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SUMMARY

Genetic studies have revealed significant overlaps of risk genes among psychiatric disorders. 

However, it is not clear how different mutations of the same gene contribute to different disorders. 

We characterized two lines of mutant mice with Shank3 mutations linked to ASD and 
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schizophrenia. We found both shared and distinct synaptic and behavioral phenotypes. Mice with 

the ASD-linked InsG3680 mutation manifest striatal synaptic transmission defects before weaning 

age and impaired juvenile social interaction, coinciding with the early onset of ASD symptoms. 

On the other hand, adult mice carrying the schizophrenia-linked R1117X mutation show profound 

synaptic defects in prefrontal cortex and social dominance behavior. Furthermore, we found 

differential Shank3 mRNA stability and SHANK1/2 upregulation in these two lines. These data 

demonstrate that different alleles of the same gene may have distinct phenotypes at molecular, 

synaptic, and circuit levels in mice, which may inform exploration of these relationships in human 

patients.

INTRODUCTION

Although schizophrenia and autism are two different disorders (DSM-5), it has long been 

proposed that they share some common pathologies and symptoms (de Lacy and King, 

2013). Currently, the etiologies of schizophrenia and autism are largely unknown, but recent 

human studies highlight the contribution of genetic risk factors to both disorders 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; De Rubeis 

et al., 2014). In particular, mutations in a group of genes linked to synaptic development, 

function, and plasticity were frequently identified in patients diagnosed with either 

schizophrenia or autism (Kenny et al., 2014), suggesting that genetic mutations leading to 

dysregulation of synaptic transmission play critical roles in the pathophysiology of both 

disorders (De Rubeis et al., 2014; Fromer et al., 2014). Interestingly, recent genetic studies 

further revealed significant overlaps of risk genes across major psychiatric disorders 

including schizophrenia, bipolar disorder, major depressive disorder, and autism (Lee et al., 

2013; Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013). Furthermore, 

large-scale exome sequencing of autism spectrum disorder (ASD) and schizophrenia patient 

DNA samples has identified many of the same genes in both disorders, suggesting that 

different mutations in the same gene can cause/contribute to different disorders (Guilmatre 

et al., 2014; McCarthy et al., 2014).

One such example is the SHANK3 gene (Boeckers et al., 1999; Naisbitt et al., 1999). 

SHANK family members share five main domain regions: N-terminal ankyrin repeats, SH3 

domain, PDZ domain, proline-rich region, and a C-terminal SAM domain. Through these 

functional domains, SHANK interacts with many postsynaptic density (PSD) proteins. Most 

notably, SHANK binds to SAPAP, which in turn binds to PSD95 to form the PSD95/

SAPAP/SHANK postsynaptic complex (Kim and Sheng, 2004). Together, these three 

groups of multi-domain proteins are proposed to form a key scaffold, orchestrating the 

assembly of the macromolecular postsynaptic signaling complex at glutamatergic synapses. 

This complex has been shown to play an important role in targeting, anchoring, and 

dynamically regulating synaptic localization of neurotransmitter receptors and signaling 

molecules (McAllister, 2007). SHANK is also connected to the mGluR pathway through its 

binding to Homer (Tu et al., 1999). In addition, given its link to actin-binding proteins, 

SHANK has been shown to regulate spine development (Roussignol et al., 2005; Sala et al., 

2001).
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Deletion of SHANK3 has been shown to be the cause of core neurodevelopmental and 

neurobehavioral deficits in Phelan-McDermid syndrome (PMS), an autism spectrum 

disorder with symptoms that include intellectual disability, autistic behaviors, hypotonia, 

and impaired development of speech and language (Wilson et al., 2003). Subsequent genetic 

screens also identified a variety of mutations in the SHANK3 gene in ASD patients not 

diagnosed with PMS including a guanine nucleotide insertion in exon 21 of SHANK3 gene 

(position 3680) from two brothers diagnosed with ASD accompanied by severe mental 

retardation (Durand et al., 2007; Gauthier et al., 2009; Moessner et al., 2007). These data 

implicate SHANK3 gene disruption/mutation as a monogenic cause of ASD. In support of 

these genetic findings, studies of Shank3 mutant mice from our laboratory and others have 

revealed various degrees of synaptic dysfunction and autistic-like behaviors (Bozdagi et al., 

2010; Kouser et al., 2013; Peça et al., 2011; Wang et al., 2011b). In addition, duplication of 

the SHANK3 gene was found in patients diagnosed with bipolar disorders and mice with 

Shank3 overexpression exhibit synaptic dysfunction and manic-like phenotypes (Han et al., 

2013).

Interestingly, a non-sense mutation of SHANK3 changing an arginine to stop codon 

(R1117X) was identified from three brothers diagnosed with schizophrenia/schizoaffective 

disorder between ages 16 and 21 without showing obvious autistic features during their 

childhood (Gauthier et al., 2010). The three brothers also had mild-to-moderate mental 

retardation, which is often seen, and generally more severe, in ASD patients with SHANK3 

mutations. Understanding the mechanisms by which different mutations in the same gene 

lead to different disorders will likely shed light on both shared and unique neural 

mechanisms of these disorders. We therefore created two mutant mouse lines. The first line 

harbors the ASD patient-linked single guanine nucleotide (G) insertion at cDNA position 

3680 and leads to a frameshift and downstream stop codon (InsG3680 mutation). The 

second line contains the schizophrenia patient-linked point mutation and changes arginine 

1117 to a stop codon (R1117X mutation). We performed systematic comparisons between 

the two mutant lines at molecular, cellular, synaptic, and behavioral levels and found both 

distinct and shared defects in these two mutant models. In particular, we found that mutant 

mice with the ASD-linked InsG3680 mutation, but not with the schizophrenia-linked 

R1117X mutation, manifest defective synaptic transmission in the striatum before weaning 

age, as well as impaired juvenile social play behavior, coinciding with the early onset of 

ASD symptoms in human patients. On the other hand, adult mice with the R1117X 

mutation, but not with the InsG3680 mutation, show synaptic defects in prefrontal cortex, 

consistent with clinical findings implicating prefrontal cortex defects in schizophrenia 

patients. Biochemical studies revealed both common and differential defects in postsynaptic 

signaling complexes and differential compensatory mechanisms in these two mutant lines. 

Behaviorally, both lines of mutant mice exhibit anxiety-like behavior and social interaction 

deficits. However, InsG3680 mutant mice show stronger repetitive/compulsive grooming 

behavior, whereas R1117X mutant mice show stronger allogrooming and social dominance-

like behavior. Together, our study potentially provides a mechanistic explanation on how 

distinct mutations of the Shank3 gene may lead to distinct molecular, synaptic, and circuit 

defects and relevant behavior abnormalities.
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RESULTS

Distinct Effects of InsG3680 and R1117X Mutations on SHANK3 Protein and mRNA

Shank3 is a very complex gene at the transcript level because of multiple intragenic 

promotors and alternative splicing (Wang et al., 2011b; Wang et al., 2014b). Both InsG3680 

and R1117X mutations are in exon 21, which is common to most if not all isoforms, and the 

two mutations were separated by only 325 nucleotides (Figure 1A). For InsG3680 mutation, 

we placed the G insertion at position 3680 in Shank3, which causes a frameshift and a stop 

codon immediately after the G insertion (Figures 1A and 1B). For the R1117X mutation, we 

changed arginine (R) codon “CGG” to stop codon “TGA” to introduce the “R” to “X” 

mutation at amino acid position 1117 as described in the finding from schizophrenia patients 

(Figures 1A and 1B). We generated a C57 B6/S129 Sv mixed background mice population 

for all experiments performed in this study unless otherwise specified. Both homozygous 

InsG3680 and R1117X Shank3 mutant mice are viable and fertile.

The predicted sizes of the resulting truncated proteins are 135 kDa for InsG3680 mutation 

and 122 kDa for R1117X mutation, respectively. To examine whether such truncated 

SHANK3 proteins exist in the brain, we prepared postsynaptic density (PSD) fractions from 

striatal tissue and probed with antibodies recognizing epitopes located at either the N 

terminus (located upstream of both mutations) or C terminus of the SHANK3 protein 

(located downstream of both mutations; Table S1). When probed with the C terminus 

antibody, no signals above 75 kDa were detected in striatal PSD preparations from either 

homozygous InsG3680 mutant mice (InsG3680+/+) or R1117X mutant mice (R1117X+/+) 

(Figures 1C and 1D), consistent with the fact that the C terminus antibody recognizes 

epitopes that are beyond the premature stop codons caused by the InsG3680 and R1117X 

mutations. In contrast, when probed with an antibody raised against the N terminus of 

SHANK3 (Neuromab 367/62), we detected truncated SHANK3 bands in striatal PSD 

preparations from the R1117X mutant mice with the major band matching the predicted 122 

kDa expressed in HEK293 cells (Figure 1D). However, no clear signals were detected in 

striatal PSD preparations from InsG3680 mutant mice (Figure 1C). Similar results were 

obtained in PSD preparations from the cortex of R1117X and InsG3680 mutant mice using 

N terminus and C terminus antibodies. Together, our results reveal that R1117X and 

InsG3680 mutations have distinct effects on SHANK3 protein expression.

Since non-sense mutations could lead to reduced mRNA levels through non-sense-mediated 

decay (NMD) of abnormal mRNAs (Frischmeyer and Dietz, 1999), we examined Shank3 

mRNA levels in the striatum of InsG3680 and R1117X mutant mice by quantitative real-

time PCR. Due to the extensive alternative splicing of multiple coding exons in the Shank3 

gene (Wang et al., 2011b), we designed four pairs of primers probing different coding 

regions to minimize the potential detection bias caused by alternative splicing. We 

consistently observed dramatically reduced levels of Shank3 mRNA from striatal tissue of 

InsG3680+/+ mice with all four pairs of probes (Figures 1E–1H). Interestingly, striatal 

tissues from R1117X+/+ mice showed significantly higher levels of Shank3 mRNA than 

from InsG3680+/+ mice (Figures 1E–1H). These results suggest that Shank3 mRNAs with 

the R1117X mutation are more stable than mRNAs with the InsG3680 mutation, consistent 
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with our result that truncated SHANK3 proteins are present in R1117X+/+ mice. Together, 

our data suggest that the ASD-linked InsG3680 mutation results in an almost complete loss 

of SHANK3 protein, which is consistent with the full deletion of the SHANK3 gene 

identified in most Phelan-McDermid Syndrome patients (Bonaglia et al., 2011; Wilson et 

al., 2003). In contrast, the schizophrenia-linked R1117X mutation results in the generation 

of truncated SHANK3 protein, which could potentially either be partially functional or act in 

a dominant-negative form.

InsG3680 Mutants Exhibit Early Striatal Synaptic Transmission Defects and Impaired 
Social Interaction

Since ASD patients with SHANK3 mutations are usually diagnosed before the age of 3, 

whereas the schizophrenia patients carrying the R1117X mutation were diagnosed between 

ages 16 and 21, we wondered whether these two mutated mice exhibit any differential 

defects at early developmental stages. Since Shank3 is the only Shank family gene highly 

expressed in the striatum, we first examined the strength of evoked population spike 

responses in the striatum by performing field recordings in dorsolateral striatum at postnatal 

day 14 (P14). We found that InsG3680G+/+ mice have reduced field population spikes at 

postnatal day 14 (Figures 2A and 2B). In contrast, no difference was found between 

R1117X+/+ mice and their wild-type littermate controls (Figures 2D and 2E). Presynaptic 

function seems unaffected, as indicated by the relationship of stimulation intensity to 

amplitude of negative peak 1 (Figures 2C and 2F). We further measured other synaptic 

parameters including evoked AMPA to NMDA current ratio and miniature EPSCs by 

whole-cell patch-clamping recordings of dorsolateral striatal medium spiny neurons 

(MSNs). Through pharmacologically isolating evoked AMPA and NMDA current as 

described previously (Saal et al., 2003), we detected no change of AMPA to NMDA current 

ratio in both mutants as compared to their wild-type (Figure S1). No change of miniature 

EPSC (mEPSC) frequency was detected from both mutants as compared to wild-type 

controls (Figures 2G–2J). Interestingly, we observed significant increase of mEPSC 

amplitude in InsG3680+/+ mutants (Figures 2G and 2I), which may suggest a compensatory 

mechanism of MSNs in the presence of evoked synaptic transmission defects.

We next examined how the two mutations may affect the expression of synaptic proteins in 

the striatum at P14. We found significantly reduced Homer protein in both R1117X+/+ and 

InsG3680+/+ mice (Figure S2). Interestingly, we found that in the striatum of P14 

InsG3680+/+ mice, GluR1 is significantly upregulated, consistent with the increased AMPA-

mediated mEPSC amplitude observed. Several other synaptic proteins including SynGAP, 

Shank2, and NMDA receptor subunits also show a trend of upregulation (Figure S2). 

Together, our biochemistry data and electrophysiological measurements from evoked and 

basal synaptic transmission suggest a complex scenario in young InsG3680+/+ mice in which 

striatal-evoked population spike responses are reduced but basal AMPA receptor-mediated 

mEPSC amplitude and GluR1 are increased. This may suggest that at this developmental 

stage, MSNs are trying to compensate for the defective evoked synaptic transmission by 

upregulating AMPR receptors in remaining functional synapses.
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Although no basic synaptic transmission defects were detected in the striatum of P14 

R1117X+/+ mice, we found that PSD93, SynGAP, and NMDA receptor subunits are reduced 

in a striatal synaptosomal plasma membrane (SPM) preparation from these mice (Figure 

S2). Furthermore, unlike in the P14 InsG3680+/+ mice, we did not see a trend of 

upregulation of any of the synaptic proteins tested. Together, these data suggest that the 

truncated R1117X Shank3 protein might be partially functional and its presence is sufficient 

to maintain basic normal synaptic transmission. To test this hypothesis, we evaluated the 

ability of the R1117X Shank3 mutant to rescue previously characterized cortico-striatal 

synaptic dysfunction in our Shank3B knockout mice (Peça et al., 2011) by using a cortico-

striatal co-culture system. GFP plasmid alone or GFP plasmid together with R1117X 

Shank3 mutant plasmid were introduced into primary MSNs derived from Shank3B 

knockout mice through Nucleofection before plating. Transfected MSNs were then co-plated 

with cortical neurons. Whole-cell patch-clamp recordings of transfected neurons showed 

that expression of R1117X mutants significantly increased the frequency of mEPSCs in 

Shank3 knockout MSNs when compared to GFP control neurons (Figure S3). These in vitro 

data support the hypothesis that R1117X Shank3 mutant is partially functional in developing 

MSNs.

To evaluate the behavioral consequence caused by R1117X and InsG3680 Shank3 mutations 

at an early developmental stage, we first measured the maternal separation-induced 

ultrasonic vocalization behavior in pups between postnatal days 2 and 12. We found no 

significant differences in total number, total duration, mean duration, and peak amplitude of 

calls among genotypes. We next examined juvenile social play behavior at P23. We found 

significantly reduced numbers of all interactive events between mouse pairs carrying 

InsG3680+/+ mutation as compared to their wild-type littermate controls (Figure 2K). By 

categorizing the reciprocal play behavior into nose-to-nose, anogenital sniffing, and 

following behavior, we found both the nose-to-anogenital sniffing and following behavior 

are significantly reduced in InsG3680+/+ mice (Figure 2L). We found a similar trend in 

R1117X mice but it did not reach statistical significance (Figures 2M and 2N). Together, 

these data indicate an early-onset social interaction deficit in InsG3680+/+ Shank3 mutant 

mice.

Reduced Striatal Synaptic Transmission in Both Adult Mutant Lines

Although Shank3 is expressed in many brain regions, it is the only Shank family member 

enriched in the striatum. Our previous studies of young adult homozygous Shank3B 

knockout mice revealed significant synaptic defects in MSNs of the striatum including 

reduced pop spike responses by field recordings and reduced frequency and amplitude of 

miniature excitatory postsynaptic current (mEPSC) by whole-cell recordings (Peça et al., 

2011). Here we compared the effects of InsG3680 and R1117X mutations on striatal 

synaptic function using electrophysiological recording on acutely isolated brain slices. We 

found both InsG3680 and R1117X homozygous but not heterozygous mice showed reduced 

pop spike responses (Figures 3A, 3B, 3D, and 3E). No differences of presynaptic function 

were observed among all genotypes as indicated by similar NP1 response among genotypes 

(Figures 3C and 3F).
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We further measured the AMPA receptor-mediated mEPSCs by performing whole-cell 

patch-clamping recordings on dorsolateral striatal MSNs. We found that MSNs of both 

InsG3680 homozygous and heterozygous mice showed significant reduction of mEPSC 

frequency (Figures 3G and 3H). This reduction of mEPSC frequency was also observed in 

R1117X homozygous mice (Figures 3J and 3K). There is also a small but statistically 

significant reduction of mEPSC amplitude in MSNs from InsG3680+/+ and R1117X+/+ 

homozygous as well as R1117X+/− mice (Figures 3I and 3L). In addition, we found 

significantly reduced NMDA receptor-mediated currents in both R1117X+/+ and 

InsG3680+/+ as compared to their wild-type controls (Figure 4). Together, these results 

suggest that both InsG3680 and R1117X mutations cause significant synaptic dysfunction in 

the adult striatum.

Distinct Alteration of Synaptic Transmission in Prefrontal Cortex of R1117X Mutant Mice

Although pathological mechanisms of schizophrenia are still not known, numerous patient 

studies have implicated the dysfunction of prefrontal cortex (PFC) as an important 

pathogenic source in patients (Anderson et al., 1999). We found a significant reduction of 

mEPSC frequency in pyramidal neurons of mPFC in both R1117X+/− and R1117X+/+ 

mutant mice (Figures 5A and 5B). In addition, we observed a significant reduction of 

mEPSC amplitude in R1117X+/+ mice (Figure 5C). In contrast, no significant differences of 

either frequency or amplitude of mEPSC were found in InsG3680+/− or InsG3680+/+ mutant 

mice when compared to WT controls (Figures 5D–5F), although there is a trend of reduction 

in mEPSC frequency in InsG3680+/+ mutant mice. These results indicate that the R1117X 

mutation, but not the InsG3680 mutation, causes a profound deficit of synaptic transmission 

in mPFC.

One of the pathological findings in postmortem brains of schizophrenia patients is the 

reduction of spine density of layer 3 pyramidal neurons in the prefrontal cortex (Glantz and 

Lewis, 2000). To examine whether a similar defect exists in the two lines of Shank3 mutant 

mice, we used Golgi staining to measure the spine density of layer 2/3 pyramidal neurons in 

the frontal association area. We found a significant reduction of spine density in both 

R1117X heterozygous and homozygous mutant mice (Figures 5G and 5I). We also found a 

significant reduction of spine density in InsG3680 homozygous but not heterozygous mutant 

mice (Figures 5H and 5J).

All three SHANK family members are highly homologous and expressed in the cortex 

(Böckers et al., 2004; Lim et al., 1999; Peça et al., 2011). It has been reported that SHANK3 

was upregulated in Shank2 knockout mice (Schmeisser et al., 2012). Thus, it is possible that 

SHANK1-2 may be upregulated in Shank3 mutants to compensate for the loss of SHANK3. 

To explore this possibility, we quantified the expression level of Shank1 and Shank2 mRNA 

in the cortex of InsG3680+/+ and R1117X+/+ mutant mice. We found both Shank1 and 

Shank2 mRNAs were significantly upregulated in InsG3680+/+ but not R1117X+/+ mutant 

mice (Figures 5K and 5L), suggesting that the two mutations have differential effects on 

Shank1 and Shank2 mRNA upregulation. Furthermore, we observed significantly 

upregulated SHANK2 protein and a trend of increased SHANK1 protein in the cortex of 

InsG3680+/+ but not R1117X+/+ mutant mice (Figures 5M and 5N). However, we did not 
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observe upregulation of either mRNA or protein of Shank1 or Shank2 in the striatum of 

either mutant line. Together, these results suggest both mutation-specific and circuit-specific 

upregulation of other Shank family members, and the upregulation of SHANK1 and 

SHANK2 mRNAs and proteins in the cortex of InsG3680+/+ mutant mice may partially 

compensate for the loss of SHANK3 protein and thus alleviate synaptic defects in mPFC of 

InsG3680+/+ mutant mice.

Given the fact that patients carrying the schizophrenia-associated R1117X Shank3 mutation 

were diagnosed at their late adolescence stage (Gauthier et al., 2010), we examined whether 

there are synaptic defects in the mPFC of young mice (P14) from either mutant line. Similar 

to our findings in the mEPSC of adult InsG3680+/+ mice, we did not detect significant 

differences of either mEPSC frequency or amplitude in the mPFC of P14 InsG3680+/+ mice 

(Figures S4D–S4F). Interestingly, we detected a significant increase in mEPSC frequency in 

R1117X+/+ mice at P14 (Figures S4A–S4C), suggesting there is already some degree of 

aberrant synaptic connection/function in the mPFC region at this age, albeit different from 

adult defects.

We next examined synaptic protein expression in cortical SPM preparations at P14. As 

shown in Figure S4, we did not detect significant changes in synaptic protein levels except a 

small reduction of Homer protein in R1117X+/+ mice (Figure S4H). Interestingly, we 

observed a significant upregulation of Shank2 protein in InsG3680+/+ mice (Figure S4H), 

which we also observed in adult cortical SPM preparations of InsG3680+/+ mice (Figures 

5M and 5N). Together, these data indicate much minor molecular defects at cortical 

synapses at P14 in both lines.

Alteration of PSD Composition in Adult R1117X and InsG3680 Mutant Mice

The PSD95-SAPAP-SHANK scaffolding complex has been proposed to play important 

roles in the trafficking, assembly, and anchoring of signaling proteins to the PSD as well as 

in regulating the dynamic plasticity of the PSD (Sheng and Kim, 2011). Our previous 

studies showed that several scaffolding proteins and glutamate receptor subunits were 

reduced in the striatal PSD of Shank3B knockout mice (Peça et al., 2011). Here we 

examined levels of several scaffolding and signaling proteins as well as glutamate receptor 

subunits in the SPM of InsG3680+/+ and R1117X+/+ mutant mice. In an SPM preparation 

from striatal tissue, we found that Homer1b/c is dramatically reduced in both InsG3680+/+ 

and R1117X+/+ mutant mice (~14% of WT; Figures 6A and 6B). This is consistent with the 

fact that the Homer binding domain of Shank3 is located downstream of the premature stop 

codons caused by InsG3680 and R1117X mutation (Tu et al., 1999). Interestingly, we found 

that in InsG3680 and R1117X heterozygous mice, which has about 50% of full-length 

Shank3 protein, Homer protein is also reduced to 50% of the wild-type level (Figure S5), 

indicating the dependence of Homer synaptic localization on Shank3 and their one-to-one 

stoichiometry.

In general, we observed a very similar pattern of reduced synaptic protein in the striatal 

SPM of the two mutant lines. Syn-GAP1, PSD95, SAPAP3, NR1, NR2A, NR2B, and 

GluR2 are all either significantly reduced or have the similar trend of reduction in both 

mutant lines (Figures 6A–6C). However, a small reduction of mGluR5 protein was only 
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observed in the InsG3680+/+ line (Figures 6A and 6C). This correlates with the trend for 

impaired LTD maintenance 15~25 min after DHPG application compared to wild-type 

(Figure S6D) and mildly impaired PPR increase after DHPG-LTD in InsG3680+/+ (Figures 

S6G and S6H) but not R1117X+/+ mice (Figures S6C, S6E, and S6F). These data are 

consistent with our electrophysiological results showing severe striatal synaptic defects in 

adults of both mutant lines.

In the cortex, we found that Homer1b/c, PSD 95, and PSD 93 were significantly reduced in 

both InsG3680+/+ and R1117X+/+ mutant mice as compared to WT controls (Figures 6D and 

6E). Interestingly, the level of Homer1b/c reduction is slightly more significant in 

R1117X+/+ mutant mice than in InsG3680+/+ mice (Figure 6E). In addition, we observed 

significant reduction of NR1 and its close interacting partner SynGAP1 only in the 

R1117X+/+ mutant mice (Figures 6D–6F), in line with previous findings using postmortem 

cortex tissue from schizophrenia patients (Funk et al., 2009; Weickert et al., 2013). 

Together, these data indicate that although cortical synaptic transmission defects are very 

different in the adults of the two mutant lines, differences in molecular defects are not as 

dramatic, raising the possibility that developmental defects in connectivity may contribute 

significantly to observed synaptic transmission and behavioral defects.

InsG3680 and R1117X Mutant Mice Show Both Common and Differential Behavioral 
Phenotypes

As described above, our molecular and electrophysiological studies of InsG3680 and 

R1117X mutant mice showed that they have both shared and distinct synaptic defects. We 

next tested whether these synaptic defects are accompanied by behavioral changes. We 

found that both R1117X+/+ and InsG3680+/+ mice show significantly reduced explorative 

activity in an open field arena (total distance) when compared to wild-type littermates 

(Figures 7A and 7B). In addition, InsG3680+/− mice also showed significantly reduced 

activity (Figure 7A). Both lines of mutant mice show a very similar habituation time course 

compared to their wild-type littermates (Figures S7A and S7B), suggesting that the reduced 

explorative activity is caused by reduced locomotion rather than faster habituation of mutant 

mice. These reduced locomotion and hypoactive features in mutant mice were further 

supported by rotarod test findings showing that both R1117X+/+ and InsG3680+/+ Shank3 

mice have impaired motor learning and coordination capability (Figures S8A and S8B).

In addition to the hypoactive phenotype, both R1117X and InsG3680 Shank3 mutant mice 

spent much less time exploring the center in an open area test compared to wild-type 

littermates (Figures S7C and S7D), suggesting an anxiety-like behavior. In the elevated zero 

maze test, we found that both R1117X+/+ and InsG3680+/+ mice spent much less time in the 

open arms as compared to their wild-type littermates (Figures 7C and 7D). In addition, 

heterozygous mutants from both lines also spent less time in the open arms as compared to 

their wild-type littermates (Figures 7C and 7D). These results indicate that both R1117X and 

InsG3680G mutant mice exhibit increased levels of anxiety.

Pre-pulse inhibition (PPI) is commonly used to test sensorymotor gating function in animal 

models of schizophrenia, although defects in PPI are not specific to schizophrenia and are 

present in many other psychiatric disorders, both in patients and animal models (Swerdlow 
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et al., 1993; Joober et al., 2002). We found that both R1117X+/+ and InsG3680+/+ mice 

show profound defects in acoustic startle response (Figures S8C and S8D). Thus, although 

we found significantly reduced PPI in InsG3680+/+ and slightly impaired PPI in R1117X+/+ 

mice (Figures S8E and S8F), the interpretation of these data is complicated by the 

significant defects in startle response, because any PPI results are primarily confounded by a 

decrease in absolute startle to a 120 dB auditory stimulus. In addition, we found no 

difference in performance in the T maze spontaneous alternation test between wild-type and 

either line of mutant mice, suggesting normal basic working memory in both lines of mutant 

mice.

Since impaired social interaction is one of the core features of ASD patients and social 

withdraw is a characteristic negative symptom in schizophrenia patients, we tested social 

interactions of R1117X and InsG3680 mutant mice with a slightly modified standard three 

chamber social interaction paradigm (Chao et al., 2010; Silverman et al., 2010). As 

expected, wild-type mice showed significant preference for strange mouse (S1) to a novel 

object (O) (Figures 7E and 7F). However, both InsG3680 and R1117X homozygous mutant 

mice showed no significant preference for other mice compared to the novel object side 

(Figures 7E and 7F). Interesting, heterozygous R1117X mutant mice, but not heterozygous 

InG3680 mutant mice, also displayed social interaction deficits (Figure 7F). Similarly, in the 

social novelty test, both homozygous and heterozygous R1117X mutant mice exhibited 

deficits, while only homozygous InsG3680 mutant mice showed the defect (Figures 7G and 

7H). Together, these results demonstrated that both the InsG3680 mutation and R1117X 

mutation lead to social interaction deficits, similar to Shank3 mutant mice with deletion of 

either the ankyrin repeats or PDZ domain (Peça et al., 2011; Wang et al., 2011b).

Repetitive behavior/restricted interest is another key feature of ASD. Several mouse models 

of psychiatric disorders including ASD, OCD, and Tourette syndrome show repetitive 

grooming phenotypes and some of them develop skin lesions due to overgrooming 

(Karayannis et al., 2014; Peça et al., 2011; Rothwell et al., 2014; Welch et al., 2007). These 

repetitive/compulsive-like behaviors have been strongly linked to cortico-striatal-thalamo-

cortical circuitry dysfunction (Ahmari et al., 2013; Burguière et al., 2013; Peça et al., 2011; 

Rothwell et al., 2014; Shmelkov et al., 2010; Welch et al., 2007). In our breeding colony, we 

found that 28.1% (18/64) of InsG3680+/+ mice develop lesions between 4 and 6 months of 

age (Figure 8A), a similar rate to our previous finding in Shank3B knockout mice (Peça et 

al., 2011). In contrast, only 8.7% (6/69) of R1117X+/+ mice developed skin lesions at the 

same age. Statistical analysis of lesion penetrance using chi-square test revealed significant 

difference between R1117X+/+ and InsG3680+/+ mice (p = 0.0036). No skin lesions were 

found in R1117X+/−, InsG3680+/− and wild-type groups. We next quantified the percentage 

of time R1117X and InsG3680 mice spent on grooming during a 2-hr session. We found that 

InsG3680+/+ mice spend twice as much time on grooming when compared to their WT 

littermates (Figure 8B), and a similar degree of increase in grooming time was also observed 

during the social interaction test. In contrast, R1117X+/+ mice did not show a statistically 

significant increase in grooming time compared to their WT littermates (Figure 8C), 

although a trend of increase was observed. These results suggest that only InsG3680+/+ mice 

show robust repetitive/compulsive grooming behavior.
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In our R1117X+/− × WT mating cages, we frequently observed partial or complete facial 

hair loss of WT mice without any lesions, suggesting allogrooming/barbering by R1117X+/− 

mice (Figure 8D). We confirmed that loss of whisker and facial hair was caused by 

allogrooming by a cage mate instead of selfgrooming by separating the mating pairs with the 

phenotype. We observed nearly full regrowth of facial hairs after weeks of single housing. 

Furthermore, pairing the recovered animals with their original cagemates induced robust 

loss of whisker and facial hair again within 2 weeks (data not shown). This allogrooming/

barbering phenotype also occurred in R1117X+/− × R1117X+/− mating cages, in which one 

of the R1117X+/− mice and/or offspring would lose their facial hair. We observed 

allogrooming/barbering in 48% (14 of 29) mating cages with R1117X+/− mice. In contrast, 

we only observed allogrooming/barbering phenotype in 14% (5 of 37) mating cages with 

InsG3680+/− mice. Analysis of allogrooming phenotype penetrance using chi-square test 

revealed a significant difference between R1117X+/− and InsG3680+/− mice (p = 0.002). 

These results suggest that R1117X and InsG3680 mutations have differential effects on the 

expression of allogrooming/barbering phenotype.

Previous studies in rodents have implicated the impairment of PFC function in 

allogrooming/social dominance (Jiang-Xie et al., 2014; Wang et al., 2011a). Our 

electrophysiological findings from mPFC indicated that both R1117X+/− and R1117X+/+ 

have profound deficits of synaptic transmission (Figures 5A–5C). To further evaluate the 

social dominance phenotype, we performed standard tube test (Figure 8E) between wild-

type versus heterozygous and wild-type versus homozygous mice in the two mutant lines. 

When the two stranger mice meet in the middle of the tube, the dominant mouse will 

advance and drive the other mouse out of the tube (Wang et al., 2011a). We found that both 

R1117X+/+ and R1117X+/− mice show much higher probability of winning the matches 

when tested with their wild-type opponents (Figure 8F). We also observed a significantly 

increased winning percentage in InsG3680+/+ but not in InsG3680+/− mice against their 

wild-type opponents (Figure 8G). These results are consistent with our electrophysiological 

and morphological findings in the prefrontal cortex showing synaptic deficits in both 

heterozygous and homozygous mice with R1117X mutation but only in homozygous mice 

with InsG3680 mutation.

DISCUSSION

Although schizophrenia and autism are two differential disorders based on 

phenomenological diagnosis (DSM-5), it has long been recognized that they share some 

common features and comorbidity (de Lacy and King, 2013; King and Lord, 2011). This is 

particularly true between child onset schizophrenia and autism (Meyer et al., 2011; Rapoport 

et al., 2009). For example, in a recent study, out of 46 schizophrenia patients with normal 

intelligence, about 50% met the diagnostic criteria of ASD (Unenge Hallerbäck et al., 2012). 

Recent human genetic studies have provided strong biological support for these clinical 

findings. GWAS, CNV, and exome sequencing have all identified many of the same genes 

in both disorders (Lee et al., 2013; Cross-Disorder Group of the Psychiatric Genomics 

Consortium, 2013; Krystal and State, 2014). Despite strong clinical and genetic evidence, 

however, it is not clear how different mutations of the same gene may contribute to different 

disorders. In this study, we generated new mouse models that harbor the highly penetrant 
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SHANK3 mutations found in ASD and schizophrenia patients. Our study revealed both 

distinct and shared defects in the two lines of mutant mice at molecular, synaptic, circuit, 

and behavioral levels (summarized in Table S2). Our results may provide, for the first time, 

some neurobiological insights on how different mutations in the SHANK3 gene may lead to 

mutation-specific defects and relevant behavior abnormalities.

Early Synaptic Transmission Defects in the Striatum of Mice with ASD-Associated 
Mutation

One of our interesting findings is that mice with the ASD-associated InsG3680 mutation 

exhibit earlier synaptic transmission defects when compared with mice with the 

schizophrenia-associated R1117X mutation. We found a reduction of population spike 

responses in P14 InsG3680+/+ mutant mice, indicating defects in evoked striatal synaptic 

transmission. The lack of obvious presynaptic defects suggests that there are fewer 

functional synapses in these mutant mice. Interestingly, we found a surprising increase of 

GluR1 protein and mEPSC amplitude in striatal MSNs from P14 InsG3680+/+ mutant mice. 

Along with the trend of upregulation of many other synaptic proteins (Shank2, SynGAP, 

NR1, and NR2) in the striatum of P14 InsG3680+/+ mutant mice, this may reflect a potential 

compensatory mechanism by the remaining functional synapses to counteract defects in 

evoked synaptic transmission.

A puzzling finding in P14 striatum of R1117X mutant mice is the reduction of PSD93, 

SynGAP, NR1, NR2A, and NR2B proteins but normal basic synaptic transmission including 

population spike responses, AMPA/NMDA ratio, mEPSC frequency, and amplitude. We do 

not have a clear answer regarding this discrepancy between the electrophysiological and 

biochemical findings. One possible explanation is that the remaining truncated R1117X 

Shank3 protein is partially functional in MSNs at this developmental stage, as suggested by 

our study in cultured neurons, and its presence is sufficient to maintain a basic level of 

synaptic transmission. However, it is also highly possible that striatal synaptic transmission 

in R1117X+/+ mutant mice at P14 is already mildly dysregulated and more extensive studies 

may reveal defects of other synaptic parameters.

Distinct Prefrontal Cortex Defects in R1117X Mutant Mice

Currently, the pathological mechanisms underlying schizophrenia are not well understood. 

However, clinical studies from human patients have implicated the dysfunction of prefrontal 

cortex (PFC), in particular dorsolateral prefrontal cortex (dlPFC), as an important cause of 

deficits in working memory, executive function, and social impairment (Anderson et al., 

1999; Euston et al., 2012). In addition, postmortem studies have revealed reduced numbers 

of dendritic spines in pyramidal neurons of dlPFC region from schizophrenia patients 

(Glantz and Lewis, 2000). Rodents do not have an anatomically distinct dlPFC (Uylings et 

al., 2003). However, electrophysiological and behavioral studies suggest that medial 

prefrontal cortex (mPFC) in rodents may perform some equivalent functions to primate 

dlPFC at a rudimentary level (Seamans et al., 2008), such as working memory, decision 

making, and social interaction (Adhikari et al., 2010; Amodio and Frith, 2006; Wang et al., 

2011a). Consistent with these findings, our study revealed profound synaptic transmission 

defects in mPFC of mice with the schizophrenia-associated R1117X mutation, but not with 
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the ASD-associated InsG3680 mutation, indicating that these two mutations affect distinct 

circuits.

Since all three members of the Shank family genes are expressed in the cortex (Böckers et 

al., 2004; Lim et al., 1999; Peça et al., 2011), it is possible that they may have functional 

redundancy to compensate for the loss of other members. Very interestingly, we found that 

upregulation of Shank1 and Shank2 happens only in the cortex of InsG3680 mutants but not 

in R1117X mutants. The upregulation of Shank1-2 in the cortex of InsG3680 mutants may 

compensate for the loss of SHANK3 and thus alleviate synaptic defects. In addition, the 

truncated SHANK3 protein resulting from the R1117X mutation may have a dominant-

negative effect, preventing SHANK1 and/or SHANK2, expressed at normal level, from 

assembling into the postsynaptic signaling complex. Such a dominant-negative effect would 

prevent compensation by Shank1 and Shank2 in R1117X mutants. Interestingly, Shank1 and 

Shank2 are normally not highly expressed in the striatum (Peça et al., 2011) and we did not 

observe upregulation of Shank1 and Shank2 in the striatum of either mutant line. Thus, 

upregulation and compensation by Shank1 and Shank2 is not only mutation specific, but also 

cell type/brain region specific, adding another layer of complexity to the study of 

neurobiological mechanisms underlying genetically overlapping psychiatric disorders.

Commonality and Differences in Behavioral Phenotypes

One of the most common phenotypes in mouse models with mutations of ASD risk genes is 

repetitive behavior, and previous studies have strongly linked repetitive/compulsive 

behaviors to defects in cortico-striatal-thalamo-cortical (CSTC) circuits (Burguière et al., 

2013; Peça et al., 2011; Rothwell et al., 2014; Shmelkov et al., 2010; Welch et al., 2007). 

Similar to our reported Shank3B knockout mice, the repetitive/compulsive grooming 

behaviors in InsG3680 mutant mice are very robust. R1117X mutant mice do not show 

significant repetitive grooming behavior, although both mutant lines show striatal molecular 

and synaptic defects. There are several possible explanations for this phenotypic difference. 

First of all, the striatum is only one part of the CSTC circuit, and differential defects in other 

parts of the brain, such as the cortex, may significantly affect the behavioral output. Second, 

recent studies have begun to reveal specific changes in subcircuits/microcircuits of the 

CSTC that may underlie repetitive behaviors, and the two mutations may differentially 

affect these sub-circuits/micro-circuits. Finally and probably most importantly, striatal 

synaptic transmission defects at early developmental stages in InsG3680 mutants may lead 

to long-lasting alterations in striatal connectivity. These connectivity defects may lead to 

InsG3680-specific circuit dysfunction and overgrooming even though synaptic transmission 

defects are similar between the two mutant lines in adults.

A behavioral phenotype predominantly found in R1117X mutants is the allogrooming and 

social dominance behavior. Although the exact mechanisms/circuits involved in dominance 

behaviors in mice are still not well understood, recent studies have provided evidence 

implicating mPFC in social dominance (Lin et al., 2011; Wang et al., 2014a). Our studies 

demonstrated significant synaptic transmission defects in the mPFC of R1117X, but not 

InsG3680 mutant mice. These correlative data may provide a partial explanation for the 

difference in social dominance behavior between these two mutant lines.
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Previous studies have demonstrated that two different mutations of the MECP2 gene in Rett 

Syndrome patients differentially affect the function of a key domain in MeCP2 and result in 

different severity of phenotypes in mice similar to the disease progression and symptoms 

observed in patients with these two mutations (Baker et al., 2013). Although it is difficult to 

directly correlate mouse behaviors with patient symptoms and diagnosis, our study at least 

provides neurobiological evidences and mechanisms that the two SHANK3 mutations 

associated with ASD and schizophrenia cause both common and differential defects at 

molecular, synaptic, and behavioral levels. More broadly, we demonstrated that different 

mutations of the same gene may elicit neurobiological changes at different developmental 

stages, brain regions, and cell types through a variety of potential mechanisms including 

differential mRNA stability, differential regulation of compensatory gene expression, and 

different degrees of signaling complex disruption. Thus, future detailed analysis of such 

mutations will help to gain a more precise understanding of synaptic development and 

function.

EXPERIMENTAL PROCEDURES

Animal Work Statement

All animal-related work was performed under the guidelines of Division of Comparative 

Medicine (DCM), with protocol (# 0513-044-16 of Feng laboratory and #1012-102-15 of 

Lewis laboratory) approved by Committee for Animal Care (CAC) of Massachusetts 

Institute of Technology and was consistent with the Guide for Care and Use of Laboratory 

Animals, National Research Council 1996 (institutional animal welfare assurance no. 

A-3125-01). Only aged-matched male mice were used for all behavioral experiments; all 

other tests included age-matched males and females in proportional contribution across 

groups.

Behavioral Studies

All behavioral studies were carried out and analyzed with experimenter blinded to genotype. 

For all assays, mice were habituated in the test facility for 1 hr prior to starting the task. 

Each cohort of mice was used for maximally three behavioral tests with at least 5 days’ 

break between tasks.

Electrophysiological Recordings

All electrophysiological measurements were performed and analyzed with experimenter 

blinded to genotype.

Data Analysis

All comparisons between groups were collected from littermate animals with experiments 

performed at the same time. All results were presented as mean ± SEM and were analyzed 

statistically using Student’s t test, one-way or two-way analysis of variance with proper post 

hoc test as specified in legend of each figure (GraphPad Prism, RRID: rid_000081, 

SCR_002798). *p < 0.05; **p < 0.01; ***p < 0.001.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Major psychiatric disorders share many risk genes

• Two mouse lines with ASD-linked and schizophrenia-linked mutations were 

studied

• Two mutant lines show both shared and distinct synaptic and behavioral 

phenotypes

• Both developmental and molecular differences were detected in the two mutant 

lines
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Figure 1. Genetically Engineered Mice with InsG3680 or R1117X Shank3 Mutation 
Differentially Express SHANK3 Protein and mRNA
(A) Schematic diagram for wild-type Shank3-, InsG3680-, and R1117X-targeted Shank3 

alleles. Gene structure of wild-type mouse Shank3 gene and magnified panels on the 

structure between exon 20 and exon 22 are shown below. Top: wild-type Shank3; middle: 

autism-associated InsG3680 Shank3 mutation with an insertion of “guanine” nucleotide at 

position 3680; bottom: schizophrenia-associated R1117X Shank3 mutation changing the 

“CGG” codon for arginine to a “TGA” stop codon.

(B) Representative sequencing chromatograms of wild-type and InsG3680 mutated alleles; 

wild-type and R1117X mutated alleles showing the point mutations.

(C) Representative western blots using striatal PSD fractions prepared from wild-type, 

Shank3B KO mice, InsG3680+/− mice, InsG3680+/+ mice; lysate from HEK239 cells 

expressing cDNA plasmid encoding the InsG3680 mutated Shank3. Note that neither the 

antibody against the N nor C terminus detected SHANK3 protein in InsG3680+/+ mice.
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(D) Representative western blots using striatal PSD fractions prepared from wild-type, 

Shank3B KO mice, R1117X+/− mice, R1117X+/+ mice; lysate from HEK239 cells 

expressing cDNA plasmid encoding the R1117X mutated Shank3. Note that SHANK3 

protein expression is almost abolished except for a prominent truncated isoform in the 

R1117X+/+ line that is detected with the antibody against the N terminus.

(E–H) The relative level of Shank3 mRNA in striatum is different between the two lines as 

quantified by primers amplifying exon 1 to 2, exon 6 to 8, 16 to 17, and partial exon 21 

before both Shank3 mutation sites. Data are normalized to Gapdh mRNA and presented as 

mean ± SEM. **p < 0.01, ***p < 0.001; one-way ANOVA with Bonferroni post hoc test, 

WT mice (n = 5), R1117X+/+ mice (n = 5) and InsG3680+/+ mice (n = 5).
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Figure 2. InsG3680+/+ but Not R1117X+/+ Mice Display Altered Striatal Synaptic Transmission 
at P14 and Reduced Social Interaction at P23
(A and D) Representative cortico-striatal pop spike traces recorded from P14 mice with 

indicated genotypes.

(B and C) Cortical-striatal input-output curve shows reduced pop spike responses in 

InsG3680+/+ mice compared to wild-type littermates. NP1 amplitude is similar between the 

genotypes, suggesting that presynaptic input is not different.

(E and F) Cortical-striatal input-output curve shows similar pop spike responses and NP1 

amplitude between R1117X+/+ mice and their wild-type littermates. In (B), (C), (E), and (F), 
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data are presented as mean ± SEM. *p < 0.05; two-way ANOVA repeated-measures with 

Bonferroni post hoc test. n = 12 slices from 4 pairs of littermates for each cohort.

(G and H) Typical AMPA receptor-mediated mEPSC traces recorded from P14 MSNs with 

indicated genotypes.

(I and J) Amplitude but not frequency of mEPSC is increased in InsG3680+/+ MSNs 

compared to wild-type. No change of amplitude or frequency of mEPSC in R1117X+/+ 

MSNs. In InsG3680 cohort, n = 29 neurons for wild-type; n = 29 neurons for InsG3680+/+ 

from 3 pairs of littermates; in R1117X cohort, n = 30 neurons for wild-type, n = 31 neurons 

for R1117X+/+ from 3 pairs of littermates. Data are presented as mean ± SEM; two-tailed t 

test.

(K and M) Total number of interaction events from mice pairs with indicated genotypes as 

normalized to wild-type control.

(L and N) Normalized number of categorized interaction events from mice pairs with 

indicated genotypes as normalized to wild-type control.

In (K), (L), (M), and (N), in R1117X cohort, n = 9 pairs of mice for wild-type; n = 9 pairs of 

mice for R1117X+/+; in InsG3680 cohort, n = 8 pairs of mice for wild-type; n = 10 pairs of 

mice for InsG3680+/+. Data are presented as mean ± SEM, *p < 0.05, **p < 0.01; two-tailed 

t test.
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Figure 3. Striatal Synaptic Transmission Is Reduced in Adult R1117X and InsG3680 Mutant 
Mice
(A and D) Representative cortical-striatal pop spike traces from mice with indicated 

genotypes.

(B and E) Reduced striatal pop spike amplitude in both InsG3680+/+ and R1117X+/+ mice.

(C and F) No difference of NP1 amplitude among genotypes.

In (B), (C), (E), and (F) data are presented as mean ± SEM. ***p < 0.001; two-way 

ANOVA repeated-measures with Bonferroni post hoc test. n = 12 slices per genotype from 4 

pairs of mice.

(G and J) Typical AMPA receptor-mediated mEPSC traces recorded from MSNs with 

indicated genotypes.
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(H and I) mEPSC frequency of MSNs is reduced in both homozygous and heterozygous 

InsG3680 mutant mice compared to wild-type littermates. mEPSC amplitude is also reduced 

in homozygous InsG3680 mutant mice. n = 26 neurons for WT; n = 24 neurons for 

InsG3680+/−; n = 21 neurons for InsG3680+/+ from three pairs of mice.

(K and L) mEPSC frequency of MSNs is reduced in homozygous R1117X mutant mice 

compared to wild-type littermates. mEPSC amplitude is reduced in both homozygous and 

heterozygous R1117X mutant mice. n = 23 neurons for WT; n = 24 neurons for R1117X+/−; 

n = 26 neurons for R1117X+/+ from three pairs of mice. In (H), (I), (K), and (L), data are 

presented as mean ± SEM. **p < 0.01, ***p < 0.001; one-way ANOVA with Bonferroni 

post hoc test.
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Figure 4. Reduced NMDA Receptors Mediated Synaptic Transmission in Both R1117X+/+and 
InsG3680+/+ Shank3 Mutant Mice
(A–C) Typical NMDA receptors mediated currents from striatal MSNs by stimulating 

corpus callosum and quantification. n = 16 neurons for wild-type; n = 18 neurons for 

R1117X+/+ from three pairs of littermates at 7 week’s age.

(D–F) Typical NMDA receptors mediated currents from striatal MSNs by stimulating 

corpus callosum and quantification. n = 14 neurons for wild-type; n = 12 neurons for 

InsG3680+/+ from three pairs of littermates at 8 week’s age. In both (C) and (F), data are 

presented as mean ± SEM. *p < 0.05; two-way ANOVA test.
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Figure 5. Profound Cortical Synaptic Defects Manifest in Mice Carrying the Schizophrenia-
Associated R1117X Mutation
(A–C) Typical AMPA receptor-mediated mEPSC recordings in the prefrontal cortex and 

statistical results for R1117X mice. n = 13 neurons for WT; n = 20 neurons for R1117X+/−; 

n = 18 neurons for R1117X+/+ from three pairs of mice. Note the highly significant 

reduction of mEPSC frequency in both heterozygous and homozygous mice and a modest 

reduction of amplitude in homozygotes.

(D–F) Typical AMPA receptor-mediated mEPSC recordings in the prefrontal cortex and 

statistical results for InsG3680 cohort. n = 18 neurons for WT; n = 16 neurons for 
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InsG3680+/−; n = 17 neurons for InsG3680+/+ from three pairs of mice. Both heterozygous 

and homozygous mice display comparable miniature events to wild-type mice.

In (B), (C), (E), and (F), data are presented as mean ± SEM. *p < 0.05, **p < 0.01; one-way 

ANOVA with Bonferroni post hoc test.

(G and H) Representative confocal images of secondary dendrites of pyramidal neurons 

from frontal association area of mice with indicated genotypes (scale bar, 10 μm).

(I and J) Quantification of spine number from neurons with indicated genotypes from three 

littermate pairs indicates reduced spine numbers in R1117X+/−, R1117X+/+, and 

InsG3680+/+ mice.

(K and L) mRNAs of Shank3 homologs Shank1 and Shank2 are upregulated in cortical 

tissue from InsG3680+/+ compared to wild-type mice. Data are normalized to Gapdh mRNA 

and presented as mean ± SEM. WT mice (n = 5), R1117X+/+ mice (n = 5), and InsG3680+/+ 

mice (n = 5). In all the panels, data were collected from 2-month-old mice. In (I), (J), (K), 

and (L), *p < 0.05, **p < 0.01, **p < 0.001; one-way ANOVA with Bonferroni post hoc 

test.

(M) Representative blots for proteins detected by specific antibodies in the cortical SPM 

fraction from adult wild-type, R1117X+/+, and InsG3680+/+ mice.

(N) Adult InsG3680+/+ but not R1117X+/+ mice show increased Shank2 expression in 

cortical tissue. Quantification of relative levels of proteins as normalized to tubulin from 

cortical SPM. Data are presented as mean ± SEM *p < 0.05; one sample t test. (n = 8 

samples per protein per genotype, each n being pooled tissue from two mice).
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Figure 6. InsG3680 and R1117X Mutant Mice Display Common and Differential Disruptions of 
Post-synaptic Signaling Complexes
(A) Representative blots for proteins detected by specific antibodies in the striatal SPM 

fraction from wild-type, InsG3680+/+, and R1117X+/+ mice.

(B and C) Quantification of relative levels of proteins as normalized to tubulin protein 

expression from striatal SPM. (n = 4–6 samples per protein per genotype, each n being 

pooled tissue from three mice).

(D) Representative blots for proteins detected by specific antibodies in the cortical SPM 

fraction from wild-type, InsG3680+/+, and R1117X+/+ mice.
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(E and F) Quantification of relative levels of proteins as normalized to tubulin protein 

expression from cortex SPM. (n = 4–11 samples per protein per genotype, each n being 

pooled tissue from two mice).

In (B), (C), (E), and (F), data are presented as mean ± SEM. *p < 0.05, **p < 0.01, **p < 

0.001; one sample t test.
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Figure 7. InsG3680 and R1117X Mutant Mice Display Anxiety Behavior and Social Interaction 
Deficits
(A and B) Total distance traveled in the open field test as normalized to wild-type 

littermates.

(C and D) Time spent in the open arms in the elevated zero maze test as normalized to wild-

type littermates.

In the InsG3680 cohort, n = 17 mice for wild-type; n = 19 mice for InsG3680+/−; n = 18 

mice for InsG3680+/+ group. In the R1117X cohort, n = 15 mice for wild-type, n = 15 mice 

for R1117X+/−; n = 15 mice for R1117X+/+.

(E and F) Time spent on close interaction with an object (O) versus stranger mice (S1) in the 

phase II social interaction test.
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(G and H) Time spent on close interaction with a familiar mouse (S1) versus stranger mouse 

(S2) in the phase III social interaction test.

In the InsG3680 cohort, n = 17 mice for wild-type; n = 19 mice for InsG3680+/−; n = 18 

mice for InsG3680+/+ group; in the R1117X cohort, n = 23 for wild-type, n = 25 for 

R1117X+/−; n = 24 for R1117X+/+ group.

In all the panels, data are presented as mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001; 

one-way ANOVA with Bonferroni post hoc test.
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Figure 8. InsG3680 Mice Show More Profound Repetitive Self-Grooming, whereas R1117X Mice 
Display Allogrooming and Dominance-like Behavior
(A) Representative pictures from an adult wild-type and an InsG3680+/+ mouse that 

developed a lesion in the head/neck area.

(B and C) Time spent on grooming during 2 hr videotaping of indicated genotypes as 

normalized to their wild-type littermates. In the InsG3680 cohort, n = 9 mice for wild-type; 

n = 9 mice for InsG3680+/−; n = 10 mice from InsG3680+/+ group. In the R1117X cohort, n 

= 9 mice for wild-type, n = 9 mice for R1117X+/−; n = 9 mice for R1117X+/+. Data are 

presented as mean ± SEM. *p < 0.05; Kruskal-Wallis test with Dunn’s post hoc comparison.

(D) Representative pictures of an R1117X+/− mouse with intact facial hair and a wild-type 

mouse shaved by its cage mate as an indication for allogrooming behavior.

(E) Diagram of tube test task between two unfamiliar mice with different genotypes.

(F and G) Percentage of wins in test pairs between indicated genotypes, 11/18 (61%) of 

R1117X+/− versus WT; 16/18 (89%) of R1117X+/+ versus WT; 6/14 (43%) of InsG3680+/− 

versus WT; 8/11 (73%) of InsG3680+/+ versus WT. Note that both R1117X+/− and 

R1117X+/+ mice perform significantly above chance level. One-sample chi-square test was 

used to determine the significant difference. “*” indicates significantly different from an 

expected chance (50:50 win-lose outcome).
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