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Abstract

Extreme heat has been associated with increased mortality, particularly in temperate climates. Few 

epidemiologic studies have considered the Pacific Northwest region in their analyses. This study 

quantified the historical (May to September, 1980–2010) heat-mortality relationship in the most 

populous Pacific Northwest County, King County, Washington. A relative risk (RR) analysis was 

used to explore the relationship between heat and all-cause mortality on 99th percentile heat days, 

while a time series analysis, using a piece-wise linear model fit, was used to estimate the effect of 

heat intensity on mortality, adjusted for temporal trends. For all ages, all causes, we found a 10 % 

(1.10 (95 % confidence interval (CI), 1.06, 1.14)) increase in the risk of death on a heat day versus 

non-heat day. When considering the intensity effect of heat on all-cause mortality, we found a 

1.69 % (95 % CI, 0.69, 2.70) increase in the risk of death per unit of humidex above 36.0 °C. 

Mortality stratified by cause and age produced statistically significant results using both types of 

analyses for: all-cause, non-traumatic, circulatory, cardiovascular, cerebrovascular, and diabetes 

causes of death. All-cause mortality was statistically significantly modified by the type of synoptic 

weather type. These results demonstrate that heat, expressed as humidex, is associated with 

increased mortality on heat days, and that risk increases with heat’s intensity. While age was the 

only individual-level characteristic found to modify mortality risks, statistically significant 

increases in diabetes-related mortality for the 45–64 age group suggests that underlying health 

status may contribute to these risks.
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Introduction

Extreme-heat events have contributed to thousands of deaths in the USA, Canada, and 

Europe since the early 1980s (Anderson and Bell 2009, 2011; Jackson et al. 2010; Baccini et 

al. 2008; Basu et al. 2008; Naughton 2002; Whitman et al. 1997). V-, U-, or J-shaped 

relationships have been identified where there is a minimum mortality temperature (also 

called “threshold” or “turning point) beyond which mortality increases significantly with 

increasing heat (Baccini et al. 2008; Kim et al. 2006; Curriero et al. 2002). Studies have also 

suggested that the heat-mortality relationship may not be the same in all locations (Baccini 

et al. 2008; Curriero et al. 2002). Curriero et al. 2002 research demonstrated a stronger 

association in mortality risk for northern cities in the USA, at lower temperatures, when 

compared with southern cities.

Other factors have been identified as modifying heat’s influence on mortality rates including 

intensity and duration of the described heat event (Anderson and Bell 2011; Baccini et al. 

2008), synoptic weather patterns (Kalkstein et al. 2011; Sheridan et al. 2009), access to air 

conditioning (Naughton 2002; O’Neill et al. 2005), social isolation (Naughton 2002; Kaiser 

et al. 2001), socio-economic status (Jones et al. 1982; Kaiser et al. 2001), and ethnicity and 

educational status (O’Neill et al. 2003). It is important to note that across all of the above-

referenced studies, there is significant variability in the results—suggesting that place or 

regionality matters. Yardley et al. (2011) suggest that the spatial distribution in heat-related 

mortality indicates more at play than just temperature and physiology and that the addition 

of neighborhood or area-level characteristics would further explain local heat-risk 

differences. For example, Harlan et al. (2006) found that microclimates, or urban heat 

islands, affect mortality risk and that lower socio-economic status groups were more likely 

to occupy these areas. Davis et al. (2004) found that communities concentrating on planning 

improvements to increase shade and access to water decreased their heat-related mortality. 

Finally, Stone et al. (2010) found that metropolitan sprawl affects the rate of increase in 

annual number of extreme-heat events.

In addition to community infrastructure, it is also believed that the social connectedness of 

place affects heat-related health risks. Smoyer (1998), Klinenberg (2002), and Naughton 

(2002) have all found that social connections, perception of safety, and the community’s 

walkability affect heat mortality. As average temperatures and the frequency of extreme-heat 

events are predicted to increase with climate change, understanding the regional heat-

mortality relationship becomes increasingly important to direct adaptation-related policy 

decisions.

This study investigated the relationship between heat and mortality in the most populous 

Pacific Northwest County, King County, Washington (King County 2012). Two different 

modeling approaches were used. We first built upon our previous work that found significant 

increases in non-traumatic mortality associated with heat days compared with non-heat days 

in the Pacific Northwest region (Jackson et al. 2010). We used a relative risk (RR) model to 

explore an expanded list of age-adjusted, cause-of-death categories requested by the local 

health jurisdiction. Second, we added a time series analysis to study heat intensity effects on 

mortality. Specifically, we quantified the percentage increase in mortality associated with a 
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1° increase in humidex for the same expanded list of age-adjusted, cause-of-death 

categories. Using the time series model, we were able to explore effect modification from 

individual-level characteristics, as well as analyze other effects from heat, including cool-

down, duration, and lag effects. To our knowledge, no other study has looked at such a 

comprehensive list of mortality categories in the Pacific Northwest, using two methods of 

analyses.

Materials and methods

Mortality and population data

King County death certificate data for all causes, 1980 to 2010, were obtained from the 

Washington State Department of Health. Only deaths which occurred during the summer 

months of May through September were analyzed. There are 153 days/constrained calendar 

year, a total of 4743 days for the entire study period. Death certificates were coded using the 

International Classification of Diseases (ICD). ICD-9 codes were used from 1980 to 1998 

and ICD-10 codes from 1999 to 2010.

This study expanded the cause-of-death categories analyzed by Jackson et al. (2010) and 

Isaksen et al. (2014) from only non-traumatic causes (ICD-9 001-799, ICD-10 A01-R99) to 

all-cause mortality (ICD-9 000, ICD-10 A00+). We also investigated select subsets of all-

cause mortality that were determined a priori through the literature (Jackson et al. 2010; 

Isaksen et al. 2014; Cheng et al. 2005) or that were specifically requested by the local health 

jurisdiction. These subsets include: diabetes, circulatory, cardiovascular, ischemic, 

cerebrovascular, respiratory, nephritis and nephrotic, acute renal failure, mental disorders, 

and natural heat exposure including dehydration. Our analyses also made use of the death 

certificate database variable, Inj_cause, which describes whether a death is classified as 

natural, accidental, suicide, or homicide. Table 1 lists the specific ICD-9 and ICD-10 codes 

used in this study.

A priori, we anticipated that several individual-level characteristics might identify 

populations that are vulnerable to heat-related mortality: age, non-White race, less than a 

high school education, Hispanic origin, and tobacco contribution to death. Population data, 

by age groups (0–4, 5–14, 15–44, 45–64, 65–84, 85+), were obtained from the Washington 

State Office of Financial Management (OFM) (Washington State Office of Financial 

Management 2012).

Meteorology data

This study used a historical 1/16° resolution gridded meteorological data set produced by the 

University of Washington’s Climate Impacts Group (Maurer et al. 2002). The climatologic 

foundation of this data set is the Parameter-Elevation Relationships on Independent Slopes 

Model (PRISM), developed by Oregon State University (PRISM Climate Group). PRISM is 

considered to represent the most current knowledge on spatial climatic patterns for the USA 

(Daly et al. 2008). Daily temperature and relative humidity values were constructed using 

PRISM’s regional spatial climatic patterns and weather station observations from the Global 

Historical Climate Network-Daily (GHCN). GHCN is a National Oceanic and Atmospheric 
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Administration database of daily meteorological measurements from land surface stations 

across the globe (NOAA Satellite and Information Service 2009). The resulting meteorology 

data set used for this study contains daily maximum/minimum temperature, precipitation, 

and relative humidity values for each meteorological center point. The county-wide daily 

maximum temperature and average relative humidity values were used to construct our 

exposure metric, humidex.

Exposure assessment

As with our previous studies (Jackson et al. 2010; Isaksen et al. 2014), humidex was used as 

the measure of exposure. While there are other measures of heat (e.g., mean, minimum, 

maximum temperature, as well as apparent temperature) that can be used to model heat-

mortality relationships, we chose to use humidex in order to facilitate comparison across 

previous studies. Furthermore, Barnett et al. (2010) reviewed multiple measures of 

temperature (including humidex) to determine the best predictor of heat mortality. While 

they found no measure was consistently superior to others, humidex was found to perform as 

well, or better, over multiple age groups, seasons, and regions (Barnett et al. 2010).

Humidex is a feels-like index that measures the combined effects of temperature and 

humidity on the human body (Masterton and Richardson 1979). For this study, an average 

daily maximum humidex was computed over all meteorological center points located in 

King County. Exposure to heat was then estimated as the county-wide average maximum 

humidex value for each day within the study’s time frame. Humidex is defined by the 

following formula and is expressed in units of degrees Celsius:

(1)

where T is the air temperature (°C), H is the average relative humidity (%), and v is the 

vapor pressure (kPa) (Canadian Centre for Occupational Health and Safety 2011). In this 

analysis, “humidex” refers to the “county-wide average daily maximum humidex.”

Association between humidex and mortality

Relative risk analysis—A heat day was defined as a day in which the humidex exceeded 

a specified threshold. Jackson et al. (2010) used the 99th percentile of the average greater 

Seattle area-wide (King, Pierce, and Snohomish counties) maximum humidex as the 

threshold to define a heat day. In this analysis, we tried the 99th, 95th, and 90th percentiles 

for King County and chose the one that gave the best fit to the data (maximum likelihood). 

The following Poisson regression model was used:

(2)

where Yjis the mortality count on day j, Pj is the population, λj is the mortality incidence 

rate of a non-heat day, {humidexj >threshold} is the indicator of a heat day, and β1I is the 

change in mortality rate on a heat day. This approach modeled the expected mortality count 

after controlling for population growth.
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Time series analysis—A Poisson model was built to explore the relationship between 

daily humidex and mortality rates. Similar to other studies (Anderson and Bell 2009; 

Baccini et al. 2008; Curriero et al. 2002), we used non-parametric splines to model the log-

mortality rate over time and humidex. Specifically, we assumed that:

(3)

where μj is the expected mortality rate on day j, s(hj) is a penalized regression spline 

modeling the effects of humidex, s(tj) is a penalized regression spline modeling the temporal 

trend of mortality over 31 years, and (βl’s) is the adjustment for seasonal monthly effects.

To increase interpretability and usefulness for public health practitioners and policymakers, 

we simplified the non-parametric spline model with a piece-wise linear model, fit with two 

knots. The first knot was set at the 50th percentile of summer-time humidex values. The 

second knot, or “optimal alert threshold” for humidex, was identified by exploring 0.° 

incremental changes starting at 20 °C and continuing through 44 °C humidex to maximize 

the likelihood of the following model:

(4)

where hjis the humidex value on day j, hq50 is the 50th percentile of humidex from May to 

September, 1980–2010, ĥ0 is the optimal alert threshold, s(tj) is a natural cubic spline 

modeling the temporal trend of mortality over 31 years, and Imonth is the indicator variable 

for months May through September. A heat day was then defined as a day in which the 

humidex exceeded the optimal alert threshold. The impact of heat intensity on mortality was 

assessed by the slope of the line above the threshold. The “mgcv” and “GAM” packages 

were used with the statistical software R version 2.14.1 to determine the model’s degrees of 

freedom for the temporal trend and to tune the threshold, respectively (R Core Team 2012).

Effect modification by individual-level characteristics

Individual-level characteristic data obtained from death certificates were evaluated for 

differences in mortality risk. These covariates included age, gender, race, high school 

graduation, marital status, Hispanic origin, and tobacco use. Effect modification was 

examined by adding each covariate into the model along with an interaction term. Mortality 

counts for all covariate groups, except age, were not adjusted by population size of the 

covariate group, because the data were not available. An example of exploring effect 

modification is illustrated by the following example of the covariate “Hispanic origin”:

(5)

where μijis the expected mortality rate for subpopulation with covariate level i on day j. In 

this example, the covariate “Hispanic origin” has two levels “Hispanic” and “non-Hispanic”. 

Isaksen et al. Page 5

Int J Biometeorol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The parameter of interest is β3, the coefficient of the interaction between heat intensity 

indicator and the covariate. By testing the significance of the interaction between 

demographic variable and the heat variable, we can identify whether specific subpopulations 

are more vulnerable to heat intensity effects.

Other heat effects on mortality

Several studies have suggested that cooler night-time temperatures help minimize the effect 

of heat on mortality (Schwartz 2005), where lengthier heat events increase mortality risk 

(D’Ippoliti et al. 2010; Anderson and Bell 2011), and that the type of synoptic weather 

pattern may influence mortality rates on heat days (Kalkstein and Greene 1997; Sheridan et 

al. 2009). This study evaluated the data to see if there was a “cool-down effect,” whereas an 

elevated minimum humidex on a hot day contributed to an increase in mortality beyond the 

effect of the maximum humidex during the day (Eq. 6). The study also evaluated whether 

the magnitude of humidex above the optimal alert threshold affected risk (Eq. 7). For data on 

heat days, cool-down effect is explored using the following two models:

(6)

(7)

where difference is defined as the daily maximum humidex—daily minimum humidex for a 

given heat day, and aboveThres is defined as the daily maximum humidex—threshold.

Similarly, this study examined the relationship between mortality count and heat event 

duration (number of consecutive heat days). For data on heat days, a duration effect is 

explored using the following two models:

(8)

(9)

where duration is defined as the day’s order in a given heat event.

This study also explored whether or not there was a lag effect between humidex and 

mortality over several days. A lag effect can best be described as the total heat effect on 

mortality spread over several days or weeks. Following the methods described in Armstrong 

(2006), we explored distributed lag effects using the following model:

(10)

where Yj is the mortality count on day j, s(time) is a spline curve over time, and f(h~j) is a 

function of historic humidex values on days up to day j, which takes a weighted effect of 

humidex on day j and the previous L days. By assuming different constraints or temporal 

structures for βl, l=0,…,L, we examined the evidence of lag effects. This was implemented 
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using the “dlnm” (distributed lag non-linear model) package in R version 2.14.1 (Gasparrini 

2011).

Finally, we investigated whether or not mortality rates were influenced by the type of 

synoptic weather (ambient weather conditions) on a given heat day. Previous research 

indicates that moist and dry tropical air masses are associated with increased mortality 

(Kalkstein et al. 2011; Sheridan et al. 2009). Using daily spatial synoptic classification data 

for the Seattle/Tacoma station (Sheridan 2013), effect modification was explored by adding 

synoptic classification as a covariate into the model along with an interaction term, Eq. (5).

Results

King County accounted for approximately 30 % of Washington State’s population 

throughout the study’s time frame (Washington State Office of Financial Management 

2012). From 1980 to 2010, the county’s population increased over 52 %, with age groups 

45–64, 65–84, and 85+ increasing 110, 52.6, and 150 %, respectively (Table 2). King 

County is located in Western Washington and is characterized by relatively cool summers. 

Its summer humidex values range from a minimum average of 6.66 °C (44.0 °F) to a 

maximum average of 22.4 °C (72.3 °F) (Table 3). From 1980 to 2010 (May–September), 

King County experienced 135,333 deaths, 34.2 % of the overall death count. On average, 

there were 28.5 deaths/day (Table 2). Over the study’s time frame, mortality rates remained 

essentially the same at 2.9/1,000 residents. Tables 2 and 3 provide descriptive demographic 

data, by age and percent change, and meteorological ranges, 1980–2010, respectively.

Association between humidex and mortality

Relative risk analysis—As defined by Eq. (2), a heat day for the relative risk analysis is 

a day that exceeds the 99th percentile (36.1 °C (97.0 °F) humidex). During 1980–2010, King 

County experienced 114 days over the 99th percentile. The average humidex on heat days 

was 38.7 °C (101.7 °F) (Table 2). For all-age, all-cause mortality, we found that the relative 

risk of death was 10 % greater on a heat day compared with a non-heat day. Statistically 

significant all-age results were found for non-traumatic (10 %), circulatory (9 %), 

cerebrovascular (40 %), and accident (19 %) (Table 4). To achieve a better understanding of 

the relative burden of death, the proportional mortality is illustrated in Fig. 1. Cause-of-death 

categories run along the x-axis, while the corresponding relative risk estimates are reflected 

by the y-axis. Figure 1 illustrates the proportion of death for each cause, in relation to the 

all-cause mortality on heat days (e.g., circulatory cause-of-death account for approximately 

40 % of all deaths on a heat day).

When investigating mortality stratified by age, statistically significant increases in risk on a 

heat day compared with a non-heat day were found for: the 0–4 age group, nephritis and 

nephrotic syndromes (904 %); the 45–64 age group, diabetes (78 %) and natural heat 

exposure (2,261 %); the 65–84 age group, all-cause (6 %), non-traumatic (6 %), 

cerebrovascular (37 %), mental disorders (43 %), and accident (43 %); and the 85+ age 

group, all-cause (18 %), non-traumatic (18 %), circulatory (18 %), cardiovascular (17 %), 

and cerebrovascular (53 %). Relative risk estimates and 95 % confidence intervals for all-age 

groups and categories of death are reported in Table 4. It should be noted that both the 0–4 
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age group’s nephritis and nephrotic syndromes and the 45–64 age group’s natural heat 

exposure estimates are based on a small number of cases (1 and 3 heat-day cases, 

respectively) as reported in Table 4.

To achieve a better understanding of the relative burden of death for mortality stratified by 

age and cause of death, the proportional mortality is illustrated in Fig. 2. Statistically 

significant, age-adjusted cause-of-death categories run along the x-axis, while the 

corresponding relative risk estimates are reflected by the y-axis. Figure 2 illustrates the 

proportion of death for each age-adjusted cause, in relation to the age-adjusted, all-cause 

mortality on heat days (e.g., circulatory cause-of-death account for approximately 50 % of 

all deaths in the 85+ age group, on a heat day).

Time series analysis—In King County, the time series analysis, modeled by a penalized 

cubic regression spline, results in a J-shaped curve. The relationship suggests an increased 

risk of mortality from exposure to humidex exceeding approximately 30 °C humidex. 

Improving interpretability, a piece-wise linear approximation, using two knots, was used to 

summarize heat effect on mortality, while a natural cubic spline (df=19) continued to model 

the temporal trend of mortality over 31 years. The piece-wise linear approximation’s first 

knot was set at the 50th percentile (22.1 °C), while the second knot was determined by 

increasing the model by 0.1 °C until the maximum likelihood was identified by the Akaike 

Information Criterion (AIC). The second knot, or optimal threshold, is just shy of the 99th 

percentile, at 36.0 °C (96.8 °F). Figure 3 illustrates the non-parametric spline model and 

corresponding piece-wise linear approximation for King County’s all-cause log-mortality 

rate and humidex relationship. During 1980–2010, King County experienced 117 days that 

exceeded the optimal threshold. The average maximum humidex on these exceedance days 

was 38.6 °C (101.4 °F).

For all ages, all causes, we observed a 1.7 % increase in mortality per degree increase in 

county-wide daily maximum humidex above 36.0 °C. Statistically significant all-age results 

were also found for non-traumatic (2.1 %), circulatory (2 %), ischemic (2.5 %), 

cerebrovascular (6.2 %), and respiratory (4.4 %) causes of death. When investigating 

mortality stratified by age, statistically significant results were found for: the 15–44 age 

group, all-cause (−4.2 %) and accident (−10.2 %); the 45–64 age group, diabetes (14.2 %); 

the 65–84 age group, homicide (43.7 %); and the 85+ age group, all-cause (3.7 %), non-

traumatic (3.8 %), circulatory (4.1 %), cardiovascular (4.3 %), ischemic (4.2 %), 

cerebrovascular (9.7 %), and suicide (43.4 %). Intensity estimates and 95 % confidence 

intervals for all-age groups and categories of death are reported in Table 5. It should be 

noted that both the 65–84 age group’s homicide and the 85+ age group’s suicide estimates 

are based on a small number of cases (3 and 4 heat-day cases, respectively) as reported in 

Table 5.

Effect modification with individual-level characteristics

We did not find that the following individual-level characteristics altered the risk of dying on 

a heat day: gender, race, high school graduation, marital status, Hispanic origin, or whether 

or not tobacco use contributed to death. However, we did find that age statistically 
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significantly increased the risk of dying on a heat day. In both the relative risk and time 

series analysis, we found the 85+ age group to experience the greatest risk for all causes of 

mortality.

Other heat effects on mortality

We did not find a statistically significant cool-down effect on mortality; the difference 

between minimum and maximum humidex on a given heat day did not significantly 

influence mortality rates. Likewise, we found no effect on mortality from duration of 

consecutive heat days above threshold. Additionally, we found no significant effect on the 

mortality rate from the lagged humidex, while the acute association between excess humidex 

above the upper threshold and mortality on the same day (Lag0) remained statistically 

significant. Lastly, mortality associated with the type of synoptic weather classification on a 

given heat day was explored. During the study period, there were 168 dry tropical (DT) and 

40 moist tropical (MT) days classified for the Seattle/Tacoma station. The corresponding 

maximum humidex on these days averaged 33.7 °C. Seventy-three out of the 117 days that 

exceeded the lower 36.0 °C TSA threshold were classified as either DT or MT (64 DT and 9 

MT) with the maximum humidex averaging 39.1 °C. The risk of all-age, all-cause mortality 

was 39.6 % higher per one degree above 36.0 °C on days classified as having either a moist 

or dry tropical weather type compared with other synoptic weather type classifications.

Discussion

This study characterized King County, Washington’s historic heat-mortality relationship 

using two different statistical methods. Our relative risk analysis quantified the excess 

mortality on a heat day compared with a non-heat day, while our time series analysis 

quantified the intensity effect of heat on mortality for each one degree increase in humidex 

over the threshold. We further characterized risk by age groups and subcategories of all-

cause mortality. This study explored cool-down, duration, lag, and synoptic weather type 

effects on mortality, and it quantified effect modification from available individual-level 

characteristics. The results demonstrate that heat, expressed as humidex, is associated with 

increased mortality on heat days, and that the risk increases with heat’s intensity.

Our study design offers advantages over others, as it allows for direct comparison between 

two commonly used analyses. First, we are able to compare two ways of defining a heat day: 

a relative threshold calculated from a fixed percentile to an absolute threshold estimated 

using a fitted model. Our relative risk analysis uses the 99th percentile as the definition of an 

extreme-heat day; the threshold for this is 36.1 °C. In comparison, our time series threshold 

was calculated at 36.0 °C using a more complicated piece-wise linear approximation. From a 

practical standpoint, the similarity between the two thresholds offers support to choosing a 

fixed percentile as a simple way to define extreme heat. Second, our study design offers a 

more complete picture of regional heat effects. The relative risk analysis provides a robust 

analysis of heat’s overall contribution to excess mortality on heat days, while the time series 

analysis allows for a nuanced understanding of the effect of heat on mortality and the role of 

potential effect modifiers.
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This study found a statistically significant increase in all-age, all-cause mortality with both 

analyses. The relative risk of death on a heat day was 10 % greater than on a non-heat day, 

with risk increasing 1.69 % for each degree increase in humidex above 36.0 °C. We also 

found a statistically significant increase in all-age, non-traumatic mortality for both analyses. 

The relative risk of death on a heat day was 10 % greater than on a non-heat day, with risk 

increasing 2.12 % for each degree increase in humidex above 36.0 °C. )Jackson et al. (2010) 

found a similar 10 % increase in mortality risks for the 65+ and 75+ age groups living in the 

Greater Seattle area. Comparatively, Medina-Ramón and Schwartz (2007) meta-analysis of 

42 cities found a smaller, 3.85 %, increase in mortality on extreme-heat days (above the 99th 

percentile) compared with all other days, while their piece-wise linear approximation for 

heat intensity effects on total mortality found a 0.70 % increase in risk (lag 0) for each 1 °C 

above 17 °C.

When investigating a log-linear increase in mortality above an absolute threshold, our 

previous research using a shorter time frame (1980–2006) found similar threshold and 

intensity results; each one degree increase in humidex above 35.7 °C was associated with 

1.8 % increase in non-traumatic causes of death (Isaksen et al. 2014). However, other US-

based studies conducted in 9 California counties, 9 US cities, and 20 US cities have found 

smaller (1–3 %) increases in daily non-traumatic mortality per 10 °F increase in daily 

apparent temperature, equivalent to approximately a 0.2–0.5 % increase in morality per 1 °C 

increase (Basu et al. 2005, 2008; Zanobetti and Schwartz 2008). Compared with European 

results, similar magnitude, albeit lower thresholds, were found (1.8 and 3.1 % increases per 

1 °C apparent temperature for thresholds of 23.3 and 29.4 °C in North-Continental and 

Mediterranean regions of Europe, respectively) (Baccini et al. 2008). The variability among 

studies further supports the importance of regional analysis.

Comparing results from the relative risk and time series analysis suggests that the modifying 

effect age has on mortality may be partly influenced by heat’s intensity. When stratifying 

cause-of-death categories by age group in the relative risk analysis, we found that heat’s 

overall effect does not exclusively impact the elderly (85+ age group). Statistically 

significant results were found in the 0–4 (nephritis and nephrotic), 45–64 (diabetes, and 

natural heat exposure), and 65–84 (all causes, non-traumatic, cerebrovascular, mental 

disorders, and accident) year-old age groups. However, when examining heat’s intensity 

effect using the time series analysis, we found that, with a few exceptions (15–44 all-cause 

and accident, 45–64 diabetes, and 65–84 homicide), heat’s intensity almost exclusively 

affects the 85+ age group (all-cause, non-traumatic, circulatory, cardiovascular, ischemic, 

cerebrovascular, and suicide). Isaksen et al. (2014) found similar statistically significant age-

stratified results for the 85+ age group when comparing heat’s intensity effect on circulatory 

(4.8 %) and cardiovascular (4.22 %) causes of death in King County.

Results from both analyses suggest that a vulnerable population of younger diabetic patients 

exists. For the 45–64-year-old age group, we found that the relative risk of death from 

diabetes on a heat day was 78 % greater than on a non-heat day, with risk increasing 14.2 % 

for each degree increase in humidex above 36.0 °C. In comparison, Schuman (1972) found a 

117 % increase in diabetic-related mortality during a New York heat wave, while Basagaña 

et al. (2011) observed a 20 % increase in mortality risk for diabetes on extreme-heat days in 
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the Catalonia region of Spain. Schwartz (2005) found that the relative odds of death, on a 

99th percentile day, increased 17 % for those persons previously hospitalized for diabetes. 

One possible explanation for the increased diabetic mortality risk is suggested by Akanji and 

Oputa’s (1991) study findings where both non-diabetic and diabetic participants’ plasma 

glucose levels significantly increased with a 10 °C increase in ambient temperature. Given 

that an estimated 8 % of 45–64-year olds and 15 % of 65+-year olds living in King County 

have diabetes, our findings are an important consideration for outreach and prevention 

programs (Public Health-Seattle and King County 2013).

This study also highlights the vulnerability of older age groups to circulatory deaths and its 

subcategories, cardiovascular and cerebrovascular causes. Similarly, Jackson et al. (2010) 

found in the Greater Seattle area that the highest elevated risk for circulatory mortality on a 

heat day belonged to the 65+ (30 %) and 85+ (50 %) age groups. Isaksen et al. (2014) found 

that, in King County, the 85+ age group’s risk for circulatory mortality increased 4.8 % for 

each degree above 35.7 °C humidex. Studies from other geographic locations have also 

shown an increased risk in heat-related mortality for the elderly (Basu et al. 2008; Ishigami 

et al. 2008). Age-related vulnerability has been attributed to changes in the body’s natural 

homeostatic mechanisms, greater likelihood of taking medications that inhibit the body’s 

thermo-regulation, being homebound, living alone, and not being able to care for one’s self 

(Brown and Walker 2008; Kovats and Hajat 2008; Naughton 2002).

Aside from age, this study did not find that the available individual-level covariates modified 

the effect of heat on mortality. However, other studies have found that individuals of Black 

race or non-White race (O’Neill et al. 2003; O’Neill et al. 2005), those with less education, 

and those who are socially isolated are more vulnerable to heat-related death (Medina-

Ramón et al. 2006; O’Neill et al. 2003; Naughton 2002). It is possible that other individual-

level characteristics such as social isolation, socio-economic status, and educational 

attainment, not collected through death certificate data, are more relevant predictors of 

vulnerability to heat-related mortality than the characteristics we were able to consider. It is 

also possible that neighborhood-level characteristics that were not measured in the study, 

such as the presence of urban heat islands, design of spaces to include shade, and social 

cohesion, could have greater influence on heat-related mortality than individual 

characteristics.

An alternative explanation for the lack of identified vulnerable populations in this study 

could derive from our region’s low prevalence of air conditioning. Hamlet et al. (2010) have 

calculated King County’s air conditioning penetration rate at approximately 8 %. Our 

unpublished research for Pierce County (King’s neighbor immediately to the South) found 

10 % of all dwelling-occupied parcels had air conditioning as of 2009, quite similar to the 

Hamlet et al. report. The availability and use of air conditioning is considered the strongest 

factor in preventing heat-related mortality (O’Neill et al. 2003; Davis et al. 2004; Naughton 

2002; Curriero et al. 2002). It is possible that as our region warms and the availability and 

use of air conditioning increases, vulnerable subpopulations may be detected. An additional 

explanation for the lack of identified vulnerable populations in this study could be the 

different geographical scale between our study and those that have identified vulnerable 

populations. Studies that have found effect modification within subpopulations (O’Neill et 
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al. 2003; O’Neill et al. 2005; Medina-Ramón et al. 2006; Naughton 2002) were confined to 

either cities or urban communities, whereas our study looked at heat’s influence on an entire 

county. This larger geographical scale produces different demographics and affects our 

power to detect differences across racial/ethnic or SES subpopulations (e.g., according to the 

2010 census, King County is reportedly 70.8 % White, 6.6 % African American, 9.3 % 

Hispanic, 11.5 % below poverty level, and 92.1 % with high school education or more).

This study found that the same-day humidex exposure had the strongest association with 

mortality, and that there was no evidence of a lag or cool-down effect. These findings are 

similar to those of other studies in which either the same-day apparent temperature 

(Gasparrini and Armstrong 2011; Anderson and Bell 2009; Zanobetti and Schwartz 2008) or 

recent lags of 1–3 days were found to be most relevant to the heat-mortality relationship 

(Basagaña et al. 2011; Basu et al. 2008; Curriero et al. 2002). This study did not find a 

duration effect, the number of consecutive days exceeding a threshold affected mortality 

rates. Heat events of long duration are rare in King County. It is predicted that the duration 

of events will lengthen with climate change, and therefore, it is possible that in the future we 

may detect a difference in mortality risk with longer events. This study found that days 

classified as having either a moist or dry tropical synoptic weather classification were 

associated with a significant increased risk of mortality than days that were not classified as 

moist or dry tropical. Our research supports Kalkstein and Greene (1997) and Kalkstein et 

al. (2011) findings of increased mortality on days with oppressively hot air masses.

Limitations of this study include possible exposure misclassification and inappropriate 

geographical boundary selection. Our study uses an average daily county-wide maximum 

humidex value to estimate heat exposure, which may result in exposure misclassification 

when a disproportionate number of cases are below or above the average value. Improved 

exposure assessment could be obtained by using a population-weighted temperature value, 

or by assigning each case a maximum humidex value from the closest meteorological grid 

center point. Data regarding access to air conditioning and behavioral/lifestyle choices 

would further refine heat exposure. Personal monitoring of time-activity patterns from a 

representative sample of vulnerable populations could help clarify these factors, as was done 

in a previous study of elderly individuals (Basu and Samet 2002). In this study, humidex was 

calculated using an average daily relative humidity. It is possible that by using the average 

daily relative humidity, our model threshold may be higher than the true heat-health 

threshold. However, even if our metric is biased high, it is still below the current National 

Weather Service warning criteria for this region.

This study used political jurisdictions (county boundary) to assess the heat-mortality 

relationship. This geographical unit of analysis may not accurately reflect how the effects of 

heat on mortality vary spatially. An alternative method, and area for future research, would 

be to combine populations that experience similar climate zones and, therefore, should have 

similar levels of acclimatization. Combining populations into climate zones may also reduce 

type II error, by ensuring adequate power, allowing the examination of heat-related health 

effects in rural areas.
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This study did not correct for multiple comparisons. A type 1 error may occur when 

numerous subgroups are analyzed for effect difference. The more comparisons that are 

analyzed, the more opportunity there is to identify, by chance, a result that appears 

significant, even when no statistically significant difference exists. A multiple testing 

correction, such as Bonferroni, could be applied to our analyses (56). However, conventional 

multiple testing correction methods can be overly conservative, resulting in an increase in 

false negative results. Instead, we progressively analyzed our data, looking at overall, all-age 

results prior to analyzing subcategories of cause and age. Our analyzed subcategories were 

chosen a priori based on previous where research conducted by our group, findings from the 

literature and observations from the practice community. The statistically significant results 

were then examined for expected dose–response patterns, concurrence with existing 

literature, biologic plausibility, and influence of small counts. Results were flagged in data 

presentation and discussion when found to depend on a small number of outcomes (N<20). 

All other results have been provided, along with confidence intervals.

This study did not adjust for air pollution, as our primary focus was the total effect of heat 

on mortality rather than the direct effect. A recent commentary by Buckley et al. (2014) 

noted that adjustment for air pollution can lead to biased estimates of effects due to heat, and 

that such adjustments should not be conducted without a clear rationale. Studies that have 

controlled for air pollution, or that have analyzed effect modification from air pollutants, 

have found that the association between heat and mortality persists (Anderson and Bell 

2009; Basu et al. 2008; Zanobetti and Schwartz 2008). For example, Anderson and Bell’s 

(2009) meta-analysis observed only slight decreases in mortality risk after adjusting for 

Ozone or PM10. In their subsequent analysis (Anderson and Bell 2011) of the same 

communities, they chose not to control for air pollution, citing temperature’s robust effects 

on mortality. Similar findings of no significant confounding or effect modification from air 

pollutants were reported by Basu et al. (2008) and Zanobetti and Schwartz (2008) in their 

analysis of nine California counties and nine US cities, respectively.

In conclusion, this study characterized King County, Washington’s historic heat-mortality 

relationship using two different statistical methods. The results demonstrate that heat, 

expressed as humidex, is associated with increased mortality on heat days, and that the risk 

increases with heat’s intensity. When stratifying by age and cause of death, younger age 

groups were at an increased risk of death for several causes of death, particularly diabetes. 

Additionally, we found that heat’s intensity almost exclusively affected the 85+ age group. 

While individual-level characteristics (age being an exception) and other heat effects (cool-

down, duration, lag) were not found to affect mortality rates, the synoptic weather 

classification was found to modify risks.

Future research is needed to validate the methods used to model our heat-mortality 

relationship, as our piece-wise linear model fits linear slopes to an otherwise non-linear 

relationship. Improving heat exposure assessment is another area where additional research 

would improve the understanding of our region’s heat-mortality relationship. Our findings 

warrant additional investigation into the role heat exposure plays in diabetic patient health 

and care. Lastly, a better understanding of the full range of effects that air mass type and 
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other meteorological metrics have on mortality would further elucidate ways to improve 

public health preparedness and response measures.
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Fig. 1. 
Proportional cause-of-death burden in relation to total death, on days designated as heat 

days; size of bubbles represent proportion of mortality compared with all causes, while 

placement on the y-axis represents mortality relative risk estimate
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Fig. 2. 
Proportional cause-of-death burden in relation to total death, on days designated as heat 

days, by statistically significant age category; size of bubbles represent proportion of age-

adjusted mortality compared with all causes, while placement on the y-axis represents 

mortality relative risk estimate
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Fig. 3. 
Nonparametric spline model of all-cause log-mortality rate and humidex relationship; right, 
corresponding piece-wise linear approximation using two knots at 22.1 and 36.0 °C humidex
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Table 1

Underlying causes of death and associated international classification of disease (ICD)-9 (1980 to 1998) and 

ICD-10 (1999–2010) codes

Category ICD-9 code ICD-10 code

All causes 000+ A00+

Non-traumatic 001–799 A00–R99

Select non-traumatic causes

 Diabetes 250 E08–E13

 Circulatory 390–459 I00–I99, G45, G46

 Cardiovascular 393–429 I05–I52

  Ischemic 410–414 I20–I25

 Cerebrovascular 430–438 I67

 Respiratory 460–519 J00–J99

 Nephritis and nephrotic syndromes 580–589 N17–N19

 Acute renal failure 584 N17

Mental disorders 290–316 F01–F69

Select traumatic causes

 Natural heat exposure and dehydrationa E900.0 or E900.9 and 992 X30 and T67

 Accidentb 2 2

 Suicideb 3 3

 Homicideb 4 4

a
While mortality attributed to natural heat-related exposure is classified as a traumatic external injury, we have included the non-traumatic 

dehydration code ICD-9 276.51/ICD-10 E86.0 with this subgrouping. We included dehydration in this group to ensure we captured cases 
potentially misclassified, given the limited use and possible recognition of existing heat-related exposure ICD-9 and ICD-10 codes

b
The Washington State Department of Health codes the variable “Inj_caus” as the type of external injury indicated by the underlying cause of 

death: accident=2; suicide=3; and homicide=4
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Table 2

King County, Washington population demographics, 1980–2010

Census population

Census complete count 1980 populationa 2010 populationa

State total 4,132,156 6,724,540 (62.7 %)

 King County total 1,269,749 1,931,249 (52.1 %)

 % of State population 30.7 % 28.7 % (−7.0 %)

 0–4 78,525 120,294 (53.2 %)

 5–14 170,657 224,084 (31.3 %)

 15–44 643,707 856,843 (33.1 %)

 45–64 247,446 519,349 (110 %)

 65–84 115,910 176,895 (52.6 %)

 85+ 13,504 33,784 (150 %)

Mortality data

 1980–2010 All months May–Sept. (% of total)

 Total deaths 395,138 135,333 (34.2 %)

 Average daily mortality 34.9 deaths/day 28.5 deaths/day

Individual-level characteristics (May–Sept.) n deaths (% of total)

 Gender Male (68,203 (50.4 %)) Female (67,130 (49.6 %))

 Marital status Married or w/partner (52,098 (38.5 %)) Other (83,235 (61.5 %))

 High school graduate status

  High school diploma or better 79,298 (58.6 %)

  No high school diploma 53,217 (39.3 %)

  Status unknown 2,818 (2.1 %)

 Hispanic ethnicity

  Hispanic 1,557 (1.2 %)

  Non-Hispanic 133,505 (98.6 %)

  Unknown 271 (0.2 %)

 Smoking status

  Smoker 27,287 (20.2 %)

  Non-smoker 94,774 (70.0 %)

  Unknown 13,272 (9.8 %)

 Race

  White 118,987 (87.9 %)

  Black 7,027 (5.2 %)

  Asian/Pacific Islander 6,935 (5.1 %)

  Native American 1,184 (0.87 %)

  Other 1,031 (0.76 %)

  Unknown 169 (0.17 %)

a
Source: Washington State Department of Health mortality data set
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