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The findings and conclusions contained in these Supplementary Materials are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health or the Centers for Disease Control.
Part 1: Detailed derivation of fractional absorption (Fabs)
Transient exposure model: Laplace domain solutions for post-exposure concentration distribution, flux and mass accumulation. Final Value Theorem for infinite time mass absorption and evaporation.
Consider SC permeant transport after the exposure time. Transport is governed by
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with the initial condition
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and boundary conditions:
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where
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The parameter  is the ratio of evaporation rate to steady-state dermal absorption rate of the permeant. 
Note that the initial mass within the SC, i.e. the mass at the end of the exposure time, is
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Taking the Laplace transform of eq: (S1.1)

:
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with ˆ indicating a function of the Laplace variable s, and
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and the Laplace transform of eq. (S1.3) GOTOBUTTON ZEqnNum576099  \* MERGEFORMAT 
,
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the solution of eq. (S1.6) GOTOBUTTON ZEqnNum824539  \* MERGEFORMAT 
 with specified initial and boundary conditions is:
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with
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where 
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 The flux is given by:
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with
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Flux at 
[image: image15.wmf]xh

=

 is:
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Note that
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Mass accumulation at 
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is:
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The Final Value Theorem allows the determination of the total absorbed amount after infinite time:
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First, rewrite eq. (S1.14) GOTOBUTTON ZEqnNum481194  \* MERGEFORMAT 
 with a single denominator:
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Expand 
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Expand the 3 terms in the numerator:
1:
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Note that 
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Eq. (S1.21) GOTOBUTTON ZEqnNum257454  \* MERGEFORMAT 
 contains terms in  of order -1, 1, 3, 5,…

2:
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Eq. (S1.22) GOTOBUTTON ZEqnNum281347  \* MERGEFORMAT 
 contains terms in  of order -1, 1, 3, 5,…

3:
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Eq. (S1.23) GOTOBUTTON ZEqnNum500442  \* MERGEFORMAT 
 contains terms in  of order -1, 1, 3, 5,…
Expand the 2 terms in the denominator:
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Eqs. (S1.24) GOTOBUTTON ZEqnNum959965  \* MERGEFORMAT 
 and (S1.25) GOTOBUTTON ZEqnNum474777  \* MERGEFORMAT 
 contain terms in  of order 1, 3, 5,…
All terms in the numerator with order -1 cancel. From eqs. (S1.21) GOTOBUTTON ZEqnNum257454  \* MERGEFORMAT 
, (S1.22) GOTOBUTTON ZEqnNum281347  \* MERGEFORMAT 
 and  (S1.23) GOTOBUTTON ZEqnNum500442  \* MERGEFORMAT 
:
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leaving terms of order 1 (and higher) in both numerator and denominator. In taking the limit as 
[image: image34.wmf]0

s

®

, only the 1st order terms are relevant. Collect all 1st order terms.
First order terms from eq. (S1.21) GOTOBUTTON ZEqnNum257454  \* MERGEFORMAT 
 (note 
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First order terms from eq. (S1.22) GOTOBUTTON ZEqnNum281347  \* MERGEFORMAT 
:
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First order terms from eq. (S1.23) GOTOBUTTON ZEqnNum500442  \* MERGEFORMAT 
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From eqs. (S1.27) GOTOBUTTON ZEqnNum447600  \* MERGEFORMAT 
 and (S1.28) GOTOBUTTON ZEqnNum138731  \* MERGEFORMAT 
:
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Therefore,
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Substitute
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Substitute m0 (eq. (S1.5) GOTOBUTTON ZEqnNum929032  \* MERGEFORMAT 
):


[image: image43.wmf](

)

(

)

(

)

(

)

(

)

22

0

22

1

22

22

1

00

2

2

2

2

0

1

14

exp

236

1

1

14

exp

36

21

81

1exp

6

21

.

1

n

exp

L

lag

n

abs

n

exp

lag

n

exp

lag

n

t

Ch

n

m

nt

m

t

n

nt

mm

t

n

t

n

c

p

p

c

p

p

c

p

p

c

¥

=

¥

=

¥

=

æö

æö

-

-

++

ç÷

ç÷

ç÷

ç÷

èø

èø

¥=

+

éù

æö

-

-

êú

+

ç÷

ç÷

êú

èø

+

êú

æö

-+

êú

-

ç÷

êú

ç÷

+

èø

ëû

=

+

å

å

å


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (S1.33)

Thus,
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and
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Part 2: Numerical comparisons of Fabs calculated from two equations

Numerical investigations were undertaken to examine errors in Fabs calculated with the simple approximation given by manuscript eq. 20 in place of the full series solution (eq. 16 in the manuscript). Fifty terms were used in the series, which were sufficient such that for any given , the calculated value of the percent error within at least 2 decimal places was independent of the number of terms for texp/tlag > 0.001. Values of texp/tlag were sought such that for a given , the error, 
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which correlates with the calculated values with an R2 > 0.99, and is represented by the solid line in Fig. S2.1. This is the basis for eq. 22 in the main text.
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Figure S2.1. Areas for which the percent error of the approximate solution for Fabs exceeds 10%, 20%, and 30%.

The gas phase mass transfer coefficient (kg) can be estimated from the following expression, which describes mass transfer into a fluid in laminar flow parallel to a flat plate (Geankoplis 2003):
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The Sherwood number (Sh), Reynolds number (Re) and Schmidt number (Sc) are dimensionless groups defined in terms of the characteristic length of the exposed area (L), diffusivity of the evaporating chemical into air (D), and the velocity (u), density (() and viscosity (() of air as:
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Substituting these definitions into Eq. (S3.1)

 and solving for kg gives
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with consistent units on all parameters.  At 25oC and atmospheric pressure ( /( for air is 0.1558 cm2/s (Wolfram|Alpha 2014), from which the following expression for kg (cm/h) is derived:
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where u is in cm/s and L (cm) is the square-root of the exposed skin area.  The value of D (cm2/s) for a chemical in air at 25oC and one atmosphere pressure can be estimated references including Cussler 1997 and Perry et al. 1984):
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where T is temperature in Kelvin and P is the total pressure in atmospheres (taken in this analysis to be 298K and 1 atm, respectively), MW is the molecular weight of the chemical, MWair = 29, and the diffusion volume for air ((()air = 20.1. The sum of the volumes of molecular parts ((() for a chemical is calculated as
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where nj is the number of parts of the molecule and j designates carbon (C), hydrogen (H), nitrogen (N) and oxygen(O) atoms or the number of aromatic or heterocyclic rings.  The diffusion volumes for common simple molecules like water (12.7) can differ from the sum of the atomic volumes, most probably due to its polarity.  Atomic volumes are also available for chlorine and sulfur, although these were derived from fewer data points making their values known with lower confidence (Perry et al. 1984).  Predictions from Eq. (S3.5)

 are generally within 5 to 10 percent, except for polar gases (Perry et al. 1984).  

Calculated values for (((), D and kg for the four example compounds in Table 1 of the paper and water are listed here in Table S3.1.  Values for kg were calculated assuming an air velocity of 10 cm/s across a 180 cm2 area (i.e., 
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= 13.4 cm), which is equal to the palm of one hand (NIOSH 2009).  Comparisons with experimental D are possible for water and ethanol.  For water in air at 25oC and one atmosphere, D is 0.260 cm2/s (Cussler 1997) compared with the predicted value of 0.251 cm2/s.  For ethanol in air at 20oC and one atmosphere, D is 0.102 cm2/s (Perry et al. 1984), which, after adjusting to 25oC using the factor (298/273)1.75 (as suggested by Eq. (S3.5)

 for the same conditions.  
(S3.5)

), gives 0.119 cm2/s compared with 0.123 cm2/s from Eq. 
Previously, Kasting and Miller (2006) and N’Dri-Stempfer and Bunge (2005) have calculated kg using an expression described by Peress (2003) for estimating evaporation rates from liquid spills:
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in which the coefficient of 176 is consistent with the units chosen here for kg (cm/h) and u (cm/s).  Although Peress (2003) and others (e.g., USEPA 1999) attribute Eq. (S3.7)

 to Mackay and Matsugo (1973), it does not appear in this reference.  The equation developed by Mackay and Matsugo from their experimental study of liquid evaporation was
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for kg (cm/h), u(cm/s) and L(cm).  The coefficient of 79.3 would be replaced by 0.0292 for  L(m) and both kg and u are m/h as was the case in Mackay and Matsugo (1973).  It appears that Eq. (S3.2)

; that is
(S3.8)

 by assuming that the characteristic length L is always one meter and by relating kg to that of a convenient reference chemical (kg,ref) and substituting the definition for Sc from Eq. (S3.7)

 is derived from Eq. 
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In addition, the molecular diffusivity of a chemical in air was assumed to vary inversely with the square-root of its molecular weight (MW), which, compared with the diffusivity of the reference chemical (Dref) with molecular weight (MWref) gives:
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Combining Eqs. (S3.10)

:
(S3.9)

 and 
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Using water as the reference chemical evaporating into air at 25oC and one atmosphere pressure, D = 0.260 cm2/s (Cussler 1997), ( /( for air is 0.1558 cm2/s (Wolfram|Alpha 2014) and Sc = 0.60, which upon substitution into Eq. (S3.8)

 gives
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if L is assumed to always be 100 cm.  Equation (S3.12)

 for MWref = 18.  
(S3.11)

 and (S3.7)

 is derived by combining Eqs. 
Some of the limitations of Eq. (S3.5)

, except for molecules containing atoms for which atomic volumes are not available.  
(S3.7)

 are now apparent. Deviations of L from 1 m are neglected and the assumption that diffusivity varies with the inverse of the square-root of molecular weight is not strictly correct. Using this MW simplification is unwarranted given the relatively easy use of Eq. 
More important, Eq. (S3.13)

 is recommended (e.g., Geankoplis, 2003):
(S3.1)

 for laminar flow should be used when Re is less than about 15000.  For gas flow with Re of about 15000-300000, Eq. (S3.8)

 was derived for areas of about 0.2 to 10 m2 (corresponding to L of 45 to 320 cm) and air velocities up to 670 cm/s.  In fact, the 0.78 power on u is consistent with turbulent flow.  Extensive engineering studies of mass transfer to fluids flowing parallel to the surface of a flat plate have demonstrated that Eq. (S3.7)

 represents mass transfer from larger areas and air velocities than occur for skin exposures to chemicals. Experimentally, Eq. 
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which is characteristic of turbulent flow.  (The interested reader is encouraged to consult almost any engineering textbook covering the subject of mass transfer or transport processes for additional discussion.)  Substituting the definitions from Eq. (S3.13)

 and using ( /( equal to 0.1558 cm2/s for air at 25oC and one atmosphere, followed by rearrangement, gives
(S3.2)

 for the dimensionless groups in Eq. 
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for kg(cm/h), u(cm/s) and L(cm). Not surprisingly, Eq. (S3.3)

.
(S3.8)

 from Mackay and Matsugo (1973), especially in the power on the velocity, which is larger than the 0.5 power on the velocity for laminar flow; see Eq.(S3.14)

 is similar to Eq. 
For indoor air at 25oC and one atmosphere pressure with a typical indoor air velocity of 10 cm/s (Girman 1984), Re calculated using an unrealistically large exposed area of 1 m2 is only 6400.  For the 180 cm2 area of the palm of one hand, Re = 860.  Therefore, expressions for estimating the gas phase mass transfer under laminar flow conditions, such as described by Eq.(S3.1)

, are more appropriate choices for evaluating evaporation from skin.

Furthermore, this analysis is pertinent to diffusion cell designs that include air flow, which due to the small areas involved will almost certainly be laminar.  Depending on the air flow rate and the diffusion area of the cell, the observed evaporation rates may poorly represent actual skin exposure situations, which may involve larger exposed areas and smaller air flow rates.  To most closely mimic the actual exposure, the air flow through the cell and diffusion area should be selected to give a Re value consistent with the actual exposure.


Recently, Gajjar et al. (2013) reported evaporation rates of liquids on human skin or glass mounted in a diffusion cell apparatus used in many skin permeation experiments, which they estimated were characterized by Re of about 150. They observed that the equation from Peress (Eq.(S3.7)

) was effective at "correlating observed and calculated evaporation rates" and recommended its use for similar situations.  However, Gajjar et al. did not measure air velocity in either of their two experimental locations.  Instead, they estimated air velocities by regressing selected mass transfer coefficient models to the experimental data, allowing for different results for the different models.  As a result, they were not able to examine the ability of any of the selected models to predict (and not just correlate) experimental mass transfer nor were they able to test the velocity dependence of the observed mass transfer rates (i.e., whether the velocity is raised to the 0.5 or 0.78 power).  Also, the diffusion cell configuration in their studies was not consistent with flow past a flat plate because the cap holding the liquid was deeper than the thickness of the liquid.  Thus, although the Peress equation may adequately correlate laboratory data obtained in the manner of Gajjar et al., it is not substantiated for occupational exposure in vivo.  In a more carefully controlled set of experiments that included measurements at three known air velocities, Nielsen et al. (1995) observed that the Peress equation significantly and systemically underestimated mass transfer measurements with a deviation that was velocity dependent suggesting that the power of 0.78 on velocity was larger than the experimentally observed effect.

Table S3.1.  Estimates of molecular diffusivity and gas phase mass transfer coefficients for four example compounds and water in air at 25oC and one atmosphere pressure.*

	Compound
	CAS No.
	MF
	nring
	MW
	((()
	D 
	kg

	benzylbutylphthalate
	85-68-7
	C19H20O4
	2
	312.4
	334.62
	0.0444
	353

	diphenylamine
	122-39-4
	C12H11N1
	2
	169.2
	185.07
	0.0606
	434

	ethanol
	64-17-5
	C2H6O1
	0
	46.1
	50.36
	0.123
	697

	p-nitroaniline
	100-01-6
	C6H6N2O2
	1
	138.1
	113.02
	0.0765
	507

	water
	
	H2O
	
	18
	12.7
	0.251
	1120


*D = molecular diffusivity in air at 25oC and one atmosphere (cm2/s), kg = gas phase mass transfer coefficient (cm/h) for a typical indoor air velocity of 10 cm/s across a 180 cm2 area representing the palm of one hand (i.e., L = (180 cm2)1/2 = 13.4 cm), MF = molecular formula, MW = molecular weight, nring = number of aromatic or heterocyclic rings, and (( = sum of the volume of molecular parts.
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Part 4: Excel spreadsheet for calculations

A Microsoft Excel spreadsheet has been developed to calculate quantities such as those presented in Table 2 of the manuscript. The interested user may use the spreadsheet to make their own calculations for arbitrary compounds and exposure durations. User inputs are required for: lag time (tlag, h); aqueous permeability coefficient (kp, cm/h); water solubility (Sw, mg/mL), , exposure duration (texp, min) and area of exposure (area, cm2).  Calculated outputs, and their related equations from the manuscript, are: texp/tlag, Fabs (eq. 16), alternate Fabs (eq. 18), m0 (eq. 5), mabs(texp) (eq. 25), mT (eq. 24), and t90%/tlag (eq. 23). In addition, derived quantities are calculated for mabs(texp)/mT, Fabs.m0/mT, and t90%. Formulas used to calculate absorbed masses assume a saturated aqueous donor (i.e., maximum thermodynamic activity). Twenty terms are used for series solutions. Formulas used for the calculated values may be viewed by hovering the mouse over the appropriate cell. Output cells may be formatted, for example by changing the number of decimal places, but formulas and calculated outputs are protected and may not be changed by the user.
To the best of the authors’ knowledge, the calculations provided by the Excel spreadsheet correctly reflect equations presented in the accompanying manuscript. However, neither the authors, nor NIOSH, nor the Colorado School of Mines warrant or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of the information generated by the Excel spreadsheet.
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