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Optimizing matching and analysis 
combinations for estimating causal 
effects
K. Ellicott Colson1, Kara E. Rudolph1,2, Scott C. Zimmerman1, Dana E. Goin1, 
Elizabeth A. Stuart3, Mark van der Laan4 & Jennifer Ahern1

Matching methods are common in studies across many disciplines. However, there is limited evidence 
on how to optimally combine matching with subsequent analysis approaches to minimize bias and 
maximize efficiency for the quantity of interest. We conducted simulations to compare the performance 
of a wide variety of matching methods and analysis approaches in terms of bias, variance, and mean 
squared error (MSE). We then compared these approaches in an applied example of an employment 
training program. The results indicate that combining full matching with double robust analysis 
performed best in both the simulations and the applied example, particularly when combined with 
machine learning estimation methods. To reduce bias, current guidelines advise researchers to select 
the technique with the best post-matching covariate balance, but this work finds that such an approach 
does not always minimize mean squared error (MSE). These findings have important implications 
for future research utilizing matching. To minimize MSE, investigators should consider additional 
diagnostics, and use of simulations tailored to the study of interest to identify the optimal matching 
and analysis combination.

Matching is a common approach to address confounding, particularly in studies that utilize observational data. 
Matching methods estimate the effect of a treatment, program, or policy by comparing treated (or exposed) units 
to control (or unexposed) units with similar observed characteristics. This approach is based on the potential out-
comes1 and other causal inference frameworks2–4. Use of matching has increased as the corresponding methodo-
logical groundwork has developed5–7. There are many types of matching methods8–11 that have been used across 
scientific disciplines, including statistics4, economics7,12, political science and public policy analysis13,14, crimi-
nology15,16, education17,18, sociology19,20, psychology and behavioral health21,22, and medicine and public health23.

Matching methods help address differences in the distributions of measured covariates between treated and 
control groups by improving the balance of these factors, as would be expected in a randomized experiment. 
They also facilitate comparisons between study groups with good support by encouraging the researcher to only 
compare covariate subgroups that have both treated and control units, thereby avoiding extrapolation8,9,24. While 
covariate support, also known as positivity, should be examined in any analysis, this is not an inherent step in 
many regression-based methods11,25. Matching is also intuitive6,8 and may make fewer assumptions about the 
forms of the relationships between covariates, treatment, and outcome (e.g., allows for non-linearity) than stand-
ard regression analyses8,9. After matching, additional analyses can be applied to improve the estimate of effect.

Despite the large and multidisciplinary literature on matching methods, there is no consensus on how match-
ing should be executed or evaluated. There are many general guidelines—for example, minimum covariate bal-
ance thresholds9,26 or weight trimming when support is poor10—some of which contradict one another or are 
ambiguous. To select among the myriad matching procedures, current guidelines commonly advise researchers 
to examine the balance of covariates between the treated and control groups and to select the matching approach 
that achieves the best post-matching balance (see for example11,27). One basis for this recommendation is the logic 
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of a randomized experiment in which covariate balance is used to assess whether randomization has been effec-
tive and hence, whether bias is likely to be minimized28. While some suggest that balance may be a good indicator 
of bias, and existing work has shown its value for that purpose11,29–31, it is not known how well this recommenda-
tion optimizes mean squared error (MSE), a measure of performance that incorporates both bias and variance. 
Several previous studies have compared the performance of different matching methods (see for example32–34). 
However, these studies are limited in scope; all are either restricted to propensity score-based methods, study the 
performance of matching estimators without subsequent analysis, include only a small set of matching methods 
or analyses, or evaluate performance based on bias alone, not bias, variance, and MSE. It has not been systemati-
cally examined how balance measures relate to overall performance (MSE) of effect estimates, when considering 
a wide range of matching and analysis techniques. Furthermore, no previous studies have included systematic 
comparisons of matching coupled with double robust or semi-parametric estimation methods, which have shown 
superior performance in many settings35–37.

We conducted simulation studies to compare the performance of a wide range of matching and analysis com-
binations in estimating the average effect of treatment on the treated (ATT). The ATT is relevant when one is 
interested in the effect of an exposure among those who are exposed. For example, when studying an employment 
training program, the effect of the program on the unemployed people who received it would be more relevant 
than the effects in the general population, most of whom would already be employed. Similarly, with a harmful 
exposure such as drug use, the effect of drug use on health in those who use drugs is more interpretable than an 
effect in a general population many of whom have never used drugs.

Simulation-based approaches to compare estimation performance are appealing because the true effect of 
interest is known and can therefore be compared to estimates generated from different statistical methods under 
varying conditions. We considered whether covariate balance, assessed using recommended metrics11,31,38,39, 
identified the matching and analysis combination with the lowest MSE in the treatment effect estimate. Then, 
using data from a randomized employment training program, we compared the experimental effect estimate to 
effect estimates generated by applying matching and analysis combinations to data with observational controls 
drawn from a general population survey.

Methods
Simulated data.  We simulated 1,000 data sets of size 1,000, comprised of a continuous outcome Y, a binary 
indicator of treatment A, and two baseline covariates W1 and W2. In this paper, we use the terms “treated” and 
“control” to refer to groups we wish to compare, but relevant studies need not involve an explicit treatment as in 
biomedical research. The simulations were designed to imitate data that could realistically arise in observational 
settings and to demonstrate the performance of combinations of matching and analysis methods in the presence 
of treatment effect heterogeneity and confounding of the relationship between the treatment and the outcome. 
Specifically, W1 and W2 were uniform and normal random variables, respectively. Treatment A was binomial 
with probability of success dependent on W1 and W1, and outcome Y was random normal with mean dependent 
on W1, W1, and A. Dependencies included squared terms and multiplicative interactions. The complete data 
generating mechanisms are presented in the Supporting Information (SI) Text.

Employment program data.  As an applied example, we use data originating from LaLonde’s 198640 study 
of the National Supported Work (NSW) Demonstration, a large-scale employment training program that aimed 
to increase income levels by providing work experience and counseling to individuals who lacked basic job skills. 
Applicants were randomly assigned to the NSW program, or to the control group. Data on participants and 
controls was collected at baseline and at up to four post-baseline time points using surveys and Social Security 
Administration records. The outcome of interest was real earnings in 1978 and baseline covariates were age, years 
of education, high school completion, black race, Hispanic ethnicity, marital status, and real earnings in 1974 and 
1975.

We used the publicly available dataset constructed by Dehejia and Wahba7, which includes both the experi-
mental data and observational population-based controls. This arrangement allows researchers to compare effect 
estimates from the randomized data to estimates that might have been generated by comparing outcomes for 
individuals participating in the program to general population controls (an observational study design), had the 
randomized trial not been executed. The experimental data include 185 participants and 260 controls. The obser-
vational controls were drawn from Westat’s Matched Current Population Survey-Social Security Administration 
file containing 15,992 general population controls. Additional information on the NSW program and the dataset 
used in this study are available elsewhere7,40.

Estimation methods.  We estimated the average effect of treatment on the treated (ATT) in both the simu-
lated data and applied example, by applying seven matching approaches, three analysis methods, and two estima-
tion approaches (parametric and semi-parametric). The ATT estimand is the average difference between potential 
outcomes2 for the exposed units under exposure, and the exposed units had they been unexposed. The methods 
estimate the ATT by comparing the average outcome in the exposed group to the average outcome in a compari-
son group of unexposed units that has been selected, weighted, or otherwise adjusted to approximate the covari-
ate distribution of the exposed units. The matching and analysis methods, described in greater detail below, relied 
on estimation of the treatment mechanism, or propensity score25, and the outcome model. We estimated these 
models in two ways: First, parametrically, by assuming a functional form (main terms only) and applying linear 
or logistic regression, and second, semi-parametrically, by applying the SuperLearner ensemble machine learning 
algorithm35. While parametric approaches are standard and far more common in practice, recent evidence sug-
gests that semi-parametric approaches may reduce bias and increase efficiency35,41,42.
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When analyzing the simulated data, we assumed parametric model forms that were misspecified given the 
data generating mechanism. This is because correct specification of the model form is unlikely in applied settings 
where the true underlying data generating mechanisms are unknown. Hence, the analysis aligns with what is 
done in practice. It further provides an opportunity to examine potential gains from semi-parametric estimation 
when the model form is not known.

Matching methods.  Using the framing of Ho et al.9, we considered each matching procedure as a form of 
pre-processing, after which the ATT could be estimated by calculating the difference of mean outcomes between 
treated and controls units (a “naïve” analysis) or applying further analysis techniques. The matching approaches 
were: one-to-one greedy nearest neighbor (NN) matching with replacement43; one-to-one optimal nearest neigh-
bor (optimal) matching without replacement44; subclassification (with ten propensity score quantiles in simula-
tions and five quantiles in the applied example)24; full matching4,45; inverse probability of treatment weighting 
(IPTW)25,46; and genetic matching38. A detailed description of each method can be found in the Supporting 
Information. We also considered unmatched data.

The matching methods relied on measures of the distance between covariate values in the treatment and 
control groups. In all cases except genetic matching, this distance metric was the propensity score, estimated 
parametrically and semi-parametrically, as described above. In the case of genetic matching, the distance measure 
was the generalized Mahalanobis metric, as recommended38. Results for the parametric and semi-parametric 
matching approaches were very similar. For parsimony, we present the parametric version in the main text and 
the results for all tested simulations in SI Tables S1–S3.

Analysis methods.  Estimators of the ATT are available that adjust for covariates based on the treatment 
mechanism, the outcome mechanism, or both (also known as double-robust methods). After a matching 
approach, which utilizes the treatment mechanism, is applied, an analysis approach is used to compare outcomes 
in the matched samples. We considered three outcome analyses: a naïve analysis, g-computation46, and targeted 
minimum loss-based estimation (TMLE)47. G-computation is a maximum likelihood based substitution estima-
tor of the G-formula. It is implemented by using regression to model the outcome as a function of the exposure 
and covariates. The fitted model is then used to predict the outcome under different exposure scenarios to be 
compared. To estimate the ATT, we average the difference between the model predictions for all exposed units 
had they been unexposed and the model predictions for all exposed units had they been exposed. Typically, 
g-computation relies on a parametric model. TMLE for the ATT is general two-stage efficient substitution esti-
mator. In the first stage, we model the outcome as a function of the exposure and covariates. The second stage is a 
bias reduction step that iteratively updates the parameter estimates using models of the exposure given covariates 
(the treatment mechanism). This updating step also makes the estimator double-robust, asymptotically normal, 
and asymptotically efficient. TMLE is typically implemented with semi-parametric machine learning methods. 
Treatment and outcome models for TMLE were estimated using parametric and semi-parametric approaches, 
as described above. For g-computation, we used only parametric estimation, as inference using semi-parametric 
g-computation has not been established.

Balance and performance metrics.  For each matched sample we calculated a large set of balance metrics 
recommended in the literature11,31,38,39. These included: the mean, median, and maximum absolute standardized 
mean difference (ASMD) in covariate values between the treated and control groups across all eight covariates, 
the percent of covariates with ASMD less than 20%, 10%, 5%, and 1%, the ASMD of the prognostic score (a for-
mulation of the disease risk score39), the ASMD of the propensity score, and the absolute mean t-statistic compar-
ing covariate values between the treatment and control groups.

The propensity scores and prognostic scores used to measure balance were distinct from those used to esti-
mate effects. In the simulated data, the propensity scores and prognostic scores used to measure balance were 
quantified using generalized linear regression and the known treatment and outcome model forms (see SI Text). 
In the NSW data, the propensity scores and prognostic scores used to measure balance were estimated using main 
terms logistic regression and SuperLearner. In the NSW applied example, the propensity scores and prognostic 
scores were indistinguishable across the two estimation procedures, so only the logistic regression results are 
reported. We also present plots of the distributions of propensity scores by treated and control groups to illustrate 
the degree of covariate support in the different scenarios25,48.

For each data generating mechanism, we created 1,000 simulated datasets and evaluated the performance 
of each matching and analysis combination. The primary measure of performance was the mean squared error 
(MSE =  bias2 +  variance), where lower MSE indicates a better estimate. We also compared the average percent 
bias and the variance. We present all three performance measures for each of the estimators considered. To esti-
mate the bias, variance, and MSE of the effect estimates in the applied example and to account for stochastic 
elements of the matching and machine learning algorithms, we analyzed 500 bootstrapped datasets49–51.

Additional information on the simulations, applied example, matching methods, and analyses are available in 
SI Text. All analyses were conducted in R version 3.2.052. Matching was implemented using the MatchIt package53, 
and its dependent packages. TMLE was implemented using a modified version of the tmlecte package (to incor-
porate matching weights) which is available on Github54.

Results
Simulation results.  The distributions of the propensity score, by treated and control units, are presented 
in Fig. 1. The plots correspond to the scenarios of good support (substantial overlap of the propensity scores for 
treated and control) and poor support (minimal overlap). The probability of treatment ranged between 0.093 and 
0.776 in the good support scenario and between < 0.001 and > 0.999 in the poor support scenario. Distributions 
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and results for the medium support scenario fell in between those of the good and poor support scenarios and are 
presented in SI Text, SI Fig. S1, and SI Table S2.

Selected balance metrics for the good and poor support scenarios are presented in Table 1 (see SI Table S4 for 
all support scenarios and balance metrics). Across all of the simulation scenarios, genetic matching consistently 
resulted in the best covariate balance, according to all balance metrics. However, when combined with analysis 
methods, genetic matching did not generally result in the ATT estimate with the lowest MSE.

In the good support scenario, many matching and analysis methods performed well and there were few sub-
stantive differences between estimators in terms of the MSE (Table 2). Across the 28 methods, 68% had MSE less 
than 0.01 and 75% were less than 1% biased. In terms of MSE, full matching with parametric TMLE performed 
best, and five of the top ten methods involved double robust analysis (TMLE with parametric or semi-parametric 

Figure 1.  (a) Density of estimated propensity scores for treated and control units in good support scenario. 
(b) Density of estimated propensity scores for treated and control units in poor support scenario. The plots 
illustrate substantial overlap of the propensity scores for treated and control units in the good support scenario 
and minimal overlap in the poor support scenario. The probability of treatment ranged between 0.093 and 0.776 
in the good support scenario and between < 0.001 and > 0.999 in the poor support scenario. Distributions and 
results for the medium support scenario fell in between those of the good and poor support scenarios and are 
presented in SI Text, SI Fig. S1, and SI Table S2.

Match 
method

Percent of covariates 
with ASMD less than… Median 

ASMD
Maximum 

ASMD
ASMD in 

propensity score20% 5%

Good support

  None 46.1 5.3 0.214 0.443 0.362

  NN 100 80.6 0.024 0.147 0.072

  Opt 100 81.1 0.025 0.148 0.069

  Genetic 100 100 0.000 0.024 0.006

  Sub 100 99.7 0.013 0.055 0.048

  Full 100 94.7 0.014 0.092 0.054

  IPTW 100 99.7 0.013 0.072 0.068

Poor support

  None 48.1 13.8 0.726 0.941 1.184

  NN 74.4 36.5 0.090 0.330 0.126

  Opt 49.6 20.7 0.544 0.822 0.953

  Genetic 99.1 64.6 0.042 0.220 0.038

  Sub 78.9 7.4 0.131 0.451 0.132

  Full 79.0 36.3 0.111 0.335 0.145

  IPTW 62.5 15.1 0.130 1.643 0.200

Table 1.   Balance metrics by simulation scenario and matching method. ASMD: Absolute standardized 
mean difference in covariate values between treated and control groups. NN: greedy nearest neighbor. Opt: 
optimal nearest neighbor. Sub: subclassification. IPTW: inverse probability of treatment weighting. Metrics are 
averaged across 1,000 simulation runs. Bolded values indicate the best balance according to each metric and 
scenario.
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estimation). Subsequent analysis after matching generally improved performance, compared with matching 
alone. Several of the top-performers also involved no matching at all. In terms of MSE, full matching, IPTW, 
subclassification, and optimal matching were higher performing matching methods, while genetic and greedy 
NN matching were lower performing matching methods. Semi-parametric estimation for TMLE did not substan-
tively improve performance over parametric TMLE. When considering only bias, full, NN, and genetic matching 
were high performers. The lowest bias was achieved for NN matching paired with semi-parametric double robust 
analysis.

In the poor support scenario (Table 3), fewer methods performed well. Across the 28 methods, 7% had MSE 
less than 0.01 and 29% were less than 1% biased. Again, full matching with TMLE was the top-performer in terms 
of MSE, and the top five methods involved double robust analysis. However, in this scenario, semi-parametric 
estimation for TMLE notably improved performance over parametric TMLE, except when paired with subclas-
sification. There was again a clear benefit to utilizing matching and subsequent analysis together, as methods 
with no matching or naïve analysis generally performed poorly. An exception to this pattern was no matching 
with semi-parametric TMLE, which performed relatively well and had the lowest bias. In contrast with the good 
support scenario, genetic matching was a mid- to high-performer. The top four methods with the lowest bias 
involved semi-parametric TMLE, making this approach one of the most consistent performers for bias reduction 
across all scenarios.

Employment intervention results.  As an applied example, we compared the experimental results from 
the National Supported Work (NSW) employment program to those estimated using observational controls. 
Based on the experimental data, the NSW program increased real earnings of those in the treatment group by 
an average of $1,794 (comparison of means). We treat this quantity as the true effect of the program. In analy-
ses combining the experimental treatment group with observational control data, the level of covariate support 
before matching was extremely poor. The distribution of propensity scores by treated and control units are pre-
sented in Fig. 2. Propensity scores ranged between < 0.001 and 0.488, and were substantially skewed towards 0 
for the control group. These patterns indicate that the baseline characteristics of the control individuals are very 

Match Analysis % Bias Var MSE
Bias 
rank

Var 
rank

MSE 
rank

Full TMLE parametric 0.28% 0.0063 0.0063 16 2 1

None TMLE with SL − 0.02% 0.0065 0.0065 3 3 2

None TMLE parametric − 0.14% 0.0066 0.0066 11 4 3

IPTW g-computation 0.13% 0.0066 0.0066 9 5 4

IPTW TMLE with SL 0.02% 0.0067 0.0067 2 6 5

Sub g-computation − 0.48% 0.0067 0.0067 19 7 6

IPTW Naïve − 0.52% 0.0068 0.0069 20 9 7

Sub TMLE with SL − 0.45% 0.0069 0.0070 18 10 8

Opt g-computation − 1.35% 0.0067 0.0071 23 8 9

Sub Naïve 0.89% 0.0070 0.0072 21 11 10

Opt TMLE with SL − 0.08% 0.0072 0.0072 6 13 11

Full TMLE with SL − 0.04% 0.0073 0.0073 4 14 12

Opt TMLE parametric − 1.25% 0.0071 0.0074 22 12 13

Full g-computation − 0.21% 0.0077 0.0077 12 16 14

Full Naive 0.24% 0.0080 0.0081 14 17 15

Sub TMLE parametric − 1.52% 0.0082 0.0087 24 18 16

Genetic TMLE with SL 0.11% 0.0090 0.0090 7 19 17

Genetic g-computation 0.05% 0.0093 0.0093 5 20 18

Genetic Naive 0.14% 0.0093 0.0093 10 21 19

NN TMLE with SL 0.02% 0.0102 0.0102 1 23 20

Opt Naive 2.23% 0.0097 0.0107 25 22 21

NN g-computation − 0.23% 0.0107 0.0107 13 24 22

NN Naive 0.28% 0.0113 0.0113 15 25 23

Genetic TMLE parametric 0.33% 0.0115 0.0115 17 26 24

NN TMLE parametric − 0.12% 0.0129 0.0129 8 27 25

None g-computation − 8.51% 0.0054 0.0202 27 1 26

IPTW TMLE parametric 7.97% 0.0077 0.0207 26 15 27

None Naive 21.22% 0.0147 0.1073 28 28 28

Table 2.   Simulation results comparing matching and analysis combinations in good support scenario. 
Var: variance. MSE: mean squared error. NN: greedy nearest neighbor. Opt: optimal nearest neighbor. Sub: 
subclassification. IPTW: inverse probability of treatment weighting. SL: using SuperLearner for semi-parametric 
estimation.
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different from those who participated in the program; this example is most similar to the poor support simulation 
scenario.

As in the simulations, genetic matching generally resulted in the best covariate balance in the NSW obser-
vational data, but not for all metrics (see Table 4 for summary; see SI Table S5 for all metrics). Six of ten metrics 
indicated that genetic matching generated the best balance, while three others indicated that IPTW generated the 
best balance, and one indicated that full matching achieved the best balance (SI Table S5). In cases where genetic 
matching did not achieve the best balance, the metrics were generally very close to those of the best method. As 
in simulations, genetic matching did not result in the matching and analysis combination with the lowest MSE.

The unadjusted estimate of the ATT in the NSW observational data was -$8,526, dramatically different from 
the experimental result of $1,794. The success of matching and analysis combinations in recovering the experi-
mental result varied substantially (see Fig. 3 and SI Table S6). As in the simulations, the methods with the lowest 
MSE were full matching, genetic matching, optimal matching or IPTW paired with semi-parametric TMLE. 
While semi-parametric TMLE was involved in the top five performing methods, full, genetic, and optimal match-
ing paired with other analyses also performed well. Subclassification and greedy nearest neighbor matching fared 
poorly. Interestingly, analyses involving no matching were among both the best and the worst, depending on the 
analysis with which they were paired. Genetic matching with g-computation was the least biased method. Almost 
all methods underestimated the experimental result, suggesting a consistent residual bias that may be the result 
of unmeasured covariates. The confidence intervals for all ATT estimates were wide, and few estimates excluded 
the null.

Discussion
We evaluated the performance of a wide variety of matching and analysis methods in estimating the ATT in a 
simulation study and applied example. The best-performing method depended on the degree of covariate sup-
port. When support was good, many matching and analysis approaches generated estimates with minimal bias 
and low variance. The high performance of double robust methods without matching (TMLE) indicated that 
matching may not provide a meaningful advantage when support is good. In contrast, when support was poor, 
fewer methods performed well, and the benefits of combining matching with double robust analysis, especially 

Match Analysis % Bias Var MSE
Bias 
rank

Var 
rank

MSE 
rank

Full TMLE with SL − 0.81% 0.0088 0.0091 8 3 1

IPTW TMLE with SL − 0.76% 0.0090 0.0092 6 4 2

Genetic TMLE with SL − 0.65% 0.0130 0.0132 3 8 3

NN TMLE with SL − 0.70% 0.0140 0.0141 4 9 4

Opt TMLE with SL 0.53% 0.0166 0.0167 2 14 5

IPTW G-computation − 0.70% 0.0169 0.0171 5 15 6

None TMLE with SL 0.52% 0.0179 0.0179 1 16 7

Sub Naive 3.47% 0.0158 0.0201 18 13 8

Genetic g-computation − 0.78% 0.0210 0.0212 7 19 9

Full g-computation − 1.55% 0.0204 0.0212 10 17 10

Full Naive 1.77% 0.0210 0.0221 13 18 11

Genetic Naive 1.59% 0.0216 0.0224 11 20 12

NN g-computation − 1.82% 0.0217 0.0229 14 21 13

NN Naive 1.76% 0.0222 0.0232 12 22 14

Opt TMLE parametric 1.11% 0.0247 0.0251 9 24 15

Sub g-computation − 3.46% 0.0243 0.0285 17 23 16

None TMLE parametric 1.89% 0.0285 0.0297 15 25 17

Genetic TMLE parametric − 6.69% 0.0145 0.0303 19 10 18

IPTW TMLE parametric − 7.56% 0.0106 0.0308 22 5 19

NN TMLE parametric − 7.22% 0.0147 0.0331 20 12 20

Full TMLE parametric − 7.84% 0.0118 0.0335 23 7 21

IPTW Naive − 1.94% 0.0493 0.0506 16 27 22

Sub TMLE parametric − 7.50% 0.0467 0.0665 21 26 23

Sub TMLE with SL − 8.04% 0.0512 0.0740 24 28 24

None g-computation − 26.75% 0.0074 0.2605 25 1 25

Opt g-computation − 28.68% 0.0074 0.2982 26 2 26

Opt Naive 45.27% 0.0147 0.7393 27 11 27

None Naive 60.41% 0.0110 1.3013 28 6 28

Table 3.   Simulation results comparing matching and analysis combinations in poor support scenario. 
Var: variance. MSE: mean squared error. NN: greedy nearest neighbor. Opt: optimal nearest neighbor. Sub: 
subclassification. IPTW: inverse probability of treatment weighting. SL: using SuperLearner for semi-parametric 
estimation.
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when incorporating machine learning for estimation, became more prominent. The combination of full matching 
and semi-parametric TMLE was the most consistently high-performing method in both the simulations and the 
applied example. Therefore, we expect this combination would perform well in other scenarios as well. The advan-
tages of these methods in the poor support scenario are of particular interest, because settings of poor support are 
common in applied, observational research55–57.

While we studied many novel matching and analysis combinations that had not been studied previously, 
some of our findings are consistent with previous research. Schafer and Kang58,59 and Radice and colleagues34 
used simulations to compare several different matching and analysis methods, and found that in good support 
scenarios, many analyses reported similar bias, variance, and MSE, but under poor support, there was significant 
heterogeneity in performance. Radice and colleagues also found that genetic matching achieved better balance 
than several other matching methods. At least two other studies29,30 found that full matching resulted in lower 

Figure 2.  Density of estimated propensity scores for treated experimental units and observational control 
units. The plot illustrates extremely poor overlap of the propensity scores for treated and control units in the 
applied example. Propensity scores ranged between < 0.001 and 0.488, and were substantially skewed towards 
0 for the control group. These patterns indicate that the baseline characteristics of the control individuals are 
very different from those who participated in the program; this example is most similar to the poor support 
simulation scenario.

Match 
method

Percent of covariates 
with ASMD less than… Median 

ASMD
Maximum 

ASMD
ASMD in 

propensity score20% 5%

None 12.2 5.0 1.182 1.471 4.901

NN 94.4 45.1 0.066 0.309 0.490

Opt 98.6 56.2 0.048 0.227 0.255

Genetic 100 93.5 0.008 0.160 0.060

Sub 60.0 4.8 0.181 0.352 0.062

Full 97.9 58.3 0.048 0.215 0.012

IPTW 100 91.8 0.015 0.048 0.028

Table 4.   Balance metrics for NSW observational data by matching method. ASMD: Absolute standardized 
mean difference in covariate values between treated and control groups. NN: greedy nearest neighbor. Opt: 
optimal nearest neighbor. Sub: subclassification. IPTW: inverse probability of treatment weighting. Metrics are 
averaged across 500 bootstrapped samples. Bolded values indicate the best balance according to each metric and 
scenario.
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bias, but to our knowledge, none have examined the relationship with MSE. Estimators that combine matching 
with further adjustment60–63 have also been shown to offer performance benefits in previous research.

Previous research has demonstrated advantages of double robust analysis and semi-parametric estima-
tors32,36,47,64, but few studies have evaluated how machine learning may improve estimates of effect when 
combined with any matching method38,41,42, let alone a broad range of matching methods. We are the first to 
systematically combine double robust methods with matching techniques and to consider semi-parametric esti-
mation at every stage. Our results make an important contribution to the literature, because they indicate that 
these novel combinations may offer additional performance advantages over any individual analytic technique 
previously assessed. We found that use of the matching method with the best covariate balance does not neces-
sarily lead to the estimator with the best overall performance, as measured by the MSE. Across simulations and 
an applied example, genetic matching achieved the best balance, but analyses that included genetic matching 
had larger MSE than the top-performing method in all cases. Two previous studies found that genetic matching 
achieved both better balance and lower MSE than other propensity score-based methods34,38, but they compared 
a limited number of estimators, and did not consider matching in combination with any subsequent analysis. We 
add to a small number of studies that caution against using of covariate balance as the only criteria for selecting a 
matching approach (see for example28,41,65).

Much of the previous literature on matching emphasized covariate balance for minimizing bias rather than 
MSE (see for example43,62,66–68). Indeed, in our simulations, we found that methods with better covariate balance 
were generally less biased. If a researcher’s goal is to minimize MSE, further investigation is needed to identify 
additional diagnostics that are more closely related to the combination of bias and variance. As might be expected, 
the balance measures we examined had little to do with variance, and hence, were imperfect indicators of MSE. 
While the balance metrics we considered are common in the matching literature11,31,38,39, most involve comparing 
single summary measures of univariate distributions. Ideal measures of balance would allow one to compare the 
full multivariate distributions of the covariates, and ideal diagnostics for MSE would incorporate both balance in 
multivariate distributions and efficiency of different estimators.

Some matching methods with good balance may not perform as well in terms of MSE due to differences in 
effective sample size. Because some matching methods drop observations, while others keep all observations and 
reweight, they may have very different effective sample sizes. Genetic matching is designed to optimize covariate 
balance, not MSE, and in process may drop observations and thereby sacrifice statistical precision5,9,69. In con-
trast, full matching retains all observations while maintaining covariate balance that is only slightly worse than 
that of genetic matching. This tradeoff between balance, bias, and statistical precision must be considered care-
fully given the specific goals of each unique study.

In this study, we identified full matching combined with double robust analysis and semi-parametric estima-
tion as a high-performing estimator across numerous scenarios. However, it is possible that in other scenarios, the 
best-performing methods would be different. For example, the performance of parametric models will depend 
on the degree of model misspecification; in this work, we examined one type of misspecification, but future work 
should investigate how performance is altered under varying misspecification scenarios. The variable results of 
previous comparisons of matching methods attest that there is no single approach that best fits all scenarios (see 
for example38,29,32). Our study, along with others (for example60,61), illustrates the utility of simulation in determin-
ing the optimal analysis. In any applied study, the true effect is unknown, but researchers can use simulations to 
inform the choice of analytic method, supplementing general guidelines, which may be based on scenarios quite 

Figure 3.  Comparison of matching and analysis combinations to estimate the effect of NSW participation 
using observational control data. Colored points represent point estimates of the effect of treatment on 
the treated (ATT), with corresponding 95% error bars. The unadjusted estimate of the ATT in the NSW 
observational data was -$8,526, dramatically different from the experimental result of $1,794 (indicated by 
the grey line). The success of matching and analysis combinations in recovering the experimental result varied 
substantially. Almost all methods underestimated the experimental result, suggesting a consistent residual bias 
that may be the result of unmeasured covariates. The confidence intervals for all ATT estimates were wide, and 
few estimates excluded the null. IPTW: inverse probability of treatment weighting. TMLE: targeted minimum 
loss-based estimation. SL: using SuperLearner for semi-parametric estimation.



www.nature.com/scientificreports/

9Scientific Reports | 6:23222 | DOI: 10.1038/srep23222

different from the one at hand. Ideally, the choice of matching and analysis for every study would be informed by 
simulation that reflects the setting and study question. The use of simulation to inform methodological choices 
is not new43,62,66. However, it is rarely used to inform choices in applied research. Fortunately, recognition of the 
value of simulation studies is increasing, and implementing simulations is becoming increasingly accessible with 
the release of new R packages70 and web-based software with graphical user interfaces71,72. The use of these tools 
can help researchers to make more rigorous and tailored decisions about study design and analysis approaches.

Our study has several limitations. We considered a broad range of commonly applied matching techniques, 
together with an array of analysis methods, with particular focus on incorporation of double robust analysis and 
semi-parametric estimation approaches. However, these are a subset of the possible matching and analysis com-
binations one could consider. Likewise, there are other balance metrics or estimands we could have considered. 
For example, we might have considered coarsened exact matching, augmented IPTW, the joint significance and 
pseudo R2 for measuring balance, estimators of the average treatment effect (ATE), or estimators for longitudinal 
data structures. However, the subset we have chosen clearly demonstrates the advantages of semi-parametric 
and double robust methods not previously examined, and further, illustrates that balance is not the best indica-
tor of estimator performance in terms of MSE. There are no agreed upon best measures of balance11, and those 
we did examine displayed consistent results. A simulation approach similar to the one we have taken would be 
well-suited to identify optimal approaches for other matching methods, balance metrics, estimands, or data gen-
erating mechanisms.

To estimate variance, we utilized non-parametric bootstrapping. This approach is widely used to approximate 
the distribution of point estimates and to quantify uncertainty49. However, minimal previous scientific work has 
examined the validity of bootstrapping for inference for the unique combinations of matching analysis proce-
dures included in this paper. Further methodological development is needed in the areas of variance estimation 
for estimators involving matching. Simulated data are unlikely to possess the unusual distributional properties 
sometimes present in real data. For this reason, some simulation studies employ covariates from real data and 
simulate only the outcome61. However, our simulation results are bolstered by the use of real data from the eval-
uation of the NSW employment training program; the similarity in results between the simulations and applied 
example increase our confidence that the simulation results are relevant to real world scenarios.

In this study, we identified optimal combinations of matching and analysis methods for estimates of the ATT. 
We presented a simulation study and applied example to quantify the performance of a range of combinations of 
matching and analysis approaches. Our findings demonstrated the superior performance of novel combinations 
of matching with double robust analysis and semi-parametric estimation. In particular, full matching combined 
with semi-parametric TMLE was a consistent top-performer, particularly when support was poor. In addition, 
we concluded that selecting an approach based on the currently recommended balance metrics may not lead to 
the least biased and most efficient estimate. We call for the development of more sophisticated balance metrics 
and other diagnostics that better align with performance in terms of MSE and for the increased use of tailored 
simulation to inform the choice of analytic methods. This would support the systematic selection of methods with 
better performance, rather than the methods that are most familiar or easy to implement. Such an approach has 
the potential to improve the rigor and quality of studies across a broad array of disciplines.
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