THE LANCET Infectious Diseases

Supplementary webappendix

This webappendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Pritt BS, Mead PS, Johnson DKH, et al. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. *Lancet Infect Dis* 2016; published online Feb 5. http://dx.doi.org/10.1016/S1473-3099(15)00464-8.

Appendix (Web Extra Material)

Table of Contents

Supplemental Table/Figure	Title	Page
Number	Next Distances in a second second in Car Dark	2
	Novel Bosi genospecies gene sequences deposited in GenBank	2
Table 2	Pairwise genetic distances of / concatenated housekeeping genes	3
	from tick and human specimens as compared with 18 Bbsi	
	genospecies and 3 RF species	
Table 3	Pairwise genetic distances of 8 concatenated housekeeping genes	4
	from patient isolates (MN14-1539, MN14-1420) as compared with 18	
	Bbsl genospecies and 3 RF species	
Table 4	Melting temperatures (Tm) for Bbsl <i>oppA1</i> PCR products accurately	5
	differentiates Candidatus Borrelia mayonii from 15 other Bbsl	
	genospecies and does not detect RF borreliae.	
Table 5	Results of PCR testing of <i>Ixodes scapularis</i> ticks collected in two	6
	Wisconsin counties, 2009-2014	
Figure 1	Number of diagnostic patient specimens tested by Mayo Medical	7
	Laboratories during November 2003-September 2014 using <i>oppA1</i>	
	PCR and the number of atypical (novel Bbsl genospecies) results	
Figure 2	Alignment of the <i>oppA1</i> PCR amplicon for the novel Bbsl	8
U U	genospecies MN14-1420 as compared to <i>B. burgdorferi</i> B31	
Figure 3	Standard curves relating the number of <i>oppA1</i> copies in <i>B</i> .	9
Ũ	burgdorferi and the novel Bbsl genospecies to the crossing point	
	(Cp), determined by <i>oppA1</i> real-time PCR	
Figure 4	Phylogenetic analysis of portions of the <i>flaB</i> and 16s rRNA genes	10-11
Ũ	from patient isolates (MN14-1539, MN14-1420) as compared with	
	Bbsl and RF species	
Figure 5	Phylogenetic analysis of 7 concatenated housekeeping genes	12
	amplified from patient isolates (MN14-1539, MN14-1420) as	
	compared to 18 Bbsl genospecies and 3 RF species	
	Supplemental Methods	13

Designation	Accession Number
ECIONI A	121/202011
ECTONT UVPA	KM289011
ECIONI rplB	KM289012
ECTONT recG	KM289013
ECIONI pyrG	KM289014
EC10N1 pepX	KM289015
EC10N1 clpX	KM289016
EC10N1 clpA	KM289017
ND132 uvrA	KM289018
ND132 rplB	KM289019
ND132 recG	KM289020
ND132 pyrG	KM289021
ND132 pepX	KM289022
ND132 clpX	KM289023
ND132 clpA	KM289024
WI133 uvrA	KM289025
WI133 rplB	KM289026
WI133 recG	KM289027
WI133 pyrG	KM289028
WI133 pepX	KM289029
WI133 clpX	KM289030
WI133 clpA	KM289031
MN14-1420 uvrA	KM877342
MN14-1420 rplB	KM877343
MN14-1420 recG	KM877344
MN14-1420 pyrG	KM877345
MN14-1420 pepX	KM877346
MN14-1420 clpX	KM877347
MN14-1420 clpA	KM877348
MN14-1420 nifS	KP972469
MN14-1420 16S rDNA	KP972468
MN14-1420 flaB	KR154295
MN14-1420 ospC	KR154297
MN14-1420 rrf-rrl	KR154296
MN14-1539 uvrA	KM877335
MN14-1539 rplB	KM877336
MN14-1539 recG	KM877337
MN14-1539 pyrG	KM877338
MN14-1539 pepX	KM877339
MN14-1539 clpX	KM877340
MN14-1539 clpA	KM877341
MN14-1539 16S rDNA	KP972466
MN14-1539 nifS	KP972467
MN14-1539 flaB	KR154292
MN14-1539 ospC	KR154294
MN14-1539 rrf-rrl	KR154293
<i>v</i> .	

Supplemental Table 1. Novel Bbsl genospecies gene sequences deposited in GenBank*

* Sequences will be released by GenBank at time of manuscript publication. Sequence nomenclature

(e.g. MN14-1538, WI133) represents the state from which the specimens were submitted and does not necessarily reflect the patient's state of residence.

Supplemental Table 2. Pairwise genetic distances of 7 concatenated housekeeping genes from tick (EC10N1) and human (ND132, W1133, MN14-1420, MN14-1539) (highlighted in blue) as compared to 18 Bbsl genospecies and 3 RF species. Pairwise genetic distances were calculated in MEGA 5.0 using the Kimura-2 parameter model. Percent genetic similarity is calculated using the formula: 100 – (genetic distance × 100).

Strains	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
1. B. afzelii PKo																													
2. B. americana SCW-30h	0.085																												
3. B. andersonii 21123	0.082	0.056																											
4. B. bavariensis PZwi	0.064	0.080	0.081																										
5. B. bissetti DN127	0.080	0.060	0.063	0.077																									
6. B. burgdorferi B31	0.077	0.052	0.057	0.075	0.057																								
7. B. burgdorferi Z41293	0.077	0.051	0.054	0.076	0.059	0.017																							
8. B. garinii 20047	0.065	0.080	0.079	0.020	0.076	0.073	0.074																						
9. B. kurtenbachii IL96-255	0.083	0.064	0.066	0.079	0.038	0.060	0.062	0.079																					
10. B. spielmanii PsigII 27/6	0.066	0.088	0.088	0.076	0.087	0.082	0.082	0.077	0.089																				
11. Borrelia sp. SCW-30a	0.083	0.018	0.054	0.081	0.060	0.053	0.050	0.081	0.064	0.089																			
12. EC10N1 (tick, WI)	0.073	0.060	0.067	0.069	0.058	0.043	0.044	0.066	0.061	0.080	0.062																		
13. ND132 (Patient 2)	0.073	0.060	0.067	0.069	0.058	0.043	0.044	0.066	0.061	0.080	0.062	0.000																	
14. WI133 (Patient 3)	0.073	0.060	0.067	0.069	0.058	0.043	0.044	0.066	0.061	0.080	0.062	0.000	0.000																
15. MN14-1539 (Patient 5)	0.072	0.058	0.062	0.065	0.055	0.051	0.049	0.062	0.058	0.078	0.060	0.009	0.009	0.009															
16. MN14-1420 (Patient 6)	0.072	0.058	0.062	0.065	0.055	0.052	0.050	0.063	0.059	0.078	0.060	0.009	0.009	0.009	0.000														
17. B. valaisiana VS116	0.078	0.085	0.089	0.073	0.082	0.076	0.075	0.075	0.085	0.086	0.084	0.077	0.077	0.077	0.077	0.077													
18. B. californiensis CA446	0.076	0.055	0.059	0.077	0.046	0.053	0.053	0.076	0.049	0.083	0.053	0.058	0.058	0.058	0.055	0.054	0.080												
19. B. chilensis VA1	0.095	0.109	0.112	0.100	0.106	0.105	0.105	0.100	0.109	0.101	0.111	0.099	0.099	0.099	0.097	0.097	0.105	0.107											
20. B. hermsii DAH	0.286	0.298	0.298	0.300	0.294	0.294	0.292	0.302	0.289	0.290	0.300	0.290	0.290	0.290	0.288	0.287	0.291	0.282	0.285										
21. B. japonica HO14	0.067	0.086	0.086	0.068	0.079	0.077	0.075	0.068	0.080	0.078	0.085	0.074	0.074	0.074	0.073	0.072	0.080	0.077	0.099	0.288									
22. B. miyamotoi HT31	0.294	0.303	0.307	0.302	0.297	0.303	0.302	0.306	0.295	0.296	0.301	0.296	0.296	0.296	0.295	0.294	0.302	0.290	0.297	0.125	0.295								
23. B. miyamotoi M1029	0.293	0.303	0.305	0.303	0.298	0.305	0.303	0.306	0.295	0.297	0.299	0.297	0.297	0.297	0.296	0.296	0.299	0.292	0.298	0.129	0.295	0.019							
24. B. sinica CMN3	0.084	0.102	0.103	0.080	0.097	0.094	0.094	0.086	0.099	0.093	0.102	0.087	0.087	0.087	0.086	0.086	0.096	0.095	0.110	0.291	0.078	0.294	0.293						
25. B. persica No12	0.295	0.304	0.299	0.300	0.302	0.301	0.299	0.301	0.301	0.293	0.304	0.292	0.292	0.292	0.291	0.291	0.287	0.298	0.297	0.155	0.294	0.170	0.177	0.296					
26. B. tanukii Hk501	0.074	0.084	0.088	0.067	0.079	0.076	0.074	0.067	0.079	0.082	0.083	0.070	0.070	0.070	0.071	0.071	0.051	0.080	0.102	0.294	0.071	0.305	0.303	0.087	0.288				
27. B. carolinensis SCW-22	0.086	0.061	0.063	0.083	0.027	0.058	0.058	0.083	0.032	0.089	0.061	0.061	0.061	0.061	0.057	0.058	0.087	0.047	0.109	0.294	0.078	0.305	0.304	0.097	0.301	0.082			
28. B. lusitaniae PoTiB2	0.070	0.080	0.082	0.066	0.078	0.075	0.076	0.067	0.082	0.077	0.079	0.071	0.071	0.071	0.070	0.070	0.073	0.075	0.096	0.290	0.071	0.300	0.301	0.086	0.298	0.074	0.081		
29. B. turdi Ya501	0.076	0.089	0.094	0.072	0.084	0.083	0.083	0.075	0.085	0.085	0.090	0.080	0.080	0.080	0.078	0.078	0.082	0.087	0.102	0.288	0.080	0.292	0.293	0.089	0.293	0.078	0.086	0.078	

Supplemental Table 3. Pairwise genetic distances of 8 concatenated housekeeping genes from patient isolates (MN14-1420, MN14-1539) (highlighted in blue) as compared to 18 Bbsl genospecies (no highlight) and 3 RF species (no highlight). Genetic distances were calculated in MEGA 5.0 using the Kimura-2 model. Percent genetic similarity is calculated using the formula: 100 - (genetic distance × 100). The lowest pairwise genetic distance, highest genetic similarity for the patient isolates (MN14-1420, MN14-1539) is to *B. burgdorferi* (0.051 to 0.048; 94.9% and 95.2% similarity) (highlighted in green). The highest pairwise genetic distance, lowest similarity for the patient isolates (MN14-1420, MN14-1539) is to RF borreliae (0.300 to 0.292; 70% to 70.8) (highlighted in green). in red).

Strains	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
1. B. afzelii VS461																																									
2. B. afzelii PKo	0.002																																								1
3. B. americana SCW-30h	0.083	0.083																																							
4. B. americana SCW-41	0.085	0.086	0.015																																						1
5. B. andersonii 21123	0.080	0.080	0.054	0.053																																				F	
6. B. bavariensis PBi	0.064	0.065	0.081	0.082	0.081	l																																			1
7. B. bavariensis PZwi	0.064	0.065	0.081	0.083	0.081	0.000)																																		
8. B. bissetti DN127	0.079	0.080	0.060	0.059	0.062	2 0.079	0.079																																		
9. B. burgdorferi 94a	0.076	0.077	0.048	0.051	0.055	5 0.077	0.077	0.05	7																																
10. B. burgdorferi 297	0.074	0.075	0.048	0.050	0.053	3 0.076	0.076	0.05	6 0.004																																1
11. B. burgdorferi B31	0.076	0.077	0.049	0.051	0.054	1 0.076	6 0.077	0.05	6 0.004	0.002																															
12. B. burgdorferi B348	0.075	0.076	0.047	0.048	0.056	5 0.078	0.078	0.05	7 0.009	0.006	0.008																														
13. B. burgdorferi B485	0.076	0.077	0.048	0.051	0.055	5 0.077	0.077	0.05	7 0.000	0.004	0.004	0.009																													
14. B. burgdorferi BL522	0.074	0.075	0.047	0.048	0.055	5 0.078	0.078	0.05	7 0.007	0.006	0.008	0.005	0.007			1																								F	
15. B. burgdorferi ca92-1096	0.076	0.077	0.048	0.050	0.055	5 0.078	0.079	0.05	7 0.008	0.004	0.006	0.007	0.008	0.008																										F	
16. B. burgdorferi ca92-1337	0.075	0.076	0.047	0.048	0.055	5 0.078	0.078	0.05	7 0.007	0.006	0.008	0.005	0.007	0.000	0.008																										1
17. B. burgdorferi MC104	0.075	0.076	0.048	0.050	0.053	3 0.076	6 0.077	0.05	6 0.004	0.001	0.003	0.007	0.004	0.006	0.005	0.006																									1
18. B. burgdorferi MC115	0.076	0.078	0.049	0.051	0.054	1 0.077	0.078	0.05	7 0.004	0.003	0.004	0.007	0.004	0.007	0.006	0.007	0.003	3																							1
19. B. burgdorferi MC138	0.075	0.076	0.048	0.050	0.055	5 0.076	6 0.076	0.05	7 0.006	0.005	0.005	0.004	0.006	0.005	0.005	0.006	0.005	5 0.005																							
20. B. burgdorferi NE49	0.075	0.076	0.049	0.052	0.052	2 0.075	0.075	0.05	7 0.017	0.015	0.017	0.017	0.017	0.017	0.016	0.017	0.016	6 0.016	0.015	5																					1
21. B. burgdorferi Z41293	0.076	0.076	0.048	0.050	0.052	2 0.076	6 0.077	0.05	7 0.017	0.015	0.016	0.017	0.017	0.017	0.016	0.017	0.015	5 0.015	0.015	5 0.007																					
22. B. carolinensis SCW-22	0.084	0.085	0.060	0.061	0.063	3 0.084	0.084	0.024	4 0.058	0.057	0.058	0.058	0.058	0.059	0.058	0.059	0.058	0.058	0.058	8 0.056	0.057																				1
23. B. garinii 20047	0.065	0.066	0.081	0.083	0.079	0.020	0.020	0.078	8 0.075	0.074	0.075	0.076	0.075	0.076	0.077	0.076	0.075	0.076	0.074	4 0.074	0.075	0.084																			
24. B. japonica HO14	0.067	0.068	0.087	0.087	0.085	0.067	0.067	0.08	0 0.078	0.076	0.077	0.079	0.078	0.078	0.079	0.079	0.076	6 0.077	0.078	8 0.078	0.076	0.080	0.068																		
25. B. kurtenbachii 25015	0.082	0.083	0.063	0.064	0.065	5 0.082	0.082	0.03	5 0.060	0.058	0.059	0.060	0.060	0.060	0.060	0.060	0.059	0.060	0.059	9 0.058	0.060	0.030	0.081	0.081																	1
26. B. kurtenbachii IL96-255	0.081	0.082	0.062	0.063	0.064	4 0.080	0.080	0.03	5 0.060	0.058	0.058	0.059	0.060	0.060	0.059	0.060	0.059	0.059	0.058	8 0.058	0.060	0.031	0.080	0.081	0.005																1
27. B. lusitaniae PoTiB2	0.067	0.068	0.080	0.082	0.080	0.066	0.065	0.073	8 0.076	0.074	0.076	0.075	0.076	0.075	0.075	0.075	0.075	5 0.076	0.075	5 0.075	0.076	0.082	0.067	0.070	0.082	0.081															
28. B. sinica CMN3	0.081	0.082	0.103	0.106	0.103	3 0.080	0.080	0.09	8 0.095	0.095	0.095	0.096	0.095	0.095	0.095	0.095	0.095	0.095	0.095	5 0.096	0.095	0.099	0.086	0.080	0.100	0.100	0.085														
29. B. spielmanii PsigII27/6	0.066	0.065	0.088	0.089	0.086	6 0.075	0.075	0.08	8 0.082	0.081	0.082	0.082	0.082	0.081	0.082	0.081	0.082	0.082	0.08	1 0.083	0.082	0.090	0.076	0.078	0.090	0.089	0.076	0.093													
30. B. tanukii Hk501	0.072	0.073	0.085	0.084	0.086	6 0.066	0.066	0.08	0 0.077	0.075	0.077	0.076	0.077	0.076	0.077	0.076	0.076	6 0.076	0.075	5 0.075	0.074	0.083	0.066	0.071	0.082	0.080	0.071	0.087	0.080												
31. B. turdi Ya501	0.075	0.076	0.090	0.089	0.092	2 0.071	0.072	0.083	3 0.084	0.082	0.083	0.083	0.084	0.082	0.084	0.082	0.083	0.084	0.083	3 0.083	0.083	0.085	0.073	0.080	0.087	0.085	0.078	0.089	0.084	0.076											
32. Borrelia sp. SCW-30a	0.083	0.083	0.018	0.008	0.054	4 0.083	0.083	0.06	0 0.051	0.050	0.051	0.048	0.051	0.048	0.050	0.048	0.050	0.051	0.050	0.050	0.048	0.061	0.084	0.087	0.064	0.063	0.080	0.104	0.089	0.084	0.090										
33. Patient 5 (MN14-1539)	0.070	0.071	0.057	0.058	0.059	0.066	0.067	0.053	3 0.051	0.049	0.050	0.050	0.051	0.050	0.050	0.050	0.050	0.051	0.050	0.049	0.048	0.056	0.065	0.073	0.057	0.056	0.069	0.088	0.078	0.071	0.077	0.058									
34. Patient 6 (MN14-1420)	0.070	0.072	0.057	0.058	0.059	0.067	0.067	0.053	3 0.051	0.049	0.051	0.051	0.051	0.050	0.051	0.051	0.050	0.051	0.050	0.049	0.049	0.056	0.065	0.073	0.058	0.056	0.069	0.088	0.078	0.071	0.077	0.058	0.000								
35. B. valaisiana VS116	0.075	0.076	0.086	0.087	0.088	3 0.070	0.070	0.083	3 0.078	0.077	0.078	0.078	0.078	0.077	0.078	0.078	0.077	0.077	0.076	6 0.078	0.077	0.087	0.072	0.079	0.087	0.086	0.072	0.095	0.083	0.050	0.081	0.086	0.078	0.077							1
36. B. californiensis CA446	0.075	0.075	0.054	0.054	0.057	0.075	0.075	0.044	4 0.052	0.050	0.051	0.053	0.052	0.053	0.052	0.053	0.051	0.053	0.052	2 0.051	0.050	0.045	0.075	0.078	0.047	0.046	0.074	0.095	0.083	0.080	0.084	0.052	0.052	0.052	0.081						1
37. B. chilensis VA1	0.093	0.094	0.110	0.113	0.112	0.098	0.098	0.10	6 0.107	0.106	0.107	0.107	0.107	0.107	0.108	0.107	0.107	0.107	0.100	6 0.104	0.106	0.108	0.098	0.098	0.109	0.108	0.093	0.109	0.101	0.101	0.101	0.113	0.097	0.097	0.101	0.106				1	
38. B. hermsii DAH	0.290	0.290	0.300	0.304	0.302	2 0.303	0.303	0.29	6 0.297	0.295	0.296	0.298	0.297	0.299	0.295	0.298	0.295	0.296	0.293	7 0.293	0.295	0.296	0.306	0.291	0.292	0.292	0.292	0.293	0.294	0.298	0.292	0.302	0.292	0.292	0.294	0.286	0.287			1	
39. B. miyamotoi HT31	0.297	0.299	0.308	0.307	0.311	0.306	0.306	0.303	3 0.309	0.305	0.307	0.310	0.309	0.310	0.307	0.310	0.306	5 0.308	0.309	9 0.304	0.305	0.310	0.312	0.299	0.300	0.300	0.303	0.297	0.301	0.310	0.299	0.305	0.300	0.300	0.306	0.295	0.300	0.125		1	
40. B. miyamotoi M1029	0.295	0.297	0.307	0.305	0.309	0.306	6 0.306	0.303	3 0.309	0.306	0.307	0.310	0.309	0.311	0.306	0.310	0.306	5 0.309	0.309	9 0.305	0.305	0.308	0.311	0.299	0.300	0.300	0.304	0.296	0.301	0.307	0.298	0.303	0.300	0.300	0.303	0.296	0.299	0.130	0.019		
41. B. persica No12	0.298	0.299	0.306	0.304	0.301	0.302	0.302	0.30	5 0.303	0.300	0.302	0.303	0.303	0.303	0.301	0.302	0.299	0.301	0.303	3 0.299	0.300	0.304	0.304	0.297	0.305	0.304	0.301	0.299	0.295	0.291	0.298	0.305	0.296	0.295	0.290	0.301	0.300	0.156	0.173	0.181	

Supplemental Table 4. Melting temperatures (Tm) for Bbsl *oppA1* PCR products accurately differentiates Candidatus *Borrelia mayonii* from 15 other Bbsl genospecies and does not detect members of the RF group.*

Organism	Source of Material (Accession number)	Tm (°Celsius)											
Borrelia burgdorferi sensu lato genospecies													
Borrelia afzelii	DSMZ (16073)	53.83											
Borrelia afzelii	ATCC (51992)	54.58											
Borrelia americana	ATCC (BAA-1877)	54.36											
Borrelia andersonii	ATCC (700555)	56.95											
Borrelia bavariensis	DSMZ (DSM 23469)	54.97											
Borrelia bissettii	DSMZ (17990)	55.94											
Borrelia burgdorferi	ATCC (51990)	63.60											
Borrelia burgdorferi	ATCC (53899)	64.91											
Borrelia burgdorferi	ATCC (35210)	64.90											
Borrelia burgdorferi	ATCC (55131)	64.13											
Borrelia californiensis	DSMZ (17989)	59.20											
Borrelia carolinensis	ATCC (BAA-1773)	57.62											
Borrelia garinii	ATCC (51991)	54.82											
Borrelia garinii	ATCC (51383)	54.99											
Borrelia japonica	ATCC (51557)	NEGATIVE											
Borrelia kurtenbachii	ATCC (BAA 2495)	58.40											
Candidatus Borrelia mayonii	Patient specimens	60.38 - 61.24**											
Borrelia sinica	DSMZ (DSM 23262)	NEGATIVE											
Borrelia spielmanii	DSMZ (DSM 16813)	NEGATIVE											
Borrelia valaisiana	DSMZ (DSM 21467)	52.30											
Borrelia yangtze	DSMZ (DSM 24625)	58.03											
Rel	apsing Fever borreliae												
Borrelia coriaceae	ATCC 43381	NEGATIVE											
Borrelia duttoni	CP000976***	NEGATIVE											
Borrelia hermsii	DSMZ 5251	NEGATIVE											
Borrelia miyamotoi	CDC FR64b	NEGATIVE											
Borrelia miyamotoi	CDC HT31	NEGATIVE											
Borrelia miyamotoi	CDC HT24	NEGATIVE											
Borrelia miyamotoi	MDH A4 Tick	NEGATIVE											
Borrelia parkeri	CDC MT90-900	NEGATIVE											
Borrelia recurrentis	CP000993***	NEGATIVE											
Borrelia recurrentis	CDC 99-0708A	NEGATIVE											
Borrelia turcica	DSMZ 16138	NEGATIVE											
Borrelia turicatae	CDC MT90-901	NEGATIVE											

* This assay does not detect relapsing fever borreliae, including Borrelia miyamotoi

** Range of melting temperatures observed for the 6 patient specimens

Abbreviations: ATCC – American Type Culture Collection, CDC – Centers for Disease Prevention and Control, DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen Gmbh (German Collection of Microorganisms and Cell Cultures), MDH – Minnesota Department of Health, Tm – melting temperature

*** Specimens obtained from the Collection de Souches de l'Unite des Rickettsies, Marseilles, France

Supplemental Table 5. Results of polymerase chain reaction testing of *Ixodes scapularis* ticks collected in two Wisconsin counties, 2009-2014*

		Adult I. scapula	uris PCR results	Nymphal I. scapt	ularis PCR results	Total PCR results						
Collection Site County	Collection Date	Novel <i>Borrelia</i> sp. No. Pos/Total (%)**	<i>Borrelia burgdorferi</i> No. Pos/Total (%)**	Novel <i>Borrelia</i> sp. No. Pos/Total (%)***	<i>Borrelia burgdorferi</i> No. Pos/Total (%)**	Novel <i>Borrelia</i> sp. No. Pos/Total (%)**	<i>Borrelia burgdorferi</i> No. Pos/Total (%)**					
Barron	October 2013	1/170 (0.6) (1 male)	68/170 (40.0)	NC	NC	1/170 (0.6)	68/170 (40.0)					
Barron	June-July 2014	14/267 (5.2)*** (11 females, 3 males)	89/267 (33.3) ^b	3/81 (3.7)	22/81 (27.1)	17/348 (4.9)	111/348 (31.9)					
Eau Claire	2009-2010	0/28 (0)	5/28 (17.9)	1/112 (0.9)	11/112 (9.8)	1/140 (0.7)	16/140 (11.4)					
	Total	15/465 (3.2)	162/465 (34.8)	4/193 (2.1)	33/193 (17.1)	19/658 (2.9)	195/658 (29.6)					

*Abbreviations: PCR - polymerase chain reaction, Pos - positive, NC - not collected (nymphs were not found during this collection), No. - number **Number positive divided by the total number tested and percentage

***Two adult ticks were co-infected with both agents

Supplemental Figures

Supplemental Figure 1. Number of diagnostic patient specimens tested by Mayo Medical Laboratories during November 2003-September 2014 using *oppA1* PCR and the number of atypical (novel Bbsl genospecies) results. Abbreviations: Bbsl – *Borrelia burgdorferi sensu lato*, MN – Minnesota, ND – North Dakota, PCR – polymerase chain reaction, WI – Wisconsin

Supplemental Figure 2. Alignment of the *oppA1* PCR amplicon for the novel Bbsl genospecies MN14-1420 as compared to *B. burgdorferi* B31. Highlighted sequence and astericks indicate nucleotide identity. The *oppA1* forward and reverse primers are indicated by black arrows, the FL-probe sequence binding site is indicated by the shaded grey box, and the species specific 640-probe binding site is indicated by the unshaded grey box. Lower panels show the alignment of the *oppA1* genospecies-specific 640-probe (*B. burgdorferi* and *B. garinii/B afzelii*) as compared to the novel Bbsl genospecies (MN14-1420) sequence.

Supplemental Figure 3. Standard curves relating the number of *oppA1* copies in A) *B. burgdorferi* and the B) novel *Bbsl* genospecies to the crossing point (Cp), determined by *oppA1* real-time PCR. The *oppA1* gene is present in single copy on the chromosome of both species.

Supplemental Figure 4. Phylogenetic analysis of a (A) 392 bp fragment of the *flaB* gene and (B) 1280 bp fragment of the 16s rRNA gene from patient isolates (MN14-1539, MN14-1420) as compared with Bbsl and RF species. Accession numbers are indicated for sequences retrieved from GenBank. Bootstrap support values >50% are shown. The scale bar corresponds to (A) 0.05 or (B) 0.005 substitutions per nucleotide position.

Supplemental Figure 5. Phylogenetic analysis of 7 concatenated housekeeping genes: *uvrA*, *rplB*, *recG*, *pyrG*, *pepX*, *clpX*, and *clpA* amplified from patient (MN14-1539, MN14-1420, ND132, WI133) and tick (EC10N1) specimens as compared to 18 different Bbsl genospecies and 3 RF species. Bootstrap support values >50% are shown. The scale bar corresponds to 0.05 substitutions per nucleotide position. The source of other *Borrelia* gene sequences is indicated in the supplemental methods.

Supplemental Methods

oppA1 Standard Curves - Genomic DNA was purified from cultures of *B. burgdorferi* B31 and the novel Bbsl genospecies MN-1420 using the QIAamp DNA Mini Kit (Qiagen), including RNAse treatment. Ten-fold dilutions were prepared based on genome equivalents for each genospecies as determined by measurement of the DNA concentrations (optical density at 260 nm), using known genome sizes of 1.5 Mb for *B. burgdorferi* and 1.4 Mb for the novel Bbsl genospecies and the fact that the *oppA1* gene is single copy in both organisms (based on whole genome sequencing data; data not shown). Therefore one *oppA1* copy equates to 1 genome equivalent. One genome equivalent is ~1.6 fg for *B. burgdorferi* B31 and ~1.5 fg for MN-1420. Each dilution was tested in triplicate using the *oppA1* real-time PCR assay and the standard error determined. Estimates of *oppA1* copy numbers for patient blood specimens were calculated using the *oppA1* Cp values for the blood specimens and the standard curves shown in Fig. S3. The estimated copy numbers do not account for run-to-run variation, as standard curve comparisons were performed subsequent to specimen testing.

Multilocus Sequence Typing – Housekeeping gene sequences used are as follows: for *B. afzelii* PKo, *B. burgdorferi* B31, and *B. bissettii* DN127 GenBank accession numbers were NC_017238, NC_001318, and CP002746, respectively; for *B. americana* SCW-30h GenBank sequences were JN805988, JN805980, JN805972, JN805964, JN704339, JN704323, JN704315; for *Borrelia* sp. SCW-30a GenBank sequences were JN805981, JN805973, JN805965, JN805957, JN704332, JN704316, JN704308; for *B. bavariensis* PZwi GenBank sequences were KC833677, KC833658, KC833639, KC833620, KC833601, KC833563, KC833544; for *B. spielmanii* PsigII 27/6 GenBank sequences were AB526162, AB526161, AB526160, AB526159, AB526158, AB526156, AB526155; for *B. kurtenbachii* IL96-255 GenBank sequences were KF052030, KF052002, KF052002; for *B. valaisiana* Am501 GenBank sequences were AB526120, AB526120, AB526123 and for *B. andersonii* 21123 GenBank sequences were AB526122, AB526121, AB526120, AB526118, AB526116, AB526115. Housekeeping sequences from all other *Borrelia* included in the 7 and 8 gene MLSA were retrieved from http://pubmlst.org/borrelia/.

Microscopic Quantification – Wet mounts (4) were prepared by pipetting 5 µl of diluted *B. burgdorferi* B31 grown in Barbour-Stoenner-Kelly media onto a glass slide and covering with a 22 mm x 22 mm coverslip. The number of spirochetes per field (20 per slide) were counted using a Zeiss AkioScope (40X objective and 10X ocular) and averaged for the 4 wet mounts. The number of spirochetes was also determined using the same *B. burgdorferi* B31 suspension and a Petroff-Hausser counting chamber. A conversion factor was determined between the number of organisms per field determined by wet mount and the spirochete number determined using the Petroff-Hausser counting chamber and this conversion factor used to determine the number of spirochetes in wet mounts prepared from diluted patient blood.

Serologic testing: First tier serology assays utilized included the C6 *B. burgdorferi* (Lyme) ELISATM assay (Immunetics) and whole-cell sonicate EIA (bioMérieux). Second tier assays included the *Borrelia* B31 IgM and IgG ViraStripe[®] assays (Viramed Biotech AG) and IgM and IgG immunoblots (MarDx Diagnostics). Tests were performed according to the manufacturer's instructions.

Culture: An aliquot of patient's blood (50 ul) was placed into 4.5 ml of modified Barbour-Stoenner-Kelly medium and incubated under microaerophilic conditions at 34° C. Inoculated cultures were blind passaged after six to seven days by transferring 50 ul of the original culture to 4.5 ml of fresh medium.

Tick Collection and Processing: *Ixodes scapularis* ticks were collected at approximate sites of possible patient exposure in Barron County, Wisconsin, during September and October 2013 and June-July 2014. Ticks were collected by dragging a 1 m² fabric cloth across vegetation in mixed hardwood forest and along trails and adjacent grassy fields. Ticks were identified to life stage and species according to published keys (Keirans and Litwak 1989). Ticks collected during 2013 were minced and digested in proteinase K, followed by DNA extraction using the MagNA Pure 2.0 (Roche) and *oppA1* PCR. Ticks collected during 2014 were first submerged in hydrogen peroxide followed by 70% ethanol.