Supplemental Table 1. Sample size for composite fat soluble biomarkers for the adult US population $\geq 20 \mathrm{y}$, NHANES 2003-2006 ${ }^{1,2}$

Composite biomarker (n)	Components	n^{3}
CAR (4387)	alpha-carotene	4436
	beta-carotene	4440
	cis- and trans-lycopene	4391
XAN (4416)	lutein and zeaxanthin	4440
	beta-cryptoxanthin	4416
SFA (1705)	myristic [14:0]	1817
	palmitic [16:0]	1826
	stearic [18:0]	1827
	arachidic [20:0]	1777
	docosanoic [22:0]	1759
	lignoceric [24:0]	1762
MUFA (1681)	myristoleic [14:1n5]	1829
	palmitoleic [16:1n7]	1826
	cis-vaccenic [18:1n7]	1781
	oleic [18:1n9]	1819
	eicosenoic [20:1n9]	1826
	nervonic [24:1n9]	1717
PUFA (1807)	linoleic [18:2n6]	1827
	alpha-linolenic [18:3n3]	1822
	gamma-linolenic [18:3n6]	1816
	eicosadienoic [20:2n6]	1826
	homo-gamma-linolenic [20:3n6]	1827
	arachidonic [20:4n6]	1828
	eicosapentaenoic [20:5n3]	1827
	docosatetraenoic [22:4n6]	1829
	docosapentaenoic-3 [22:5n3]	1829
	docosapentaenoic-6 [22:5n6]	1829
	docosahexaenoic [22:6n3]	1829
tFA (1459)	SFA	1705
	MUFA	1681
	PUFA	1807
	docosenoic [22:1n9]	1621

${ }^{1}$ CAR, carotenes [sum of alpha-carotene, beta-carotene and cis- and trans-lycopene]; MUFA, sum of 6 monounsaturated fatty acids [docosenoic [22:1n9] was excluded]; PUFA, sum of 11 polyunsaturated fatty acids; SFA, sum of 6 saturated fatty acids; tFA, total fatty acids [sum of 24
fatty acids, including 22:1n9]; XAN, xanthophylls [sum of lutein, zeaxanthin and betacryptoxanthin]
${ }^{2}$ Carotenes and xanthophylls (NHANES 2005-2006); plasma concentrations of total (free and esterified) saturated-, monounsaturated- and polyunsaturated fatty acids (NHANES 2003-2004)
${ }^{3} n$, number of non-missing values

Supplemental Table 2. Descriptive information for the adult US population ≥ 20 y by sociodemographic and lifestyle variables ${ }^{1}$

Factor	Category	Full sample 2003-2004	Full sample 2005-2006	Fatty acids fasting sample 2003-2004 ${ }^{8}$	Phytoestrogen 1/3 sample 2003-2006	lodine 1/3 sample 2003-2006
Age, y	20-39	38.8	38.0	39.2	38.4	38.4
	40-59	38.5	39.0	38.3	38.8	38.8
	≥ 60	22.7	23.0	22.5	22.8	22.8
Sex	Male	48.0	48.1	48.0	48.0	48.0
	Female	52.1	51.9	52.0	52.0	52.0
Race-ethnicity	Mexican American	7.76	7.96	7.81	7.87	7.87
	Non-Hispanic black	11.2	11.5	11.5	11.4	11.4
	Non-Hispanic white	72.1	71.8	71.8	72.0	70.9
	Other Hispanic	3.59	3.37	3.05	3.40	3.83
	Other (including multiracial)	5.37	5.35	5.84	5.37	6.03
Education	\leq High school	45.5	42.8	44.3	42.9	43.5
	>High school	54.5	57.2	55.7	57.1	56.5
PIR ${ }^{2}$	Low (0-1.85)	31.4	27.4	31.6	29.1	28.8
	Middle (>1.85-3.5)	27.6	28.4	27.1	27.1	28.0
	High (>3.5)	41.1	44.3	41.3	43.8	43.3
Smoking status ${ }^{3}$	No	70.2	72.1	70.5	68.9	72.4
	Yes	29.8	27.9	29.5	31.1	27.6
Alcohol consumption ${ }^{4}$	No drinks	30.6	28.2	31.1	28.4	29.2
	<1 (not 0)	56.6	57.0	56.8	56.7	56.3
	1-<2	7.6	8.1	6.8	8.5	8.1

Factor	Category	Full sample 2003-2004	Full sample 2005-2006	Fatty acids fasting sample 2003-2004 ${ }^{8}$	Phytoestrogen 1/3 sample 2003-2006	lodine 1/3 sample 2003-2006
BMI^{5}	≥ 2	5.2	6.7	5.4	5.4	6.4
	Underweight	1.73	1.81	NR	2.12	NR
	Normal	32.0	31.2	31.6	31.2	31.7
	Overweight	34.1	32.8	34.1	32.8	33.2
Supplement use ${ }^{6}$	Obese	32.2	34.3	32.8	33.9	33.6
	No	46.0	45.9	46.2	46.9	44.9
	Yes	54.0	54.2	53.8	53.1	55.1
Physical activity ${ }^{7}$	None reported	33.0	31.3	33.2	30.3	33.7
	0-<500	25.0	23.4	24.4	24.6	23.1
	500-<1000	13.6	14.3	14.5	14.6	14.3
	≥ 1000	28.4	31.1	27.9	30.6	29.0

${ }^{1}$ Values represent weighted percentage (\%) by various mobile examination center weights
${ }^{2}$ PIR, family poverty income ratio
3 "Smoker" defined by serum cotinine concentration $>10 \mu \mathrm{~g} / \mathrm{L}$
${ }^{4}$ Alcohol consumption: calculated as average daily number of "standard" drinks [(quantity x frequency) / 365.25)]; 1 drink $\sim 15 \mathrm{~g}$ ethanol
${ }^{5} \mathrm{BMI}\left(\mathrm{kg} / \mathrm{m}^{2}\right.$) definitions: underweight: <18.5; normal weight: $18.5->25$; overweight: $25-<30$; and obese: ≥ 30
6 "Supplement user" defined as participant who reported taking a dietary supplement within the past 30 d
${ }^{7}$ Physical activity: calculated as total metabolic equivalent task (MET)-min/wk from self-reported leisure time physical activities
${ }^{8}$ Plasma concentrations of FA were measured in fasted ($\geq 8 \mathrm{~h}$) adults
NR: not reported due to small sample size ($n<42$)

Supplemental Text 1

The use of a logarithmic transformation to a response variable in linear regression provides a natural interpretation of the response as a percent change. When the response has been log transformed, one can compute the percent change in the response at two different values of a covariate, while holding all others constant. Recognizing that the effects of regression model estimates can be interpreted as the difference between a pair of fitted or predicted values provides a scheme to organize and present model results that can be easily compared across nutritional biomarkers, as well as assessing the impact on the estimated associations after controlling simultaneously for many variables.

Consider the difference between a pair of fitted values of Y_{1} and Y_{2}. It is easy to show that the difference between this pair of fitted values can be interpreted as the percent change between Y_{1} and Y_{2} log transformed. The formulation below assumes a natural log transformation has been used.

Start with the hypothetical model $\operatorname{In} Y=\beta_{0}+\beta_{1} X+\beta_{1} W+\beta_{1} Z$. Compute the difference for each fitted changing the value of the variable X from k_{1} to k_{2}, while holding all other covariates the same:

$$
\ln Y_{2}-\ln Y_{1}=\left(\beta_{0}+\beta_{1} k_{2}+\beta_{1} W+\beta_{1} Z\right)-\left(\beta_{0}+\beta_{1} k_{1}+\beta_{1} W+\beta_{1} Z\right)
$$

After some cancellation it is easy to see the following:

$$
\begin{align*}
& \ln Y_{2}-\ln Y_{1}=\beta_{1}\left(k_{2}-k_{1}\right) \\
& \ln \frac{Y_{2}}{Y_{1}}=\beta_{1}\left(k_{2}-k_{1}\right) \\
& \frac{Y_{2}}{Y_{1}}=e^{\beta_{1}\left(k_{2}-k_{1}\right)} \tag{1}\\
& 100 \times\left(\frac{Y_{2}}{Y_{1}}-1\right)=100 \times\left(e^{\beta_{1}\left(k_{2}-k_{1}\right)}-1\right) .
\end{align*}
$$

Supplemental Text 2

Twenty of the analytes use a natural log transformation, so we can approximately interpret these values as the percent change in the response for 1 unit change in the covariate, or in the case of a categorical variable as a percent change in the response comparing 1 category to a selected baseline category. As an example, consider serum folate and the covariate sex. The beta coefficient, with males as the reference, from model 1 (simple linear regression) is 0.129 (95\% CI: 0.0.104-0.154). Using the approximate interpretation of a natural log transformation, this suggests that females have approximately $12.9 \%(0.129 \times 100)$ higher serum folate levels than males. This interpretation can be made exact using the formula: $100 \times\left(e^{0.129}-1\right)=13.8$.

