocontour level used for the segmented map is overlaid as a silhouette. (C) The atomic model of the proteasome lid is depicted using a ribbon

representation, with each subunit colored according to the segmentation shown in A. The central location of the six PCI domains is illustrated by a gray

shadow underneath the structure. (D) The PCI domains form a horseshoe, held together by an 18-stranded b-sheet. (E) Close-up of the helical bundle

and the MPN heterodimer.

DOI: 10.7554/eLife.13027.003

The following figure supplements are available for figure 1:

Figure supplement 1. CryoEM data collection.

DOI: 10.7554/eLife.13027.004

Figure supplement 2. Single particle analysis of the lid complex.

DOI: 10.7554/eLife.13027.005

Figure supplement 3. Resolution assessment of the reconstructions.

DOI: 10.7554/eLife.13027.006

Figure supplement 4. Atomic modeling of the lid sub-complex.

DOI: 10.7554/eLife.13027.007

Figure supplement 5. Subunits of the yeast 26S proteasome lid sub-complex.

DOI: 10.7554/eLife.13027.008

Figure supplement 6. Comparison of PCI horseshoes in different complexes.

DOI: 10.7554/eLife.13027.009

Figure supplement 7. Interactions of the helical bundle with surrounding lid components.

DOI: 10.7554/eLife.13027.010
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the MPN heterodimer and helical bundle adopt identical orientations in both structures. These find-

ings contradict a recent crosslinking study (Tomko et al., 2015) suggesting that incorporation of

Table 1. CryoEM data collection, processing, and modeling

Data collection

Microscope FEI Titan Krios

Camera Gatan K2 Summit

Voltage 300 keV

Magnification 22,500

Pixel size 1.31 Å (0.655 Å, super-resolution)

Dose rate 9.9 e-/pixel/s

Cumulative electron dose 43.8 e-/Å2

Exposure 7.6 s

Number of frames 38

Defocus range 1.5–3.5 mm

Micrographs collected 3,432

Acquisition software Leginon (Suloway et al., 2005)

Image Processing

Preprocessing package Appion (Lander et al., 2009)

Frame alignment software MotionCorr (whole image) (Li et al., 2013)

CTF estimation software CTFFind3 (Mindell and Grigorieff, 2003)

CTF cutoff criterion 4 Å at 0.5 confidence

Particle picking software FindEM (Roseman, 2004)

Micrographs used 3,365

Particles selected 254,112

Reconstruction

Software RELION 1.3 (Scheres, 2012)

Particles contributed 109,396

Rotational accuracy 1.392 degrees

Translational accuracy 0.671 pixels

B-factor applied -75.9

Final resolution @ FSC 0.143 3.5 Å

Model building and Refinement

Number of residues 2743 (86%)

Map CC (whole unit cell) 0.758

Map CC (all atoms) 0.853

R.M.S deviations

Bond length (Å) 0.02

Bond angle (˚˚) 1.15

Ramachandran plot stats

Preferred 2646 (96.47%)

Allowed 92 (3.35%)

Outlier 5 (0.18%)

Rotamer outliers 5 (0.20%)

C-beta deviations 0 (0.00%)

DOI: 10.7554/eLife.13027.011
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Rpn12 during lid assembly induces a large-scale rearrangement of the MPN dimer and the transition

of the N-terminal portion of Rpn6 from an inward-folded state to an extended conformation that

allows binding to the base. Further structural studies will therefore be required to better understand

how Rpn12 incorporation affects lid binding to the base and core subcomplexes.

We found that the six PCI winged-helix domains associate into a continuous 18-stranded b-sheet,

forming an incomplete right-handed spiral at the center of the lid sub-complex (Figure 1C, D, Fig-

ure 1—figure supplement 6). This organization was also observed in the crystal structure of CSN,

although the PCI horseshoe assembly of the isolated lid has a wider and steeper spiral (Figure 1—

figure supplement 6). Recently, a similar succession of b-strands was shown for the PCI domains in

eIF3 (des Georges et al., 2015), but its domain organization is significantly more open and deviates

from the spiral configuration observed in the proteasome lid and CSN (Figure 1—figure supple-

ment 6). The significant conformational differences between the horseshoes of the lid, CSN, and

eIF3 indicate that the PCI-domain assembly allows for substantial flexibility, while simultaneously

serving as an organizational scaffold at the center of the complex.

The C-terminal helices of all lid subunits (except Sem1) assemble into a well-defined helical bun-

dle that is centrally positioned within the lid sub-complex, adjacent to the PCI horseshoe and the

MPN heterodimer (Figure 1E, Figure 1—figure supplement 7). Our cryoEM reconstruction contains

sufficient structural detail to generate a complete atomic model of this helical bundle, providing an

accurate depiction of the extensive inter-helical interactions. Furthermore, we were able to precisely

assign the register of several helices that could not be unambiguously positioned in earlier lower-res-

olution models of this bundle (Beck et al., 2012; Unverdorben et al., 2014; Estrin et al., 2013).

Our structure shows that Rpn8 and Rpn11 are the only subunits that contribute multiple helices to

the bundle and together contact all other subunits within the helical assembly. Notably, Rpn8 is the

largest contributor to the bundle, which is consistent with previous biochemical work showing that

the Rpn8 C-terminal helices are more critical for lid assembly than those of other subunits

(Estrin et al., 2013). The PCI horseshoe and MPN heterodimer are individually tethered to the bun-

dle via short loops, but make only few direct surface contacts with the bundle. The cryoEM map also

shows that the bundle’s position in the isolated lid is likely stabilized by interactions between a-helix

5 (residues 186–215) of Rpn8 and the PCI domain of Rpn9 at one end of the bundle, and between

the C-terminus of Rpn6 and the N-terminus of Rpn3 at the opposite end (Figure 1E, Figure 1—fig-

ure supplement 7).

The cryoEM reconstruction of the isolated lid allowed us to examine the structural elements

involved in regulating Rpn11 DUB activity. Notably, within the isolated lid, the Rpn11/Rpn8 hetero-

dimer is positioned in a previously unobserved orientation relative to the other subunits, stably asso-

ciated within the palm of the hand-shaped complex via two primary interfaces with the

tetratricopeptide repeat (TPR) domain of Rpn5 and the a-solenoid of Rpn9 (Figure 2A–C). The

resulting organization produces the basis for Rpn11 DUB inhibition in the isolated lid.

Rpn5 occludes the Rpn11 active site
We first probed the contacts between Rpn11 and Rpn5 for their contributions to Rpn11 inhibition in

the isolated lid, as this interface is more extensive (total buried surface area of ~630 Å2) than all

other subunit interactions with the MPN heterodimer (Figure 2—figure supplement 1). Importantly,

the N-terminal region of a-helix 13 in Rpn5 (residues 275–285) is nestled against the end of Rpn11’s

catalytic groove, with several residues from Rpn5 directly contacting loops that surround Rpn11’s

catalytic Zn2+ ion (Figure 2C). To test the functional importance of these contacts, we generated

Rpn5-mutated lid variants and compared their ubiquitin-7-amino-4-methylcoumarin (Ub-AMC) cleav-

age rate with that of wild-type lid and the isolated Rpn11/Rpn8 dimer. Under our assay conditions,

Rpn11 activity within the isolated lid is 5-fold lower compared to the free Rpn11/Rpn8 dimer. In the

loop preceding a-helix 13 of Rpn5, Tyr273 is in an orientation that enables hydrophobic interactions

with Rpn11 Phe114, located in a loop near the active site (Figure 2C). Mutation of this Rpn5 residue

(Y273A) increased Rpn11 activity to 61% of the isolated Rpn11/Rpn8 dimer (Figure 2D–E), suggest-

ing that Tyr273 aids in stabilizing Rpn11 in its inhibited conformation.

Rpn5 residues His282 and Lys283 directly interact with the backbone atoms of two loops near the

Rpn11 active site, and their substitution with alanine increased Rpn11 activity to 31% and 41% of the

free MPN heterodimer, respectively (Figure 2C, E). The effects of these mutations were additive, as

the Rpn5 (H282A,K283A) double-mutant lid exhibited 51% DUB activity compared to the free MPN
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heterodimer (Figure 2E). Structural analysis of the lid containing the Rpn5 (Y273A) or the

Rpn5 (H282A,K283A) double-mutant by negative-stain EM shows that the Rpn11/Rpn8 heterodimer

is released from its inhibitory conformation, while the overall organization of the PCI-containing sub-

units is identical to that of the isolated wild-type lid complex (Figure 2—figure supplement 2).

Together, these activating mutations support a model wherein Tyr273, His282, and Lys283 of Rpn5

all stabilize the association of a-helix 13 with the Rpn11 active site, generating a structural barrier

that blocks substrates from accessing the catalytic groove.

In addition to preventing access to the Rpn11 active site by steric occlusion, the close proximity

of Rpn5 in the isolated lid further blocks DUB activity through interaction with the catalytic Zn2+

(Figure 3A). Two histidines (His109 and His111) and an aspartate (Asp112) coordinate the Zn2+

within the Rpn11 active site, a configuration that is preserved in all JAMM metalloenzymes

(Komander et al., 2009). This geometry allows for interaction with a fourth ligand, as Zn2+ is usually

tetrahedrally coordinated in proteins (Gerke and Moss, 2002). Despite the close proximity of

Rpn5’s a-helix 13 to the Rpn11 active site, intermolecular distances preclude direct interaction of

any Rpn5 residues with the catalytic Zn2+. The Rpn5 residue that is closest to the zinc is Asn275,

Figure 2. The MPN heterodimer interacts extensively with Rpn5 and Rpn9. (A) Side view of the lid sub-complex shows that the MPN heterodimer (Rpn8

in red, Rpn11 in green) interacts closely with the Rpn5 (blue) and Rpn9 (lavender) subunits. Side-chain interactions likely responsible for maintaining the

MPN heterodimer in this configuration are shown in detail in panels (B) and (C). Residues that were mutated to alanine for deubiquitination assays are

labeled in black. (D) Measurements of fluorescence increase upon Rpn11-mediated cleavage of ubiquitin-AMC are shown for three lid mutants relative

to the wild-type lid. (E) Ubiquitin-AMC cleavage rates show activation of Rpn11 in the lid upon mutation of residues within Rpn5 and Rpn8.

DOI: 10.7554/eLife.13027.012

The following figure supplements are available for figure 2:

Figure supplement 1. Buried surface area between the MPN heterodimer and Rpn9 and Rpn5.

DOI: 10.7554/eLife.13027.013

Figure supplement 2. Interface mutations in Rpn5 and Rpn9 release the MPN dimer from its inhibited conformation.

DOI: 10.7554/eLife.13027.014
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which is notably oriented with its carboxamide group directed towards the Rpn11 active site. Muta-

tion of Asn275 to alanine increases Rpn11 DUB activity in the isolated lid to 51% of the isolated

MPN heterodimer (Figure 2E), and negative-stain EM of this lid mutant shows the Rpn11/Rpn8 het-

erodimer detached from its inhibited conformation (Figure 2—figure supplement 2).

Although Rpn5 Asn275 is not within range to directly bind the catalytic Zn2+ (~5 Å from the Zn2+

to Nd1 of Asn275), the cryo-EM density in the Rpn11 active site shows connectivity between Asn275

and the catalytic Zn2+ (Figure 3A), potentially corresponding to a coordinated water molecule.

Indeed, a Zn-associated water molecule is known to play a key role in the peptide hydrolysis mecha-

nism of Zn-dependent proteases and has been observed in the crystal structures of

Rpn11 (Worden et al., 2014; Pathare et al., 2014) and related DUBs of the JAMM family, such as

AMSH (Shrestha et al., 2014; Davies et al., 2011). Furthermore, the co-crystal structure of the

AMSH ortholog Sst2 bound to a post-cleavage ubiquitin fragment shows that the carboxylate of

ubiquitin Gly76 forms a hydrogen bond with the catalytic water (Shrestha et al., 2014) in the same

manner as Rpn5 Asn275 in the isolated lid (Figure 3—figure supplement 1). While the Sst2 struc-

ture presents a snapshot of the transient substrate cleavage product prior to its departure from the

active site, the positioning of Rpn5 Asn275 establishes a stable tetrahedral coordination of the Zn2+

ion via this catalytic water molecule, inhibiting isopeptidase activity of Rpn11 in the isolated lid sub-

complex.

Rpn9 stabilizes the inhibited MPN heterodimer
The other major interface involved in stabilizing the DUB-inhibited conformation of the isolated lid is

found between Rpn8 and Rpn9, and involves a 5-residue loop connecting a-helix 8 (residues 143–

Figure 3. The Rpn11 active site is inhibited in the isolated lid. (A) The catalytic Zn2+ (gray sphere) within the Rpn11 active site (green ribbon) is

coordinated by three residues from Rpn11, and a water molecule acts as a fourth ligand, likely mediated by Asn275 from the neighboring Rpn5 subunit

(blue). The cryoEM density in this region is shown as a mesh. (B) Comparison of the Rpn11 active sites from the isolated Rpn11/Rpn8 heterodimer

crystal structure (PDB ID: 4O8X, purple) and isolated lid (green) shows that the two structures are nearly superimposable. (C) A di-ubiquitin substrate

(tan) was modeled into the active site and shown as a transparent surface rendering. The modeled substrate severely clashes with the locked Rpn11 Ins-

1 loop and Rpn5. (D) In CSN, a Glu within the Ins-1 loop provides a fourth point of coordination for the Zn2+ ion. (E) Similar to CSN, an AMSH mutant

utilizes an Asp from the Ins-1 loop to establish tetrahedral coordination of the catalytic Zn2+.

DOI: 10.7554/eLife.13027.015

The following figure supplements are available for figure 3:

Figure supplement 1. Water-mediated tetrahedral coordination of active site Zn2+ in Rpn11 and AMSH orthologue Sst2.

DOI: 10.7554/eLife.13027.016

Figure supplement 2. Relative B-values of the Rpn11 Ins-1 loop in the isolated Rpn11/Rpn8 heterodimer and in the isolated lid sub-complex.

DOI: 10.7554/eLife.13027.017
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159) and a-helix 9 (residues 165–182) of Rpn9. While the buried surface area of this interface (~450

Å2) is smaller than the Rpn5-Rpn11 interface (Figure 2—figure supplement 1), mutagenesis of the

interface residues shows that these contacts also contribute significantly to maintaining the seques-

tered position of the MPN heterodimer within the palm of the isolated lid sub-complex.

Our atomic model suggests that Rpn8 Gln115 interacts with the backbone atoms of Rpn9 Ile163

(Figure 2B), and upon mutation of Gln115 to alanine, we observed elevated Rpn11 activity that was

33% of isolated MPN levels. Furthermore, two lysine residues in Rpn8, Lys86 and Lys88, are likely

involved in electrostatic interactions with Rpn9 Asp158, which is located at the C-terminal end of a-

helix 8 (Figure 2B). Mutation of Lys86 and Lys88 to alanine in Rpn8 of the isolated lid increases

Rpn11 activity to 33% and 45% of the free MPN-heterodimer levels, respectively. The double mutant

Rpn8 (K86A,K88A) was additive, stimulating Rpn11 activity to about 60% of the isolated MPN heter-

odimer. As with the Rpn5 (H282A,K283A) double mutant lid, negative-stain analysis of the

Rpn8 (K86A,K88A) double mutant revealed that disruption of the Rpn8-Rpn9 interface releases the

MPN dimer from its inhibited conformation (Figure 2—figure supplement 2).

Combined with the structural data, our mutational analyses of the MPN-dimer contacts with Rpn5

and Rpn9 suggest that DUB inhibition requires establishment of a finely tuned network of interac-

tions and perturbation of this system at any of the identified contact points disrupts the inhibitory

conformation of the MPN dimer within the isolated lid sub-complex.

The Ins-1 loop blocks the active site
Common structural motifs present in many members of the MPN family are the two insertion loops,

Ins-1 and Ins-2, which have been suggested to be involved in orienting ubiquitin chains for cleavage

(Sato et al., 2008). In Rpn11, Ins-1 is required for catalysis and has been proposed to play a struc-

tural role in DUB activity by engaging and positioning the C-terminus of the ubiquitin substrate for

hydrolysis (Worden et al., 2014). Flexibility of this loop suggests that it may regulate access to the

DUB active site by switching between different conformational states. Upon ubiquitin binding to

Rpn11, the Ins-1 loop may first open up to allow the ubiquitin C-terminus to enter the catalytic

groove and then switch to a conformation that stabilizes the isopeptide bond for hydrolysis. Struc-

tures of the isolated Rpn11/Rpn8 dimer show the Ins-1 loop in a ‘closed’ conformation

(Worden et al., 2014; Pathare et al., 2014), which is also observed in EM reconstructions of protea-

somes that are actively processing a protein substrate (Unverdorben et al., 2014; Matyskiela et al.,

2013). Interestingly, in the context of the isolated lid, the Ins-1 loop appears to be locked in this

closed state through interactions with the neighboring Rpn5 subunit (Figures 2B, 3B). In particular,

the amino group of Rpn5 Lys283 interacts with the Ser74 carbonyl of Ins-1 (Figure 2C), and introduc-

ing the Rpn5 K283A mutation in the isolated lid results in a significant increase in Rpn11 DUB activ-

ity, as indicated above.

While the Ins-1 loop in the free Rpn11/Rpn8 heterodimer exhibited markedly elevated B-values

(Worden et al., 2014; Pathare et al., 2014), the Rpn11 Ins-1 loop within the isolated lid has lower

B-values than the average for all modeled Rpn11 atoms (Figure 3—figure supplement 2). These

data suggest that the Ins-1 loop is locked in a closed conformation through contact with neighboring

residues and is unable to switch to the ‘open’ state required for substrate access to the active site.

The combined effects of the tetrahedral coordination of the catalytic Zn2+ by Asn275 (Figure 3A),

the steric hindrance imposed by Rpn5’s a-helix 13 in the Rpn11 catalytic groove (Figure 3C), and

the obstruction of the DUB active site by the Ins-1 loop result in robust DUB inhibition.

Interestingly, the proposed mechanism for auto-inhibition of the catalytically active MPN subunit

in CSN, Csn5, also involves tetrahedral coordination of the active-site Zn2+. However, the fourth

ligand in Csn5 is not provided by a neighboring subunit, but intramolecularly by the Ins-1 loop that

thereby gets stabilized in a closed conformation (Lingaraju et al., 2014) (Figure 3D). A similar sce-

nario is also observed for a mutant AMSH construct (PDB ID: 3RZV) that utilizes a nearby Asp within

the Ins-1 loop to complete the tetrahedral geometry (Shrestha et al., 2014) (Figure 3E).

Incorporation of the lid into the 26S holoenzyme
Upon incorporation into the 26S proteasome, the lid undergoes major conformational changes that

involve the PCI-assembly, the helical bundle, and especially the MPN heterodimer. To visualize these

rearrangements, we compared the atomic coordinates of the isolated lid sub-complex to the
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previously determined pseudo-atomic model of the lid in the context of the assembled proteasome

(PDB ID: 4CR2) (Unverdorben et al., 2014) (Figure 4 and Video 1). Lid binding to the base and

core sub-complexes causes the PCI horseshoe to constrict, decreasing in radius by ~3 Å, and adopt

a more planar conformation that closely resembles the reported architecture of the CSN

(Lingaraju et al., 2014) (Figure 4, Figure 1—figure supplement 6). As a result, Rpn3, Rpn7 and

Rpn12, comprising one half of the PCI horseshoe, undergo considerable rotation toward the center

of the regulatory particle, where Rpn3 and Rpn12 bind the scaffolding subunit Rpn2, while Rpn7

contacts the AAA+ ATPase subunits Rpt3 and Rpt6. By comparison, the other half of the PCI horse-

shoe, consisting of Rpn9, Rpn5 and Rpn6, goes through a much less pronounced conformational

change. The N-terminal a-solenoid domain of Rpn9 extends toward the N-terminal coiled coil of

Rpt4 and Rpt5, generating the binding site for the ubiquitin receptor Rpn10, and the highly flexible

TPR segment of Rpn5 becomes stabilized through contact with the ATPase ring and the core pepti-

dase. The N-terminal a-solenoid domain of Rpn6 also accommodates interactions with the ATPase

ring and core peptidase by rotating ~34º˚ around its long axis (Figure 4—figure supplement 1).

Figure 4. The lid sub-complex undergoes a dramatic reorganization upon incorporation to the 26S holoenzyme. Motions associated with lid

incorporation are shown from three orthogonal views. Top panels correspond to the isolated lid, while bottom panels represent the proteasome-

incorporated lid. Atomic models of the lid subunits were used to generate semi-transparent Gaussian filtered surfaces for visualization. For clarity, the

helical bundle, which moves as a rigid body, is shown as a single surface. Sem1 is not shown. The base and core peptidase components are depicted

as shadows to not occlude details of the lid rearrangement. Notable rearrangements include: a 90˚ rotation of the MPN dimer away from the inhibited

conformation, movement of Rpn3, 7, and 12 away from Rpn5, 6, and 9, constriction of the PCI horseshoe, and an overall closure of the lid sub-complex

around the regulatory particle.

DOI: 10.7554/eLife.13027.018

The following figure supplements are available for figure 4:

Figure supplement 1. The Rpn6 a-solenoid domain rotates during incorporation into the holoenzyme.

DOI: 10.7554/eLife.13027.019

Figure supplement 2. Rpn11’s bundle helix binds to the N-ring of the holoenzyme ATPase.

DOI: 10.7554/eLife.13027.020

Figure supplement 3. Lid incorporation activates Rpn11.

DOI: 10.7554/eLife.13027.021
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The extensive rearrangements of the PCI-con-

taining subunits upon interaction with base and

core may also trigger movements of the helical

bundle toward the ATPase ring of the base

(Figures 1A, B, 2A, and 4). Because the bundle

is connected to the PCI horseshoe through flexi-

ble loops, it can move as a single unit, ultimately

adopting an orientation in the 26S holoenzyme

that is more perpendicular to the hand-shaped

arrangement of the PCI subunits. Both in the iso-

lated and incorporated lid, the helical bundle

contacts the N-terminal domain of Rpn3, albeit

through different interfaces. That the association

between these two components is maintained

during lid incorporation suggests that movement

of the Rpn3/7/12 unit influences the positioning

of the bundle (Figure 4 and Video 1). The final

orientation of the helical bundle within the regu-

latory particle is likely also dictated by an exten-

sive interaction between a-helix 6 of Rpn11

(residues 263–272) and the N-terminal domain ring of the ATPase subunits in the base (Figure 4—

figure supplement 2).

The most pronounced conformational rearrangement of the lid involves the Rpn11/Rpn8 MPN-

domain heterodimer. Upon lid incorporation, the Rpn11/Rpn8 dimer undergoes a dramatic 90º˚
rotation, moving from its inhibited state in the palm of the isolated lid to a highly extended confor-

mation over the central substrate-translocation channel in the 26S holoenzyme (Figure 4). The inhib-

ited conformation of the Rpn11/Rpn8 heterodimer in the isolated lid appears to be metastable, as

mutations in either the Rpn5 or Rpn9 contact surfaces lead to release of the dimer. In fact, the

extended conformation of the Rpn11/Rpn8 dimer in the proteasome is similar to its conformation in

our DUB-activating lid mutants (Figure 2—figure supplement 2). During lid incorporation, it is likely

that the conformational changes occurring in the PCI subunits upon their interactions with the core

and base distort the Rpn11-Rpn5 and Rpn8-Rpn9 contact sites and release the Rpn11/Rpn8 dimer

from its inhibited state. To assess the extent of Rpn11 activation upon lid incorporation, we com-

pared Ub-AMC hydrolysis activity for Rpn11 in the isolated lid versus the assembled 26S protea-

some. Incorporation of wild-type lid stimulated Rpn11 DUB activity to 150% of the isolated Rpn11/

Rpn8 dimer levels. This hyperstimulation of Rpn11 in the proteasome may originate from an alterna-

tive Ins-1 loop conformation that is stabilized by the neighboring Rpt4/Rpt5 coiled coil. Rpn11 activ-

ity in lid sub-complexes that contain Rpn5 (Y273A), Rpn5 (N275A), or Rpn8 (K86A,K88A) mutations

was also stimulated upon proteasome incorporation, although to a lower level than with the wild-

type lid (Figure 4—figure supplement 3). None of the mutations are involved in interfaces between

subunits in the proteasome holoenzyme, and we speculate that the slightly lower DUB activity of the

reconstituted mutant proteasomes originates from an interference with normal lid incorporation due

to a prematurely released MPN dimer. Interestingly, lid sub-complexes where Rpn11 lacked Ins-2

were completely deficient in Rpn11 stimulation upon incorporation into holoenzyme (Figure 4—fig-

ure supplement 3C), even though Rpn11 activity was unaffected by Ins-2 deletion in the isolated lid

(Figure 2E). The Ins-2 region of Rpn11 is known to interact with the scaffolding subunit Rpn2 of the

base and likely stabilizes the Rpn11/Rpn8 dimer in the extended conformation.

In summary, our structural and functional data suggest that during lid incorporation, the MPN-

domain heterodimer loses its stabilizing interactions with Rpn5 and Rpn9, and extends out toward

the center of the regulatory particle, leading to Rpn11 activation. This extended conformation ena-

bles the Rpn11 Ins-2 loop to interact with Rpn2, which likely aids in positioning the DUB active site

above the entrance to the AAA+ ATPase ring for highly regulated deubiquitination of protein sub-

strates during translocation.

Video 1. Lid subunit rearrangements that occur during

incorporation into the 26S holoenzyme. The atomic

model of the isolated lid is interpolated into the

pseudo-atomic model of the 26S holoenzyme

(Unverdorben et al., 2014), showing the motions

associated with lid incorporation.

DOI: 10.7554/eLife.13027.022
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Conclusions
The primary function of the lid sub-complex is to house the isopeptidase Rpn11, an enzyme that is

central to proteasomal substrate degradation. While earlier structural and biochemical work

described the role of the lid scaffold in positioning Rpn11 and facilitating its activity in the context of

the assembled proteasome holoenzyme, we illustrate here how interactions of the Rpn11/Rpn8

dimer with other lid subunits block premature DUB activity in the unincorporated lid assembly. Our

atomic model of the isolated lid subcomplex showcases the dramatic conformational gymnastics

undergone by this important component of the proteasome during incorporation into the regulatory

particle and, while the molecular communication involved in promoting this massive reorganization

is still an active area of structural and biochemical research, our work here has resolved an important

mystery surrounding DUB inhibition and activation during proteasome assembly.

Materials and methods

Protein purification
Expression and purification of mutant and wild-type recombinant yeast proteasome lid complex was

carried out in E. coli as described previously, with minor modifications (Lander et al., 2012). Briefly,

E. coli BL21-star (DE3) cells containing the recombinant lid expression system (pETDuet-1 Rpn5,

FLAG-Rpn6, Rpn8, Rpn9, 6xHis-Rpn11], pCOLADuet-1 [Rpn3, Rpn7, Rpn12] and pACYCDuet-1

[Sem1, Hsp90) were grown at 37˚C in 6 liters of terrific broth (Novagen) supplemented with 150mM

ZnCl2. At OD600 = 1.0, the temperature was reduced to 18˚C and, at OD600 = 1.5 lid, expression

was induced overnight with 1 mM isopropyl-b-D-thiogalactopyranoside. After centrifugation, cell

pellets were re-suspended in lid buffer (60 mM HEPES, pH8.0, 100 mM NaCl, 100 mM KCl, 10%

Glycerol, 1 mM DTT) supplemented with protease inhibitors (Aprotinin, Pepstatin, Leupeptin,

PMSF), 2mg/ml lysozyme, and bezonase. All purification steps were performed at 4˚C. Cells were

lysed by sonication and clarified by centrifugation at 16,000g for 30 min. Clarified lysate was incu-

bated with anti-FLAG M2 resin (Sigma-Aldrich), washed with lid buffer and eluted with lid buffer sup-

plemented with 0.15mg/ml 3x-FLAG peptide. FLAG eluate was concentrated to ~500 ml in a 30,000

MWCO spin concentrator (Amicon) and further purified by size-exclusion chromatography on a

Superose 6 column (GE Healthcare) that was pre-equilibrated in lid buffer. Peak fractions were con-

centrated and stored at -80˚C. Purification of core particle, Rpn10, Rpn11/Rpn8 MPN-domain dimer

and recombinant base was performed as described previously (Lander et al., 2012; Worden et al.,

2014; Beckwith et al., 2013).

Rpn11 activity assay
All Ubiquitin-AMC cleavage experiments were performed at 30˚C in lid buffer. Because Rpn11’s Km

for various ubiquitin substrates ranges from ~20 to ~300 mM, we assayed our WT and mutant lid var-

iants at a constant, sub-Km Ubiquitin-AMC concentration. For all lid variants and the Rpn11/Rpn8

MPN-domain dimer, 500 nM enzyme was incubated with 2.5 mM Ubiquitin-AMC (Boston Biochem),

and Rpn11-catalyzed ubiquitin cleavage was monitored by the increase in AMC fluorescence (Ex:

360 nm, Em: 435 nm) using a QuantaMaster spectrofluorometer (PTI). The slopes of individual time

traces were translated to initial cleavage rates using a standard curve for ubiquitin-AMC (ranging

from 0.5–2.5 mM) that had been completely cleaved by the DUB Yuh1. Ubiquitin-AMC cleavage rates

for all variants were measured in triplicate except for WT lid, Rpn11/Rpn8 dimer, Rpn5

(H282A, K283A) and Rpn8 (Q115A), where n = 11, n = 6, n = 4, and n = 4, respectively.

Rpn11 activation upon lid incorporation
Proteasomes were reconstituted in vitro with lid as the limiting component by mixing 250 nM lid,

375 nM core particle, 750 nM base and 1 mM Rpn10 in reconstitution buffer (60 mM HEPES, pH7.6,

100 mM NaCl, 100 mM KCl, 10% glycerol, 10 mM MgCl2, 1 mM DTT, 0.5 mM ATP) that contained

an ATP-regeneration system (5 mM ATP, 16 mM creatine phosphate, 6 mg/ml creatine phosphoki-

nase). Deubiquitination reactions were initiated by the addition of 2.5 mM ubiquitin-AMC and moni-

tored by the increase in AMC fluorescence (Ex: 360 nm, Em: 435 nm) using a QuantaMaster

spectrofluorometer (PTI). A low level background DUB activity co-purified with our yeast core parti-

cle. To subtract this background activity, we reconstituted proteasomes as described above, but
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with a lid variant containing Rpn11 active-site mutations that abolish zinc binding (Rpn11 [AxA]). The

background DUB activity of Rpn11 (AxA) proteasomes was subtracted from the DUB activity of pro-

teasomes reconstituted with WT Rpn11 to get the DUB activity that was specifically contributed by

Rpn11. To directly compare the activity of proteasome-incorporated and unincorporated Rpn11, we

monitored the ubiquitin-AMC hydrolysis activity of 250 nM lid and Rpn11/Rpn8 MPN-domain dimers

in reconstitution buffer containing the ATP regeneration system but with core particle, base, and

Rpn10 omitted.

Electron microscopy sample preparation
For negative stain analysis, purified lid samples were diluted to ~50 nM in FLAG buffer (50 mM

HEPES, pH7.6, 100 mM NaCl, 100 mM KCl) and directly applied to plasma-activated (20 s; 95% Ar,

5% O2) copper grids for staining with 2% uranyl formate. For analysis by cryoEM, samples were

diluted to ~5 uM in FLAG buffer that contained 1.5 mM TCEP (G Biosciences) and 0.05% NP-40

(Sigma). 4 ml of each sample was then applied directly to holey carbon C-flat grids (Protochips, 400

mesh, 1.2 mm holes) that had been plasma-cleaned (Gatan Solarus, 6 s; 95% Ar, 5% O2) for manual

blotting and plunge-freezing in liquid ethane.

Electron microscopy
All imaging data was collected using automated Leginon imaging software (Suloway et al., 2005).

Images of negatively stained samples of wild-type and mutant lid complexes were acquired on a

Tecnai Spirit LaB6 electron microscope operating at 120 keV, with a random defocus range of -0.5

mm to -1.5 mm and an electron dose of 20 e-/Å2. 331 images were acquired for wild-type lid, 433

images for the Rpn5 (H282A/K283A) double-mutant, 412 images for the Rpn8 (K86A/K88A) double

mutant, 181 for the Rpn5 (N275A) mutant, and 204 for the Rpn5 (Y273A) mutant. Images were col-

lected at a nominal magnification of 52,000 X on an F416 CMOS 4K X 4K camera (TVIPS) with a pixel

size of 2.05 Å/pixel at the sample level.

Imaging of frozen hydrated samples was performed using a Titan Krios electron microscope oper-

ating at 300 keV, with a defocus range of -1.5 mm to -3.5 mm. A Gatan K2 Summit was used for

counting individual electron events at a dose rate of 9.9e-/pixel/s, using an exposure of 7.6 s consist-

ing of 38 frames at 200 ms/frame. This resulted in a total electron dose of 43.8 e-/Å2, accounting for

coincidence loss. A total of 3,432 images of wild-type lid were acquired at a nominal magnification

of 22,500X, yielding a pixel size of 0.655 Å/pixel at the sample level when collected in super-resolu-

tion mode.

Negative stain image processing
All image preprocessing was performed using the Appion image-processing pipeline (Lander et al.,

2009). The contrast transfer function (CTF) was estimated using CTFFIND3 (Mindell and Grigorieff,

2003). For negative stain data, particles were selected using a difference of gaussians (DoG) picking

algorithm (Voss et al., 2009), and only micrographs having an overall CTF confidence of greater

than 80% were used for subsequent processing. The phases of the micrograph images were cor-

rected according to the estimated CTF, and the particles were extracted using a box size of 160 pix-

els, and pixel values were capped at 4.5 sigma above or below the mean. Boxed particles were

binned by a factor of 2 for processing. Reference-free 2D class averages of the extracted particles

were determined through five rounds of iterative multivariate statistical analysis and multi-reference

alignment (Ogura et al., 2003). The results of the 2D analysis were used to remove damaged,

aggregated, or falsely selected particles from the dataset used for 3D analysis.

All 3D analysis was performed with RELION v1.31 (Scheres, 2012). Using a previously determined

reconstruction of the wild type yeast proteasome lid as an initial model (EMD-1993) (Lander et al.,

2012), a 3D refinement of 17,680 particles wild-type lid complex provided a reconstruction at

19.6 Å resolution, according to a Fourier Shell Correlation at 0.143 of two independently determined

half-maps. This volume was used as the initial model for all 3D analysis of the mutant lid datasets.

3D classification was performed on each of the negative stain mutant lid datasets, and only 3D clas-

ses exhibiting well-ordered structural details were selected and combined within each dataset for

3D refinement. 22,103 particles of the Rpn5 (H282A/K283A) mutant yielded a 25.2 Å reconstruction;

11,185 particles of the Rpn8 (K86A/K88A) mutant yielded a 27.3 Å reconstruction; 25,429 particles
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of the Rpn5 (N275A) mutant yielded a 23.4 Å reconstruction, and 44,272 particles of the

Rpn5 (Y273A) mutant yielded a 21.8 Å reconstruction (Figure 2—figure supplement 2). UCSF

Chimera (Goddard et al., 2007) was used to dock the atomic model model of the lid into the

density.

Cryo-EM image processing
For cryo-EM image preprocessing, the super-resolution images were binned by a factor of two in

reciprocal space, and motion-corrected using MotionCorr (Li et al., 2013). The aligned frames were

summed and used for all subsequent processing steps. The CTF was estimated using

CTFFIND3 (Mindell and Grigorieff, 2003), and only micrographs having a CTF confidence value

that was greater than 50% at 4Å resolution were used for further processing (Figure 1—figure sup-

plement 1C), resulting in a dataset of 3,365 micrographs. Particles were manually selected from the

first 100 images, and the results of reference-free 2D analysis were used as templates for particle

selection using FindEM (Roseman, 2004). A random subset of 50,000 particles were extracted from

the micrographs with a box size of 256 and used for reference-free 2D analysis in order to rapidly

assess the quality of particle selection (Figure 1—figure supplement 1B). Very few classes corre-

sponding to damaged or aggregated particles were observed; so all particles were used for single

particle analysis in RELION.

A total of 254,112 particles were extracted from the micrographs using a box size of 288 pixels,

binned by a factor of 4, and classified into 8 3D classes over the course of 22 iterations in RELION.

The particles from the 4 classes that showed evidence of conformational and compositional stability

were selected from this initial classification, providing a total of 139,561 particles. The x and y coor-

dinates corresponding to these particles were adjusted according to the final translational align-

ments from the 3D classification, and the centered particle coordinates were used to extract an

unbinned particle dataset for 3D refinement in RELION.

3D refinement using the default RELION parameters yielded a 4.4 Å resolution structure after 22

iterations. These aligned particle parameters were used for the RELION ‘particle polishing’ method.

Individual particle motion trajectories were estimated using a running average window of 7 frames

and particle translations were limited using a prior with a standard deviation of 1. Particle move-

ments were fit to a linear trajectory using a running average window of 7 frames, with an inter-parti-

cle distance contribution value set to 300 pixels. Per-frame B-factors and intercepts were estimated

by comparing the reconstructed half-maps from individual frames to the full-frame half maps, and

the spatial frequency contribution from each frame weighted according (Figure 1—figure supple-

ment 1D, E). A new stack of particles was generated from the translationally aligned particles

extracted from the weighted frames, which provided a reconstruction at 4.1 Å resolution.

Due to the possibility that the flexible N-terminal domains of the PCI subunits were negatively

influencing the particle alignment, a soft-edged 3D mask encompassing the PCI-domains, the helical

bundle, and the MPN domains was generated (blue mask shown in Figure 1—figure supplement 2)

and used for 3D classification of the particles into 3 classes. This 3D classification was performed

using the alignments from the 3D refinement, without further alignment of particles. One of the 3D

classes resulting from this analysis clearly exhibited higher resolution details than the other two, and

the 109,396 particles contained in this class were further refined (in the absence of a mask) to

achieve a 3.6 Å structure. The same soft-edged 3D mask that was used for the previous 3D classifica-

tion was then used for continued 3D refinement, which improved the structural details of the region

contained within this mask, and increased the resolution to 3.5 Å resolution.

Modeling
Modeling and visualization of the lid was performed in COOT (Emsley and Cowtan, 2004) using

mostly the cryo-EM map that had been generated using a soft mask encompassing the PCI domains

and the C-terminal helical bundle (deposited as EMD-6479), as this is the highest resolved region,

and cross-validated using the unmasked map. Available structures and homology models generated

using Modeller v9.15 (Eswar et al., 2007) were initially fit into the unmasked cryo-EM map using

Chimera (Goddard et al., 2007). These included: 1) the crystal structure of Drosophila melanogaster

Rpn6 (residues 50–390) homolog (PDB ID: 3TXN) (Pathare et al., 2014); 2) the crystal structure of

the Saccharomyces cerevisiae Rpn11-Rpn8 heterodimer (residues 24–220 and 10–280, respectively;
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PDB ID: 4O8X) (Worden et al., 2014); 3) the NMR structures of the N-terminal (residues 4–140 (PDB

ID: 2MQW) and C-terminal (residues 184–353 (PDB ID: 2MRI)) domains of Saccharomyces cerevisiae

Rpn9 (Hu et al., 2015); and 4) the N-terminal domain of Schizosaccharomyces pombe Rpn12 homo-

log (residues 6–200, PDB ID: 4B0Z) (Boehringer et al., 2012). The most N-terminal helices of Rpn5

and Rpn6 were not modeled due to the limited resolution of these regions. Placement of the N-ter-

minal helices of Rpn3 was possible, however the absolute sequence register could not be assigned

and these helices were modeled as polyalanine.

Following each round of real space refinement in Phenix v1.10 (Adams et al., 2010), 100 models

were generated in Rosetta (DiMaio et al., 2015), clustered, and scored. The top scoring structures

were then used for the next round of manual model building and an aggregate model was used for

refinement in Phenix. For the final round of refinement, the SHAKE protocol in Phenix was used to

displace all atoms of the top 5 scoring models by 0.5 Å before refinement against one of the

unmasked half-maps. An ensemble of these 5 models have been deposited in the PDB under ID:

3JCK.

Visualizing rearrangements involved in lid incorporation to the 26S
To visualize conformational changes undergone by the lid complex upon incorporation into the 26S

proteasome, we first rigid-body fit individual components of the atomic model of our isolated lid (6

PCI domains, 6 N-terminal extensions, the MPN heterodimer, and the helical bundle) onto the

pseudo-atomic model of the engaged lid (PDB-ID: 4CR2) (Unverdorben et al., 2014) using the

‘MatchMaker’ tool in Chimera. These overlaid models were then docked into the EM density of the

26S holoenzyme in the S1 state (Unverdorben et al., 2014). Overall, the secondary structure organi-

zation of the atomic models matched with high fidelity, although the register of the C-terminal heli-

ces of Rpn11 and the N-terminal helices of Rpn9 of the incorporated lid model were modified to

correspond to the isolated lid model. The domain movements were visualized using the ‘morph con-

formations’ tool in UCSF Chimera. The motion of Rpn6 was evaluated using the software DynDom

(Hayward and Berendsen, 1998).

Accession codes
The EM density maps for the 26S proteasome lid sub-complex before and after masked refinement,

as well as unsharpened maps and half-maps, have been deposited in the Electron Microscopy Data

Bank under accession number EMD-6479. The atomic coordinates of the five highest-scoring Rosetta

models have been deposited under accession ID: 3JCK in the PDB.
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