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Materials and Methods

Simulated data

We conducted a simulation study to compare performance of a large set of matching and analysis combinations in estimating the average treatment effect among the treated (ATT) 1 under several scenarios. Simulation-based approaches to compare estimation performance are appealing because the true effect of interest is known and can therefore be compared to estimates generated from different statistical methods under varying conditions and using a variety of analytic methods.
We simulated 1,000 data sets of size 1,000, comprised of a continuous outcome Y, a binary indicator of treatment A, and two baseline covariates W1 and W2. In this paper, we use the terms “treated” and “control” to refer to groups we wish to compare, but relevant studies need not involve an explicit treatment as in biomedical research. The simulations were designed to imitate data that could realistically arise in observational settings and to demonstrate the performance of combinations of matching and analysis methods in the presence of treatment effect heterogeneity and confounding of the relationship between the treatment and the outcome.
Specifically, covariates [image: image2.png]
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 were generated as uniform and normal random variables
 of the form
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We tested three different exposure mechanisms of modest complexity (non-linear associations and interactions) with varying levels of covariate support (also known as practical positivity violations). Ordered from best support to poorest support, the treatment mechanisms were:
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             (3)

We refer to the treatment mechanisms as the good, medium, and poor support scenarios, respectively. The outcome [image: image16.png]


 was normally distributed of the form
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Note that both [image: image20.png]


 and [image: image22.png]


 are confounders and that all three scenarios introduce substantial bias in the unadjusted ATT (21%, 40%, and 60%, respectively). 

Employment program data


As an applied example, we use data originating from LaLonde’s 1986 2 study of the effect of the National Supported Work (NSW) Demonstration, a large-scale employment training program. Implemented in the mid-1970s in 10 sites across the United States, the intervention aimed to increase income levels by providing work experience and counseling to workers who lacked basic job skills. Individuals facing significant social and economic hardship (those lacking a high school degree, with prior involvement in criminal justice system, recovering from drug abuse) were eligible for enrollment. Applicants were randomly assigned to the NSW program, or to the control group, which offered no further intervention. Data on participants and controls was collected at baseline and at up to four post-baseline time points using surveys and Social Security Administration records. The outcome of interest was real earnings in 1978 and baseline covariates were age, years of education, high school completion, black race, Hispanic ethnicity, marital status, and real earnings in 1974 and 1975. 

We used the publicly available dataset constructed by Dehejia and Wahba 3, which includes both the experimental data and observational population-based controls. This arrangement allows researchers to compare effect estimates from the randomized data to estimates that might have been generated by comparing outcomes for individuals participating in the program to general population controls (an observational study design), had the randomized trial not been executed. The experimental data include 185 participants and 260 controls. The observational controls were drawn from Westat’s Matched Current Population Survey-Social Security Administration file containing 15,992 general population controls. Additional information on the NSW program and the dataset used in this study are available elsewhere 2,3. 
Estimation methods

We estimated the average effect of treatment on the treated (ATT) in both the simulated data and applied example, by applying seven matching approaches, three analysis methods, and two estimation approaches. The ATT estimand is the average difference between potential outcomes4 for the exposed units under exposure, and the exposed units had they been unexposed. The methods estimate the ATT by comparing the average outcome in the exposed group to the average outcome in a comparison group of unexposed units that has been selected, weighted, or otherwise adjusted to approximate the covariate distribution of the exposed units. 
The matching and analysis methods, described in greater detail below, relied on estimation of the treatment mechanism, or propensity score 5, and the outcome model. We estimated these models in two ways: First, parametrically, by assuming a functional form (main terms only) and applying linear or logistic regression, and second, semi-parametrically, by applying the SuperLearner ensemble machine learning algorithm 6–8. While parametric approaches are standard and far more common in practice, recent evidence suggests that semi-parametric approaches may reduce bias and increase efficiency 6,9,10. 

When analyzing the simulated data, we assumed parametric model forms that were misspecified given the data generating mechanism. This is because correct specification of the model form is unlikely in applied settings where the true underlying data generating mechanisms are unknown. Hence, the analysis aligns with what is done in practice. It further provides an opportunity to examine potential gains from semi-parametric estimation when the model form is not known. 
Matching methods 

Using the framing of Ho et al 11, we treated each matching procedure as a form of pre-processing, after which the ATT could be estimated by calculating the difference of mean outcomes between treated and controls units (a “naïve” analysis) or applying further analysis techniques. The matching approaches were: one-to-one greedy nearest neighbor (NN) matching with replacement 12–15; one-to-one optimal nearest neighbor (optimal) matching without replacement 16–20; subclassification using 10 quantiles in simulations and 5 quantiles in the applied example 5,15,21–23; full matching 17,19,20,23,24; inverse probability of treatment weighting (IPTW) 5,25; and genetic matching 26,27. We also considered unmatched data.

Each matching method is described in more detail below. Nearest neighbor matching utilizes the propensity score 5 to identify similarities between treated and control units. We estimated the propensity score in two ways, described in the Estimation methods section below. For greedy nearest neighbor matching, we selected a match for each treated unit one at a time, starting with the largest propensity score and progressing to the smallest. At each matching step, the control with the closest propensity score was selected in a greedy fashion. Controls were drawn with replacement, and those left un-matched were discarded. 

For optimal nearest neighbor matching, units were matched 1:1 without replacement using an optimization routine designed to globally minimize the distances, measured by the propensity score, between treated and control units. The algorithm finds the smallest average absolute distance across all the matched pairs. Again, un-matched control units were dropped.

We conducted subclassification, also known as interval matching or blocking, by dividing the data into quantiles (10 in simulations and 5 in the applied example) of the propensity score distribution of the treated units, and assigning all controls to these groups based on the propensity score bounds. Comparisons of outcomes or further analyses were conducted within each subclass, and the overall estimate was the average of the subclass-specific estimates, weighted by the number of treated units in each subclass. 
We used full matching to subclassify the data based on the propensity score in a globally optimal way. Each subclass had at least one treated unit and one control, with the number of subclasses selected as part of the optimization procedure, and all observations were retained. Comparison of outcomes or further analyses were done using the whole dataset where treated units receive a weight of 1 and controls receive a weight of 1 divided by the number of control units in the designated subclass. 
Inverse probability of treatment weighting (IPTW) utilizes the propensity score to reweight the outcomes among exposed and unexposed units so that the two groups have the same covariate distributions.5,25 To estimate the ATT, all exposed units are assigned a weight of one and all unexposed units are assigned weights equal to the propensity odds (p/(1-p), where p is the propensity score for each unit). The weighting scheme aims to adjust the covariate distribution of unexposed units to match that of exposed units. IPTW weights can be applied in a naïve analysis or together with g-computation. 
Genetic matching uses an iterative search algorithm to maximize the balance of potential covariates across treated and control observations by weighting each covariate. An initial set of weights is generated randomly and balance between treated and control groups is tested using paired t-tests for dichotomous variables and Kolmogorov-Smirnov tests for multinomial and continuous variables. Weights that achieved better balance are more likely to be retained, and others more likely to be dropped, and the retained weights are the basis for “mutations” to create a next generation of weights for testing. The new, mutated weights are applied, and balance is tested again; this process continues until no significant improvements in balance are observed for four consecutive generations. Matching was done without replacement, and some control units were dropped. 
The matching methods relied on measures of the distance between covariate values in the treatment and control groups. In all cases except genetic matching, this distance metric was the propensity score, estimated parametrically and semi-parametrically, as described above. In the case of genetic matching, the distance measure was the generalized Mahalanobis metric, as recommended 27. Results for the parametric and semi-parametric matching approaches were very similar. Table S7 summarizes the median and range of the number of control units dropped, by data generating mechanism and matching method, for 50 simulated sample realizations and the applied example. 
Analysis methods

Estimators of the ATT are available that adjust for covariates based on the treatment mechanism, the outcome mechanism, or both (also known as double-robust methods). After a matching approach, which utilizes the treatment mechanism, is applied, an analysis approach is used to compare outcomes in the matched samples. We considered three outcome analyses: a naïve analysis, g-computation25, and targeted minimum loss-based estimation (TMLE) 28–30.  G-computation is a maximum likelihood based substitution estimator of the G-formula. It is implemented by using regression to model the outcome as a function of the exposure and relevant covariates. The fitted model is then used to predict the outcome under different counterfactual scenarios to be compared. To estimate the ATT, we average the difference between the model predictions for all exposed units had they been unexposed and the model predictions for all exposed units had they been exposed. Typically, G-computation relies on a parametric model. TMLE for the ATT is a general two-stage efficient substitution estimator. In the first stage, we model the outcome as a function of the exposure and relevant covariates. The second stage is a bias reduction step that iteratively updates the parameter estimates using models of the exposure given covariates (the treatment mechanism). This updating step also makes the estimator double-robust, asymptotically normal, and asymptotically efficient. TMLE is typically implemented with semi-parametric machine learning methods. Treatment and outcome models for TMLE were estimated using parametric and semi-parametric approaches, as described above. For g-computation, we used only parametric estimation, as inference using semi-parametric g-computation has not been established.  
Balance and performance metrics

For each matched sample we calculated a large set of balance metrics recommended in the literature 11,27,31–34. These included: the mean, median, and maximum absolute standardized mean difference (ASMD) in covariate values between the treated and control groups across all eight covariates, the percent of covariates with ASMD less than 20%, 10%, 5%, and 1%, the ASMD of the prognostic score, the ASMD of the propensity score, and the absolute mean t-statistic comparing covariate values between treatment and control group. 
The propensity scores and prognostic scores used to measure balance were distinct from those used to estimate effects. In the simulated data, the propensity score and prognostic score were quantified using generalized linear regression and the known treatment and outcome model forms (see above). In the NSW data, the propensity score and prognostic score were estimated using main terms logistic regression and SuperLearner. In the latter case (the applied example), the propensity scores and prognostic scores were indistinguishable across the two estimation procedures, so only the former (logistic regresion) is reported. We also present plots of the distributions of propensity scores by treated and control groups to illustrate the degree of covariate support in the different scenarios 5,35.

For each data generating mechanism, we created 1,000 simulated datasets and evaluated the performance of each matching and analysis combination. The primary measure of performance was the mean squared error (MSE = bias² + variance), where lower MSE indicates a better estimate. We also compared the average percent bias and the variance. We present all three performance measures for each of the estimators considered. To estimate the bias, variance, and MSE of the effect estimates in the applied example and to account for stochastic elements of the matching and machine learning algorithms, we analyzed 500 bootstrapped datasets 23,31,36–38. 

All analyses were conducted in R version 3.2.0 39. Matching was implemented using the MatchIt package 40, and its dependent packages. TMLE was implemented using a modified (to incorporate matching weights) version of tmlecte package available on Github41. 
Additional results

Simulation results for all tested matching, analysis, and estimation approaches for the good, medium, and poor support scenarios are presented in Tables S1-S3. Balance for all parametric matching methods, all simulation scenarios, and all metrics are presented in Table S4. 

Balance for all parametric matching methods and metrics in the applied example are presented in Table S5
Simulation results for the medium support scenario

The probability of treatment, also known as the propensity score, is a useful metric for examining covariate support 5,35. The distributions of the propensity score, by treated and control units, are presented for the medium support scenario in Fig. S1. The probability of treatment ranged between 0.003 and 0.984. 

In the medium support scenario (Table S2), several matching and analysis methods performed well, though fewer than in the good support scenario. Across the 52 methods, 29% had MSE less than 0.01 and 48% were less than 1% biased. In terms of MSE, semi-parametric optimal matching with semi-parametric TMLE performed best, and the top ten performers all involved TMLE. The benefits of combining matching with subsequent analysis are more apparent in this scenario, with fewer high-performing methods involving matching alone. Among the matching methods, optimal matching with no subsequent analysis was one of worst-performing methods, however optimal matching with semi-parametric TMLE was the best-performing method, highlighting how matching can be substantially improved by further analysis. The lowest bias was achieved with semi-parametric subclassification and g-computation. 
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Fig. S1. Density of estimated propensity scores for treated and control units in medium support scenario 

Table S1. Simulation results comparing matching and analysis combinations in good support scenario

	Match
	Analysis
	% Bias
	Var
	MSE
	Bias rank
	Var rank
	MSE rank

	Full
	TMLE parametric 
	0.28%
	0.0063
	0.0063
	27
	2
	1

	Full + SL
	TMLE parametric 
	0.34%
	0.0063
	0.0064
	30
	3
	2

	None
	TMLE with SL
	-0.02%
	0.0065
	0.0065
	8
	4
	3

	None
	TMLE parametric 
	-0.14%
	0.0066
	0.0066
	19
	5
	4

	IPTW
	G-computation
	0.13%
	0.0066
	0.0066
	16
	6
	5

	IPTW + SL
	TMLE with SL
	-0.02%
	0.0066
	0.0066
	7
	8
	6

	IPTW
	TMLE with SL
	0.02%
	0.0067
	0.0067
	6
	10
	7

	Sub + SL
	G-computation
	-0.32%
	0.0067
	0.0067
	28
	11
	8

	IPTW + SL
	G-computation
	-0.76%
	0.0066
	0.0067
	37
	7
	9

	Sub
	G-computation
	-0.48%
	0.0067
	0.0067
	33
	12
	10

	IPTW
	Naïve
	-0.52%
	0.0068
	0.0069
	34
	15
	11

	Sub
	TMLE with SL
	-0.45%
	0.0069
	0.0070
	32
	16
	12

	IPTW + SL
	Naïve
	1.40%
	0.0067
	0.0071
	43
	9
	13

	Opt
	G-computation
	-1.35%
	0.0067
	0.0071
	42
	13
	14

	Full + SL
	TMLE with SL
	0.00%
	0.0071
	0.0071
	2
	19
	15

	Sub + SL
	Naïve
	0.77%
	0.0070
	0.0071
	38
	18
	16

	Sub
	Naïve
	0.89%
	0.0070
	0.0072
	40
	17
	17

	Opt + SL
	G-computation
	-1.41%
	0.0068
	0.0072
	44
	14
	18

	Opt
	TMLE with SL
	-0.08%
	0.0072
	0.0072
	11
	22
	19

	Full
	TMLE with SL
	-0.04%
	0.0073
	0.0073
	9
	23
	20

	Opt + SL
	TMLE parametric 
	-0.86%
	0.0072
	0.0073
	39
	21
	21

	Opt + SL
	TMLE with SL
	0.00%
	0.0073
	0.0073
	1
	24
	22

	Opt
	TMLE parametric 
	-1.25%
	0.0071
	0.0074
	41
	20
	23

	Full + SL
	G-computation
	0.02%
	0.0076
	0.0076
	3
	25
	24

	Full
	G-computation
	-0.21%
	0.0077
	0.0077
	23
	27
	25

	Sub + SL
	TMLE with SL
	-0.55%
	0.0078
	0.0078
	35
	28
	26

	Full + SL
	Naïve
	-0.02%
	0.0079
	0.0079
	4
	29
	27

	Full
	Naïve
	0.24%
	0.0080
	0.0081
	25
	30
	28

	Sub
	TMLE parametric 
	-1.52%
	0.0082
	0.0087
	46
	32
	29

	Genetic
	TMLE with SL
	0.11%
	0.0090
	0.0090
	13
	34
	30

	Sub + SL
	TMLE parametric 
	-1.45%
	0.0086
	0.0090
	45
	33
	31

	Genetic + SL
	TMLE with SL
	0.13%
	0.0092
	0.0092
	15
	35
	32

	Genetic
	G-computation
	0.05%
	0.0093
	0.0093
	10
	36
	33

	Genetic
	Naïve
	0.14%
	0.0093
	0.0093
	18
	37
	34

	Genetic + SL
	G-computation
	0.09%
	0.0095
	0.0095
	12
	38
	35

	Genetic + SL
	Naïve
	0.16%
	0.0095
	0.0095
	20
	39
	36

	NN + SL
	TMLE with SL
	0.19%
	0.0097
	0.0097
	21
	40
	37

	NN
	TMLE with SL
	0.02%
	0.0102
	0.0102
	5
	43
	38

	NN + SL
	G-computation
	0.19%
	0.0103
	0.0103
	22
	44
	39

	Genetic + SL
	TMLE parametric 
	0.44%
	0.0105
	0.0105
	31
	45
	40

	Opt
	Naïve
	2.23%
	0.0097
	0.0107
	47
	41
	41

	NN
	G-computation
	-0.23%
	0.0107
	0.0107
	24
	46
	42

	NN + SL
	Naïve
	0.14%
	0.0108
	0.0108
	17
	47
	43

	NN + SL
	TMLE parametric 
	0.55%
	0.0110
	0.0111
	36
	48
	44

	NN
	Naïve
	0.28%
	0.0113
	0.0113
	26
	49
	45

	Opt + SL
	Naïve
	2.63%
	0.0100
	0.0114
	48
	42
	46

	Genetic
	TMLE parametric 
	0.33%
	0.0115
	0.0115
	29
	50
	47

	NN
	TMLE parametric 
	-0.12%
	0.0129
	0.0129
	14
	51
	48

	None
	G-computation
	-8.51%
	0.0054
	0.0202
	51
	1
	49

	IPTW
	TMLE parametric 
	7.97%
	0.0077
	0.0207
	49
	26
	50

	IPTW + SL
	TMLE parametric 
	8.29%
	0.0082
	0.0223
	50
	31
	51

	None
	Naïve
	21.22%
	0.0147
	0.1073
	52
	52
	52


Var: variance. MSE: mean squared error. NN: greedy nearest neighbor. Opt: optimal nearest neighbor. Sub: subclassification. IPTW: inverse probability of treatment weighting. SL: using SuperLearner for semi-parametric estimation. TMLE: targeted minimum loss-based estimation.

Table S2. Simulation results comparing matching and analysis combinations in medium support scenario

	Match
	Analysis
	% Bias
	Var
	MSE
	Bias rank
	Var rank
	MSE rank

	Opt + SL
	TMLE with SL
	0.82%
	0.0081
	0.0082
	19
	4
	1

	Opt + SL
	TMLE parametric
	-0.51%
	0.0082
	0.0082
	4
	8
	2

	Full + SL
	TMLE with SL
	0.56%
	0.0082
	0.0083
	6
	9
	3

	Opt
	TMLE with SL
	0.80%
	0.0081
	0.0083
	17
	5
	4

	None
	TMLE parametric
	-0.80%
	0.0082
	0.0083
	18
	7
	5

	Opt
	TMLE parametric
	-1.00%
	0.0081
	0.0084
	26
	6
	6

	IPTW
	TMLE with SL
	0.73%
	0.0083
	0.0084
	15
	10
	7

	Full
	TMLE with SL
	0.60%
	0.0084
	0.0085
	9
	11
	8

	IPTW + SL
	TMLE with SL
	0.71%
	0.0084
	0.0085
	13
	12
	9

	None
	TMLE with SL
	0.86%
	0.0084
	0.0086
	21
	13
	10

	Sub
	G-computation
	-1.09%
	0.0084
	0.0087
	27
	14
	11

	Sub + SL
	G-computation
	0.04%
	0.0089
	0.0089
	1
	18
	12

	IPTW + SL
	G-computation
	0.41%
	0.0091
	0.0091
	2
	21
	13

	Sub
	TMLE with SL
	-1.14%
	0.0090
	0.0094
	28
	20
	14

	IPTW
	G-computation
	1.59%
	0.0090
	0.0096
	31
	19
	15

	Genetic + SL
	TMLE with SL
	0.72%
	0.0102
	0.0104
	14
	26
	16

	IPTW + SL
	Naïve
	1.47%
	0.0099
	0.0105
	30
	25
	17

	Genetic
	TMLE with SL
	0.85%
	0.0104
	0.0106
	20
	27
	18

	IPTW
	TMLE parametric
	-2.38%
	0.0093
	0.0108
	33
	24
	19

	Full + SL
	G-computation
	0.57%
	0.0107
	0.0108
	7
	30
	20

	Full
	G-computation
	-0.43%
	0.0108
	0.0109
	3
	32
	21

	Sub + SL
	TMLE with SL
	-0.90%
	0.0107
	0.0109
	22
	29
	22

	NN + SL
	TMLE with SL
	0.70%
	0.0108
	0.0109
	12
	31
	23

	Sub + SL
	Naïve
	2.64%
	0.0092
	0.0109
	36
	22
	24

	Full
	TMLE parametric
	-3.03%
	0.0086
	0.0110
	38
	15
	25

	Genetic + SL
	G-computation
	0.56%
	0.0113
	0.0113
	5
	34
	26

	Genetic
	G-computation
	0.64%
	0.0113
	0.0114
	10
	35
	27

	NN
	TMLE with SL
	0.77%
	0.0113
	0.0115
	16
	37
	28

	Genetic + SL
	Naïve
	0.94%
	0.0113
	0.0116
	24
	38
	29

	Full + SL
	TMLE parametric
	-3.30%
	0.0088
	0.0116
	39
	16
	30

	IPTW
	Naïve
	-1.98%
	0.0106
	0.0116
	32
	28
	31

	Full + SL
	Naïve
	0.91%
	0.0114
	0.0116
	23
	39
	32

	Genetic
	Naïve
	1.23%
	0.0113
	0.0117
	29
	36
	33

	NN + SL
	G-computation
	0.57%
	0.0127
	0.0128
	8
	41
	34

	Full
	Naïve
	2.57%
	0.0111
	0.0128
	35
	33
	35

	NN
	G-computation
	-0.68%
	0.0128
	0.0129
	11
	42
	36

	Sub
	Naïve
	4.05%
	0.0088
	0.0130
	40
	17
	37

	NN + SL
	Naïve
	0.98%
	0.0131
	0.0133
	25
	43
	38

	IPTW + SL
	TMLE parametric
	-4.10%
	0.0093
	0.0136
	41
	23
	39

	NN
	Naïve
	2.56%
	0.0132
	0.0148
	34
	44
	40

	Sub + SL
	TMLE parametric
	-2.75%
	0.0154
	0.0173
	37
	46
	41

	Sub
	TMLE parametric
	-5.36%
	0.0125
	0.0198
	43
	40
	42

	NN
	TMLE parametric
	-6.10%
	0.0184
	0.0279
	45
	49
	43

	Genetic
	TMLE parametric
	-6.83%
	0.0236
	0.0355
	46
	50
	44

	Opt
	G-computation
	-13.95%
	0.0076
	0.0576
	47
	3
	45

	Opt + SL
	G-computation
	-14.41%
	0.0074
	0.0608
	48
	2
	46

	NN + SL
	TMLE parametric
	-5.14%
	0.0596
	0.0663
	42
	52
	47

	Genetic + SL
	TMLE parametric
	-5.72%
	0.0590
	0.0674
	44
	51
	48

	None
	G-computation
	-16.86%
	0.0067
	0.0798
	49
	1
	49

	Opt
	Naïve
	25.57%
	0.0167
	0.1847
	50
	48
	50

	Opt + SL
	Naïve
	27.33%
	0.0163
	0.2082
	51
	47
	51

	None
	Naïve
	40.95%
	0.0138
	0.4446
	52
	45
	52


Var: variance. MSE: mean squared error. NN: greedy nearest neighbor. Opt: optimal nearest neighbor. Sub: subclassification. IPTW: inverse probability of treatment weighting. SL: using SuperLearner for semi-parametric estimation. TMLE: targeted minimum loss-based estimation.

Table S3. Simulation results comparing matching and analysis combinations in poor support scenario

	Match
	Analysis
	% Bias
	Var
	MSE
	Bias rank
	Var rank
	MSE rank

	Full + SL
	TMLE with SL
	-0.82%
	0.0088
	0.0090
	17
	4
	1

	Full
	TMLE with SL
	-0.81%
	0.0088
	0.0091
	15
	5
	2

	IPTW
	TMLE with SL
	-0.76%
	0.0090
	0.0092
	13
	6
	3

	IPTW + SL
	TMLE with SL
	-0.73%
	0.0091
	0.0092
	11
	7
	4

	Genetic
	TMLE with SL
	-0.65%
	0.0130
	0.0132
	7
	14
	5

	Genetic + SL
	TMLE with SL
	-0.81%
	0.0130
	0.0132
	16
	13
	6

	NN + SL
	TMLE with SL
	-0.75%
	0.0134
	0.0136
	12
	15
	7

	NN
	TMLE with SL
	-0.70%
	0.0140
	0.0141
	9
	16
	8

	Opt + SL
	TMLE with SL
	0.48%
	0.0165
	0.0165
	3
	24
	9

	Opt
	TMLE with SL
	0.53%
	0.0166
	0.0167
	6
	25
	10

	IPTW
	G-computation
	-0.70%
	0.0169
	0.0171
	10
	26
	11

	None
	TMLE with SL
	0.52%
	0.0179
	0.0179
	5
	27
	12

	IPTW + SL
	G-computation
	-1.22%
	0.0188
	0.0193
	20
	28
	13

	Sub
	Naïve
	3.47%
	0.0158
	0.0201
	33
	23
	14

	Sub + SL
	Naïve
	2.50%
	0.0189
	0.0210
	31
	29
	15

	Genetic
	G-computation
	-0.78%
	0.0210
	0.0212
	14
	32
	16

	Full
	G-computation
	-1.55%
	0.0204
	0.0212
	23
	30
	17

	Full
	Naïve
	1.77%
	0.0210
	0.0221
	27
	31
	18

	Genetic
	Naïve
	1.59%
	0.0216
	0.0224
	25
	33
	19

	Genetic + SL
	G-computation
	-0.67%
	0.0226
	0.0228
	8
	36
	20

	NN
	G-computation
	-1.82%
	0.0217
	0.0229
	28
	34
	21

	NN
	Naïve
	1.76%
	0.0222
	0.0232
	26
	35
	22

	Full + SL
	G-computation
	-0.29%
	0.0235
	0.0235
	1
	38
	23

	Genetic + SL
	Naïve
	1.51%
	0.0233
	0.0241
	22
	37
	24

	NN + SL
	G-computation
	-0.49%
	0.0245
	0.0246
	4
	40
	25

	Opt
	TMLE parametric
	1.11%
	0.0247
	0.0251
	18
	41
	26

	Opt + SL
	TMLE parametric
	1.57%
	0.0248
	0.0256
	24
	42
	27

	Full + SL
	Naïve
	1.24%
	0.0252
	0.0257
	21
	43
	28

	NN + SL
	Naïve
	1.17%
	0.0260
	0.0265
	19
	44
	29

	Sub
	G-computation
	-3.46%
	0.0243
	0.0285
	32
	39
	30

	None
	TMLE parametric
	1.89%
	0.0285
	0.0297
	29
	45
	31

	Genetic
	TMLE parametric
	-6.69%
	0.0145
	0.0303
	36
	19
	32

	Genetic + SL
	TMLE parametric
	-6.76%
	0.0142
	0.0303
	37
	17
	33

	NN + SL
	TMLE parametric
	-6.62%
	0.0153
	0.0308
	35
	22
	34

	IPTW
	TMLE parametric
	-7.56%
	0.0106
	0.0308
	40
	9
	35

	IPTW + SL
	TMLE parametric
	-7.62%
	0.0105
	0.0310
	41
	8
	36

	NN
	TMLE parametric
	-7.22%
	0.0147
	0.0331
	38
	21
	37

	Full
	TMLE parametric
	-7.84%
	0.0118
	0.0335
	43
	11
	38

	Full + SL
	TMLE parametric
	-7.94%
	0.0119
	0.0341
	44
	12
	39

	Sub + SL
	G-computation
	-4.81%
	0.0356
	0.0437
	34
	46
	40

	IPTW
	Naïve
	-1.94%
	0.0493
	0.0506
	30
	49
	41

	Sub
	TMLE parametric
	-7.50%
	0.0467
	0.0665
	39
	47
	42

	Sub + SL
	TMLE parametric
	-7.76%
	0.0487
	0.0699
	42
	48
	43

	Sub
	TMLE with SL
	-8.04%
	0.0512
	0.0740
	45
	50
	44

	Sub + SL
	TMLE with SL
	-10.08%
	0.0587
	0.0945
	46
	51
	45

	IPTW + SL
	Naïve
	-0.29%
	0.1033
	0.1032
	2
	52
	46

	None
	G-computation
	-26.75%
	0.0074
	0.2605
	47
	1
	47

	Opt + SL
	G-computation
	-28.50%
	0.0074
	0.2947
	48
	2
	48

	Opt
	G-computation
	-28.68%
	0.0074
	0.2982
	49
	3
	49

	Opt
	Naïve
	45.27%
	0.0147
	0.7393
	50
	20
	50

	Opt + SL
	Naïve
	46.15%
	0.0145
	0.7676
	51
	18
	51

	None
	Naïve
	60.41%
	0.0110
	1.3013
	52
	10
	52


Var: variance. MSE: mean squared error. NN: greedy nearest neighbor. Opt: optimal nearest neighbor. Sub: subclassification. IPTW: inverse probability of treatment weighting. SL: using SuperLearner for semi-parametric estimation. TMLE: targeted minimum loss-based estimation.

Table S4: Balance metrics by simulation scenario and matching method
	Match method
	Percent of covariates with ASMD less than…
	Mean ASMD
	Median ASMD
	Max. ASMD
	ASMD in prog.

Score
	ASMD in propen. score
	Abs mean

t-stat

	
	20%
	10%
	5%
	1%
	
	
	
	
	
	

	Good support

	None
	46.1
	15.8
	5.3
	0.9
	0.216
	0.214
	0.443
	0.301
	0.362
	3.360

	NN
	100
	96.5
	80.6
	29.9
	0.031
	0.024
	0.147
	0.020
	0.072
	0.403

	Opt
	100
	97.5
	81.1
	23.5
	0.030
	0.025
	0.148
	0.039
	0.069
	0.446

	Genetic
	100
	100
	100
	98.8
	0.001
	0.000
	0.024
	0.003
	0.006
	0.018

	Sub
	100
	100
	99.7
	41.7
	0.014
	0.013
	0.055
	0.018
	0.048
	0.221

	Full
	100
	99.9
	94.7
	39.9
	0.018
	0.014
	0.092
	0.013
	0.054
	0.280

	IPTW
	100
	100
	99.7
	42.6
	0.015
	0.013
	0.072
	0.013
	0.068
	0.212

	Medium support

	None
	0.5
	0.0
	0.0
	0.0
	0.507
	0.505
	0.724
	0.675
	0.776
	7.957

	NN
	100
	89.9
	59.7
	11.1
	0.044
	0.038
	0.164
	0.039
	0.092
	0.565

	Opt
	24.8
	2.5
	0.1
	0.0
	0.304
	0.299
	0.595
	0.410
	0.430
	4.805

	Genetic
	100
	100
	99.5
	75.8
	0.007
	0.005
	0.057
	0.009
	0.010
	0.090

	Sub
	100
	98.0
	47.3
	4.6
	0.051
	0.050
	0.136
	0.059
	0.107
	0.819

	Full
	100
	92.6
	62.6
	11.1
	0.046
	0.042
	0.186
	0.038
	0.108
	0.734

	IPTW
	99.6
	69.8
	30.0
	5.9
	0.052
	0.048
	0.245
	0.060
	0.157
	0.791

	Poor support

	None
	48.1
	28.9
	13.8 
	2.8
	0.728
	0.726
	0.941
	1.347
	1.184
	11.446

	NN
	74.4
	57.3
	36.5
	5.2
	0.097
	0.090
	0.330
	0.075
	0.126
	1.069

	Opt
	49.6
	39.5
	20.7
	5.0
	0.548
	0.544
	0.822
	1.020
	0.953
	9.155

	Genetic
	99.1
	88.1
	64.6
	12.9
	0.049
	0.042
	0.220
	0.047
	0.038
	0.574

	Sub
	78.9
	39.0
	7.4
	1.0
	0.137
	0.131
	0.451
	0.106
	0.132
	2.162

	Full
	79.0
	58.1
	36.3
	3.5
	0.114
	0.111
	0.335
	0.074
	0.145
	1.800

	IPTW
	62.5
	30.0
	15.1
	2.7
	0.161
	0.130
	1.643
	0.154
	0.200
	2.245


ASMD: Absolute standardized mean difference in covariate values between treated and control groups. Max: maximum. Prog: prognostic. Propen: propensity. Abs: absolute. Stat: statistic. NN: greedy nearest neighbor. Opt: optimal nearest neighbor. Sub: subclassification. IPTW: Inverse probability of treatment weighting. Metrics are averaged across 1,000 simulation runs. Bolded values indicate the best balance according to each metric and scenario.

Table S5: Balance metrics for NSW observational data by matching method
	Match method
	Percent of covariates with ASMD less than…
	Mean ASMD
	Median ASMD
	Max. ASMD
	ASMD in prog.

score
	ASMD in propen. score
	Abs mean

t-stat

	
	20%
	10%
	5%
	1%
	
	
	
	
	
	

	None
	12.2
	9.3
	5.0
	0.8
	1.184
	1.182
	1.471
	1.384
	4.901
	21.371

	NN
	94.4
	71.8
	45.1
	8.5
	0.076
	0.066
	0.309
	0.044
	0.490
	0.737

	Opt
	98.6
	83.3
	56.2
	11.8
	0.055
	0.048
	0.227
	0.028
	0.492
	0.615

	Genetic
	100
	98.8
	93.5
	60.5
	0.014
	0.008
	0.160
	0.013
	0.060
	0.160

	Sub
	60.0
	16.5
	4.8
	0.8
	0.182
	0.181
	0.352
	0.234
	0.062
	3.454

	Full
	97.9
	83.4
	58.3
	14.6
	0.055
	0.048
	0.215
	0.024
	0.012
	0.902

	IPTW
	100
	99.8
	91.8
	54.5
	0.016
	0.015
	0.048
	0.013
	0.028
	0.172


ASMD: Absolute standardized mean difference in covariate values between treated and control groups. Max: maximum. Prog: prognostic. Propen: propensity. Abs: absolute. Stat: statistic. NN: greedy nearest neighbor. Opt: optimal nearest neighbor. Sub: subclassification. IPTW: Inverse probability of treatment weighting. Metrics are averaged across 1,000 simulation runs. Bolded values indicate the best balance according to each metric and scenario.

Table S6. Results comparing matching and analysis combinations for NSW observational data

	Match
	Analysis
	% Bias
	Var
	MSE
	Bias rank
	Var rank
	MSE rank

	Full + SL
	TMLE with SL
	-19.04%
	415857
	531741
	22
	3
	1

	Full
	TMLE with SL
	-19.19%
	422780
	540433
	23
	6
	2

	None
	TMLE with SL
	-21.60%
	452307
	601601
	26
	12
	3

	IPTW
	TMLE with SL
	-23.29%
	450296
	624041
	28
	10
	4

	Opt + SL
	TMLE with SL
	0.50%
	649554
	648337
	2
	28
	5

	Genetic + SL
	TMLE with SL
	-5.43%
	647301
	655516
	8
	27
	6

	Opt + SL
	TMLE parametric
	-17.96%
	561525
	664304
	20
	21
	7

	Genetic
	TMLE with SL
	-13.85%
	612929
	673484
	14
	26
	8

	Opt
	TMLE with SL
	-2.21%
	687593
	687788
	4
	29
	9

	IPTW + SL
	G-computation
	-27.89%
	443257
	692890
	34
	9
	10

	Full
	G-computation
	-23.22%
	521981
	694515
	27
	16
	11

	IPTW + SL
	TMLE with SL
	-24.30%
	505967
	695003
	30
	14
	12

	Opt
	TMLE parametric
	-23.88%
	522234
	704868
	29
	17
	13

	Genetic
	G-computation
	-0.78%
	716401
	715161
	3
	30
	14

	Opt + SL
	Naïve
	-20.35%
	585512
	717624
	25
	24
	15

	None
	TMLE parametric
	-30.34%
	423477
	718995
	38
	7
	16

	Genetic
	Naïve
	-2.78%
	719467
	720521
	5
	32
	17

	Full + SL
	G-computation
	-18.78%
	610874
	723196
	21
	25
	18

	Opt
	G-computation
	-25.40%
	517669
	724374
	32
	15
	19

	Full + SL
	Naïve
	-8.63%
	716612
	739178
	11
	31
	20

	Opt + SL
	G-computation
	-25.05%
	550151
	751031
	31
	19
	21

	IPTW + SL
	Naïve
	-30.55%
	456890
	756393
	39
	13
	22

	IPTW
	G-computation
	-33.71%
	420389
	785451
	40
	4
	23

	Full
	Naïve
	-26.56%
	562168
	788141
	33
	22
	24

	IPTW
	Naïve
	-35.10%
	427309
	823093
	41
	8
	25

	Genetic
	TMLE parametric
	-16.40%
	746049
	831166
	18
	33
	26

	Opt
	Naïve
	-29.63%
	555443
	837056
	36
	20
	27

	Sub
	G-computation
	-29.52%
	565009
	844370
	35
	23
	28

	Genetic + SL
	G-computation
	13.76%
	823567
	882869
	13
	35
	29

	NN
	G-computation
	-14.66%
	815658
	883232
	15
	34
	30

	Genetic + SL
	Naïve
	14.80%
	830376
	899270
	16
	37
	31

	NN
	Naïve
	-16.23%
	825951
	909128
	17
	36
	32

	NN + SL
	Naïve
	0.28%
	928682
	926849
	1
	41
	33

	NN + SL
	TMLE with SL
	-8.34%
	911983
	932539
	10
	40
	34

	NN
	TMLE parametric
	-17.23%
	838994
	932869
	19
	38
	35

	NN + SL
	G-computation
	-9.64%
	911617
	939693
	12
	39
	36

	Genetic + SL
	TMLE parametric
	-7.40%
	936134
	951889
	9
	42
	37

	NN
	TMLE with SL
	3.57%
	1014406
	1016483
	6
	43
	38

	Full + SL
	TMLE parametric
	-48.24%
	420902
	1169232
	44
	5
	39

	Sub + SL
	G-computation
	-19.53%
	1069466
	1190175
	24
	44
	40

	None
	G-computation
	-62.00%
	371377
	1608178
	46
	2
	41

	Sub
	TMLE with SL
	-40.19%
	1464808
	1981612
	42
	45
	42

	Sub + SL
	Naïve
	-91.35%
	546518
	3232076
	48
	18
	43

	Sub
	Naïve
	-115.05%
	450462
	4711305
	50
	11
	44

	IPTW
	TMLE parametric
	-58.03%
	5026602
	6100685
	45
	46
	45

	Sub + SL
	TMLE with SL
	-64.54%
	5033750
	6362569
	47
	47
	46

	NN + SL
	TMLE parametric
	-5.40%
	7810570
	7804329
	7
	50
	47

	Full
	TMLE parametric
	-42.23%
	7325018
	7884395
	43
	49
	48

	Sub
	TMLE parametric
	-104.42%
	6304908
	9790349
	49
	48
	49

	IPTW + SL
	TMLE parametric
	-30.21%
	10069490
	10342520
	37
	51
	50

	Sub + SL
	TMLE parametric
	-155.36%
	16833984
	24528132
	51
	52
	51

	None
	Naïve
	-575.16%
	362337
	106871723
	52
	1
	52


Var: variance. MSE: mean squared error. NN: greedy nearest neighbor. Opt: optimal nearest neighbor. Sub: subclassification. IPTW: inverse probability of treatment weighting. SL: using SuperLearner for semi-parametric estimation. TMLE: targeted minimum loss-based estimation.
Table S7. Number of control units dropped by data generating mechanism and matching method

	Matching method
	Estimation
	DGM 1

(median [range])
	DGM 2

(median [range])
	DGM 3

(median [range])
	Applied example

(number)

	None
	N/A
	0 (0 – 0)
	0 (0 – 0)
	0 (0 – 0)
	0

	Greedy nearest neighbor
	Parametric
	337.5
(290 – 378)
	311
(263 – 350) 
	378
(324 – 419)
	15,860

	Greedy nearest neighbor
	Semi-parametric
	337
(287 – 389)
	312.5 
(278 – 361) 
	378.5
(334 – 423) 
	15,872

	Optimal nearest neighbor
	Parametric
	184
(104 – 250)
	91 
(38 – 176) 
	109
(40 – 180)
	15,807

	Optimal nearest neighbor
	Semi-parametric
	184
(104 – 250)
	91 
(38 – 176) 
	109
(40 – 180)
	15,807

	Subclassification
	Parametric
	0 (0 – 0)
	0 (0 – 0)
	0 (0 – 0)
	0

	Subclassification
	Semi-parametric
	0 (0 – 0)
	0 (0 – 0)
	0 (0 – 0)
	0

	IPTW
	Parametric
	0 (0 – 0)
	0 (0 – 0)
	0 (0 – 0)
	0

	IPTW
	Semi-parametric
	0 (0 – 0)
	0 (0 – 0)
	0 (0 – 0)
	0

	Genetic
	Parametric
	322.5
(272 – 367)
	300.5
(259 – 344) 
	372.5
(323 – 422) 
	15,848

	Genetic
	Semi-parametric
	325
(273 – 361)
	303 
(269 – 344) 
	375
(320 – 428)
	15,859

	Number of control units
	592

(552 – 625)
	545

(519 – 588)
	554

(520 - 590)
	15,992

	Number of treated units
	408

(375 – 448) 
	455

(412 – 481)
	446

(410 – 480)
	185


Median and range of number of control units dropped, by data generating mechanism and matching method, for 50 simulated sample realizations and the applied example. 
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� Simulations employing covariates with non-normal distributions produced very similar results and hence, are not reported.





