Supporting Information:

Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension

*Madhukar B. Kolli1,2, *Nandini D.P.K. Manne1,2, Radhakrishna Para2, Siva K. Nalabotu 1,2, Geeta Nandyala2, Tolou Shokuhfar6, Kun He6,7, Azhang Hamlekan6, Ma J.Y4, Paulette S. Wehner3, Lucy Dornon3, Ravikumar Arvapalli2, Kevin M. Rice2, and Eric R. Blough1,2,5

1Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine
2Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States
3Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
4Health Effects Laboratory Division, NIOSH, Morgantown, WV
5Department of Pharmaceutical Sciences and Research, Marshall University
6Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA.
7School of Materials Science and Engineering, Shandong University, Ji’nan, China

* Authors contributed equally

Author for correspondence:
Eric Blough
Center for Diagnostic Nanosystems
Room 241R, Robert C. Byrd Biotechnology Science Center Building
Department of Pharmaceutical Science and Research
1700 3rd Ave., Marshall University
Huntington, WV 25755-1090
E-mail: blough@marshall.edu
Ph.No- 304-696-2708
Fax No- 304-696-3766
Supplementary Figure 1. Cerium oxide nanoparticles attenuate monocrotaline-induced serum inflammatory proteins.