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Abstract

A lightweight (60 g), personal nanoparticle respiratory deposition (NRD) sampler was developed 

to selectively collect particles smaller than 300 nm similar to their typical deposition in the 

respiratory tract. The sampler operates at 2.5 Lpm and consists of a respirable cyclone fitted with 

an impactor and a diffusion stage containing mesh screens. The cut-point diameter of the impactor 

was determined to be 300 nm with a sharpness σ = 1.53. The diffusion stage screens collect 

particles with an efficiency that matches the deposition efficiency of particles smaller than 300 nm 

in the respiratory tract. Impactor separation performance was unaffected by loading at typical 

workplace levels (p-value = 0.26). With chemical analysis of the diffusion media, the NRD 

sampler can be used to directly assess exposures to nanoparticles of a specific composition apart 

from other airborne particles. The pressure drop of the NRD sampler is sufficiently low to permit 

its operation with conventional, belt-mounted sampling pumps.

Introduction

Workers produce and handle engineered nanomaterials in substantial quantities in the 

manufacture of hundreds of commercial products.(1) Exposure through inhalation of these 

materials is a primary concern for worker health and safety because of the sensitivity of the 

respiratory system.(2) The airborne nanoparticle component (≤100 nm) is of particular 

concern because nanoparticles can elicit substantially greater toxic effects than larger 

particles of the same composition.(3, 4) Moreover, nanoparticles may translocate from the 

respiratory tract to other organs and the bloodstream.(5, 6) The National Institute for 

Occupational Safety and Health (NIOSH) has proposed draft guidelines for ultrafine 

titanium dioxide, which includes recommended exposure limits and an exposure assessment 

method.(7) The proposed exposure assessment method relies on traditional 8 h, filter-based, 

personal respirable sampling.(7)

Size-selective samplers are used to collect particles with efficiencies that represent how 

particles enter into or deposit within the respiratory system. Respirable samplers are used to 

collect particles with efficiencies that approximate the fraction of aerosol that, once inhaled, 

can penetrate into the gas-exchange region of the respiratory tract.(8) These samplers are 

designed to match the respirable particulate matter sampling criterion, which defines 

collection efficiency of particles as 50% for 4 μm particles and 100% for particles smaller 

than 1 μm.(9) By this definition, respirable samplers must prevent the collection of larger 

particles (>10 μm) that may exist in the environment while selectively sampling only these 

smaller particles at the specified collection efficiencies. However, when aerosols include 

both nanoparticles and respirable particles, the mass measured from a sample collected using 
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a respirable sampler will often be dominated by the larger, non-nanoparticles. Hence, in 

many occupational environments, where nanoparticles and respirable particles coexist, the 

respirable sampler has limited usefulness in quantifying nanoparticle exposures.

To overcome this problem for assessing titanium dioxide nanoparticle exposures, NIOSH 

recommends analysis by electron microscopy with energy dispersive X-ray spectroscopy to 

characterize the size and composition of nanoparticles apart from the larger particles 

collected with a respirable sampler.(7) However, there are no standard methods for this 

analysis, and electron microscopy is particularly expensive (>300 USD per sample) 

compared to bulk chemical analysis methods (~30 USD per sample).

A personal sampling method that removes larger respirable particles and only collects 

nanoparticles would streamline exposure assessments. An ideal sampler would be portable, 

allow placement within the breathing zone of a worker and collect nanoparticles in a way 

that mimics their respiratory deposition.(10) By capturing only nanoparticles on the 

sampling media, cost-efficient bulk analysis techniques (e.g., inductively coupled plasma 

mass spectrometry) could then be used to estimate the amount of deposited nanomaterials.

Wire mesh screens have been used successfully to preferentially collect nanoparticles.(11) 

The Brownian motion of particles smaller than 300 nm enhances their deposition onto the 

surface of the wires by diffusion.(12) Stainless steel screens have typically been used, 

although they are incompatible with bulk analyses techniques that require dissolution of the 

collection media.(13) Gorbunov et al.(14) developed a size-selective sampler that uses an 

impactor to remove large particles and nylon mesh screens to collect nanoparticles. They 

analyzed these nanoparticles by treating the nylon mesh screens in aqua regia and 

subjecting them to microwave digestion. While their sampler provides a method for 

separating and analyzing nanoparticles from other aerosol components, its large size limits 

this sampler to area sampling and does not collect particles with physiological relevance.

This work presents the development of a personal nanoparticle respiratory deposition (NRD) 

sampler that was designed to be capable for deployment as a full-shift, personal sampler that 

selectively collects nanoparticles apart from larger particles in a workplace atmosphere. 

Rather than attempting to collect nanoparticles with 100% efficiency, the sampler was 

designed to collect nanoparticles with efficiency matching how they deposit in the 

respiratory tract to provide a physiologic relevance to sampler’s performance. Consequently, 

the NRD sampler is fundamentally different from commonly used samplers (e.g., respirable 

and inhalable samplers) that are based on penetration of particles to different regions of the 

respiratory system.(15) A new sampling criterion—nanoparticulate matter (NPM)—was first 

devised to provide the target collection efficiency, by particle size, for the sampler. The 

NRD sampler presented here was developed by incorporating a respirable sampler (to 

eliminate particles larger than 10 μm), an impaction plate (to further remove particles larger 

than 300 nm) and a deposition stage where the remaining nanoparticles deposit onto nylon 

mesh screens with collection efficiency to match this target sampling criterion. Subsequent 

chemical analysis of the nanoparticles deposited on the collection media of the NRD 

sampler allows for characterization of nanoparticles apart from larger background particles.
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Materials and Methods

Development of a Target Size Selection Curve

Particle deposition in all regions of the respiratory tract is shown as the dashed line in Figure 

1. Deposition of particles measured experimentally under a wide variety of conditions(16–

18) generally follows the respiratory deposition curve for the average adult under light 

exercise and nose-breathing conditions presented by the International Commission on 

Radiological Protection (ICRP).(19) For this reason, the ICRP curve was used to develop the 

NPM sampling criterion. The region of interest for the NPM curve was all particles smaller 

than 300 nm, the minimum deposition for submicrometer particles.

We have defined NPM fraction, for a given particle diameter, as the fraction of those 

particles smaller than 300 nm that, when inhaled, can deposit in the respiratory system. 

Therefore, the NPM fraction is a subset of the inhalable particulate matter (IPM) collection 

efficiency, defined as

(1)

where d is the particle diameter in μm.(9) The collection efficiency for NPM is given by

(2)

where F(x) is the cumulative probability density function of the standardized normal 

variable x,

(3)

with Γ = 0.04 μm (40 nm), and Σ = 3.9. The mathematical form for this criterion is the same 

as that used for the thoracic and respirable criteria.(9) The value for Γ represents the particle 

size associated with 50% deposition, or d50 cutoff diameter. This value was selected as the 

particle size smaller than 300 nm associated with 50% deposition as defined by the ICRP 

curve. Examining Figure 1, we find that in this region d50 = 40 nm. The value for Σ was 

fitted by minimizing the sum of squares error between the ICRP total deposition curve and 

the NPM equation for particles smaller than 300 nm. This minimization was carried out in 

an MS Excel (Microsoft Corp., Redmond, WA) spreadsheet using the solver function.

The resulting NPM sampling criterion is shown by the solid line in Figure 1. This criterion 

provided a rational target for the development of the NRD sampler and ties its performance 

to the physiologically relevant fractional deposition of nanoparticles in all regions of the 

respiratory tract. The shallow shape of the collection efficiency curve matched the collection 

efficiency performance form associated with diffusion techniques (rather than the sharp 

curve associated with impaction). This shallow target curve allowed the sampler to rely on 

diffusion-based collection with a pressure drop compatible with conventional occupational 

hygiene belt-mounted sampling pumps.
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Description of the NRD Sampler

The NRD sampler consists of three primary components assembled in series: a 25 mm 

respirable aluminum cyclone (model 225-01-01, SKC Inc., Eighty Four, PA), an impaction 

stage and a diffusion stage (Figure 2). Air is drawn through the cyclone, which removes 

particles larger than the respirable sampler criterion and transports the respirable fraction to 

the impaction stage, where particles larger than 300 nm are removed. In the diffusion stage, 

the remaining airborne nanoparticles diffuse to and are collected onto eight hydrophilic 

nylon mesh screens with 11 μm pore size and 6% porosity (model NY1102500, Millipore 

Inc., Billerica, MA) with an efficiency closely matching the NPM sampling criterion.

The sampler is lightweight (~60 g), fits in a standard lapel mount (model 225-1, SKC Inc., 

Eighty Four, PA) and operates at an airflow rate (Q) of 2.5 Lpm with a pressure drop of 3.54 

kPa (14.2 in. H2O). The sampler can be used with a commercially available belt-mounted 

sampling pump for the duration of a work-shift (e.g., AirCheck 2000, SKC Inc., Eighty 

Four, PA).

The impaction stage was designed following Marple and Willeke (1976) impactor design 

procedures to achieve a d50 of approximately 300 nm at a flow rate Q = 2.5 Lpm. The initial 

design parameters included the selection of jet width (W) and number (n) to achieve a 

Reynolds number 500 < Re < 3000. This stage consists of three round acceleration nozzles 

having a width W and throat length L and an impaction plate at a distance S from the 

nozzles. The impaction plate requires the application of a thin layer of vacuum grease prior 

to operation. The final design parameters are presented in Table 1 and were calculated 

assuming temperature T = 20°C, pressure P = 98.6 kPa, aerosol particle density (sodium 

chloride) ρp= 2200 kg/m3, air density ρg = 1.2 kg/m3 and air viscosity μ = 1.81 × 10−5 Pa s.

Filtration theory from Cheng et al.,(20) validated and modified for use with nylon mesh 

screens in our laboratory tests, was used to determine the number and mesh size of diffusion 

screens necessary to match the NPM sampling criterion. The diffusion screens are tightly 

held in place in the diffusion stage by an aluminum ring with three spokes. Tests of the 

collection efficiencies of the impactor, both clean and preloaded, and the mesh screen 

diffusion collector were performed in series.

Evaluation of the Impactor Performance

The experimental setup used to evaluate the impaction stage is included as Supporting 

Information (Figure S1). A three-jet Collison nebulizer (BGI, Waltham, MA) was used to 

aerosolize a 16% (by volume) aqueous sodium chloride (Fisher Scientific, lot no. 028258) 

solution. The resulting polydisperse aerosol was fed into a dilution chamber, mixed with 

clean, dry air, and passed through a charge neutralizer (model 3054, TSI Inc., Shoreview, 

MN) and a diffusion dryer (model 3062, TSI Inc., Shoreview, MN). The aerosol was then 

passed into a 0.002 m3 glass chamber, through the impactor stage and into a second identical 

glass chamber.

The particle number concentration by size was measured alternately from within the glass 

chamber upstream (Cin) and from within that downstream (Cout) of the impactor. Sampling 

probes and tube lengths were carefully matched so that particle losses upstream and 
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downstream the impactor would be equal. A scanning mobility particle sizer (SMPS, model 

3080, TSI Inc., Shoreview, MN; airflow = 0.3 Lpm) was used to count particles from 15 to 

500 nm, and an aerodynamic particle sizer (APS, model 3321, TSI Inc. Shoreview, MN) was 

used to count particles from 0.5 to 2 μm. For the APS data, each particle size interval was 

converted from aerodynamic diameter to mobility equivalent diameter following Peters et al.

(21) The APS inlet was modified so that the 1 Lpm sample entered directly into the aerosol 

inlet at 1 Lpm and the 4 Lpm sheath air, which is internally filtered, was left open to room 

air. A mass flow controller (model GFC37, Aalborg Instruments & Controls Inc., New 

York, NY) was used to maintain a constant flow rate of 2.5 Lpm drawn through the 

impactor with a vacuum pump (model 4F740A, Gast Manufacturing Inc., Benton Harbor, 

MI). The alternating of measurements upstream and downstream of the impactor was 

repeated at least three times. A differential pressure gauge (Magnehelic 2020, Dwyer 

Instruments Inc., Michigan City, IN) was connected to each glass chamber to measure the 

pressure drop across the impactor stage.

The collection efficiency (E) of the impactor stage for a given particle size (i) was calculated 

as: Ei=1 – Cout,i/Cin,i. The collection efficiency data were fitted with a logistic sigmoidal 

algorithm (OriginPro v8.5, OriginLab Corporation, Northampton, MA) of the form

(4)

where a1, a2, x0, and p are the coefficients determined by the algorithm. The sigmoidal 

algorithm allowed accurate estimation of the d50, d84, and d16 of the impactor stage, which 

correspond respectively with the 50%, 84%, and 16% collection efficiencies of the impactor. 

The sharpness (σ) of the collection efficiency curve was calculated following Hinds(22) as

(5)

Evaluation of Impactor Performance after Loading

The performance of the impactor after being loaded with particles was evaluated using the 

experimental setup shown in the Supporting Information (Figure S2). An aerosol composed 

of fine test dust (batch no. 1569, AC Spark Plug Company, Flint, MI) with 10-μm volume 

median diameter was generated using a fluidized bed aerosol generator (model 3400, TSI 

Inc., Shoreview, MN) and injected into a 0.02 m3 sampling chamber. The aerosol in the 

chamber was sampled simultaneously with two samplers: (1) the NRD respirable cyclone 

with the impactor stage downstream; and (2) the NRD respirable cyclone with a 37 mm 

filter cassette containing a Teflo filter (P/N 225-1709, SKC, Inc., Eighty Four, PA) with a 

support pad downstream. The filter was weighed before and after each test using a 

microbalance (model MT5, ISO 9001, Mettler-Toledo Inc., Columbus, OH) to determine the 

mass concentration of dust passing to the impactor.
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Two loading levels were targeted to simulate sampling in an environment with 3 mg/m3 

passing the cyclone to the impactor for 4 h (12 mg/m3 × h) and 8 h (24 mg/m3 × h). These 

values represent worst-case loading of the impactor at the threshold limit value established 

by the American Conference of Governmental Industrial Hygienists for respirable particles 

not otherwise specified over times relevant to workplace sampling. Actual loading levels 

measured from the filter sampler for the targeted 4 and 8 h loading scenarios were, 

respectively, 13.6 mg/m3 × h, and 21.5 mg/m3 × h.

After loading, the impaction stage was separated from the cyclone and placed in the 

previously described impaction stage evaluation setup (see the Supporting Information). The 

sampler’s efficiency, now with preloaded impaction stages, was again tested with sodium 

chloride aerosol. The collection efficiency was measured in triplicate following the same 

procedures outlined above in the impaction stage evaluation. Each loading and collection 

efficiency measurement was repeated twice and the impaction substrate was cleaned and 

new grease (High Vacuum Grease, Dow Corning Corporation, Midlan, MI) was applied 

prior to each loading replicate.

Two-way analysis of variance (ANOVA) was performed (Minitab, Minitab Inc., State 

College, PA) on efficiency versus loading and particle size to determine whether the 

collection efficiency was significantly affected by loading of the impaction substrate (p ≤ 

0.05). The loading levels used in the ANOVA were no previous loading, 13.6 mg/m3 × h, 

and 21.5 mg/m3 × h.

Effective Deposition to the Screens of the NRD Sampler

The experimental setup used to measure the effective deposition on the diffusion stage of the 

NRD sampler is included as Supporting Information (Figure S3). Deposition was computed 

for monodispersed aerosols with mean particle diameters of 20, 40, 100, 200, and 500 nm. 

To generate seed aerosol for 20 nm tests, an electrospray aerosol generator (model 3480, 

TSI Inc., Shoreview, MN) was used to aerosolize a 0.01% (by volume) solution of 

ammonium fluorescein (C20H12O5, Acros Organics, lot no. A0206621001) in 0.01 N 

ammonium hydroxide (NH4OH). A three-jet collison-type nebulizer (BGI, Waltham, MA) 

was used to nebulize an ammonium fluorescein solution of 0.03% by volume for the 40, 

100, and 200 nm tests and 0.15% by volume for the 500 nm tests. The aerosol was fed into a 

dilution chamber, mixed with clean dry air and passed through an electrostatic classifier 

model 3071, TSI Inc., Shoreview, MN). Because of the difficulty to produce substantial 

concentrations of small (20 nm) fluorescein particles, the dilution chamber was removed 

during the generation of the 20 nm aerosol with the electrospray aerosol generator. The 

resulting monodisperse aerosol was neutralized (model 3054, TSI Inc., Shoreview, MN) and 

dried (model 3062, TSI Inc., Shoreview, MN) before entering a 0.02 m3 sampling chamber. 

An SMPS (model 5.4 Grimm Technology, Douglasville, GA) was used to verify particle 

size and number concentration in the sampling chamber.

The fully assembled NRD sampler (25 mm aluminum cyclone with impaction stage and 

diffusion stage containing 8 nylon mesh screens) and a 37 mm open-face filter cassette 

containing two Durapore membrane filters with a support pad (P/N DVPP04700, Millipore, 

Billerica, MA) were placed inside the sampling chamber. Two separate vacuum pumps 
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(Omni-5, BGI, Waltham, MA) were used to draw an airflow of 2.5 Lpm through each 

sampler. The vacuum pumps were calibrated with a mass flow meter (model 4146, TSI Inc., 

Shoreview, MN) prior to each test. Particles were collected for a period of time ranging 

between 75 min for the 500 nm particles and 12 h for the 20 nm particles to ensure 

collection of a sufficient quantity of fluorescent material to detect particles on the collection 

substrate of the diffusion stage.

The amount of fluorescent material deposited on the screens of the diffusion stage and on 

the filter of the open-face cassette was determined following the protocol outlined by 

Tolocka et al.(23) Both substrates were immersed in 4 mL of 0.01 N NH4OH and sonicated 

(Solid State/Ultrasonic FS-14, Fisher Scientific Inc., Pittsburgh, PA) for 10 min. The mass 

concentration of fluorometric material in the recovered solution was determined using a 

fluorometer (Modulus 9200, Turner BioSystems, Sunnyvale, CA). The deposition efficiency 

(DD) of particles on the diffusion stage was calculated as DD = MD/MF, where MD is the 

mass concentration of fluorometric material deposited on the diffusion substrate and MF is 

that deposited on the filter of the open-face cassette. These deposition and recovery 

procedures were repeated three times for each particle size, and new nylon mesh screens and 

filters were used for each repetition. Mean deposition efficiency of these repetitions was 

compared to the NPM curve and assessed for fit.

Results and Discussion

Evaluation of the Impactor Performance

The collection efficiency curve of the impaction stage is shown in Figure 3, and the physical 

characteristics and parameters of the stage are reported in Table 1. The minimum collection 

efficiency (8% ± 3%) was observed for particles with a diameter near 100 nm. For particles 

progressively smaller than this minimum value, collection efficiency gradually increased to 

26% (±7%) for 15 nm particles. This increase in efficiency is attributed to diffusion losses 

that may occur throughout the impactor stage. A similar increase in efficiency due to 

diffusion was observed in the smallest stages of a recently developed, high flow rate (40 

Lpm), portable nanosampler consisting of four impaction stages and an impaction filter.(24) 

For particles larger than 100 nm, the collection efficiency of the NRD sampler impaction 

stage rapidly increased to 96% (±6%) for 550 nm particles. Particles in this size range carry 

sufficient inertia to impact upon the greased impaction plate where they were trapped.

The characteristic cutoff diameter (d50) of the impactor stage was measured to be 295 nm, 

and the geometric standard deviation (σ) or collection efficiency sharpness was 1.53. This 

curve is sufficiently sharp to remove particles larger than the target cutoff diameter (300 nm) 

from the airstream. The square root of Stokes number at the 50% collection efficiency was 

0.32 and the pressure drop (ΔP) across the stage was 2.49 kPa. The Reynolds number of the 

impactor nozzles was 2212, within the desired range of 500 < Re < 3000, where the 

efficiency curve is at its sharpest.(25)

Impactors have been developed that offer cutoff diameters similar to that of the NRD 

impaction stage.(26–29) For example, low pressure impactors operate at pressures 

substantially lower than atmospheric to reduce drag forces and allow collection of particles 
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as small as 50 nm.(30) Micro orifice impactors employ up to a few thousand small (40–200 

μm) round nozzles to achieve smaller cutoff diameters. These impactors achieve sharper 

collection efficiency curves (σ = 1.2) than the impaction stage of the NRD sampler, 

however, they require rather large pumps to achieve high flow rates and low pressures, 

making them less portable.(25) In contrast, commercially available belt-mounted pumps are 

capable of handling the pressure drop imparted by the impaction stage of the NRD sampler.

Misra et al.(31) developed a personal cascade impactor sampler that consists of four 

impaction stages and operates at a flow rate of 9 Lpm with a pressure drop of 2.7 kPa (11 in. 

of H2O), a pressure drop compatible with a somewhat larger than normal belt-mounted 

vacuum pump. Similarly to the NRD impaction stage, the final stage of their personal 

cascade impactor achieves a cutoff diameter of 250 nm with collection efficiency sharpness 

ranging between 1.28 and 1.53 depending on the collection substrate employed in the stage.

(31)

Evaluation of Impactor Performance after Loading

The results of the loading tests performed on the impaction stage are summarized in Table 2. 

When compared to tests with no prior loading, the effect of particle loading on collection 

efficiency was negligible, as the means ±1 standard deviation overlap for all values in Table 

2. The results of the two-way ANOVA confirmed that there is not a significant difference in 

efficiency between loadings (p-value = 0.257). The p-value for the interaction term between 

particle size and loading was close to significant (p-value = 0.063) at a 5% alpha level, 

indicating that with different loadings the efficiency varies at different particle sizes. The 

greatest reduction of the impactor’s collection efficiency was observed at 15 nm, the 

smallest particle size tested, where efficiency after loading experienced the greatest decrease 

from E = 0.26 without prior loading to E = 0.11 after 13.6 mg/m3 × h loading. The lower 

efficiency after loading is attributed primarily to greater uncertainty in this size channel 

because of lower particle counts. One-way ANOVA was performed on efficiency at the 

three loading levels for the 15 nm particles showing no significant difference (p-value = 

0.102).

Loading of particles on the impactor plate yielded minimal effects (4% to 6% difference) at 

the largest particle diameters (>300 nm), where particle bounce had greater potential to 

affect the performance of the subsequent diffusion stage in the NRD sampler. Bounce of 

particles larger than 300 nm from the impaction plate would cause particles with 

substantially greater mass than nanoparticles to pass through the impactor and collect on the 

diffusion screens. This phenomenon would result in a positive sampling bias. The cutoff 

diameter of the impactor was not substantially shifted after loading (d50 = 265 nm for 13.6 

mg/m3 × h loading and 275 nm for 21.5 mg/m3 × h loading). The test dust used in the 

loading tests contained considerable mass (10 μm volume median diameter) larger than the 

d50 of the cyclone of 4 μm, which passed through the cyclone and contributed to the loading 

of the impaction plate. This indicates that the impaction substrate can handle worst-case 

particle loadings without experiencing substantial shifts in the way that the impactor 

performs.
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Lee et al.(32) evaluated the performance of a greased metal plate in a single-stage, single-

orifice impactor by loading up to 17 mg/m3 × h polydisperse glass beads. They observed 

that at this loading there was minimum particle bounce and re-entrainment. The collection 

efficiency for particles larger than d50 remained high (95%) and constant, although the 

collection efficiency curve was shifted and the d50 decreased from 5.26 to 4.36 μm. The 

discrepancy in the results of Lee et al.(32) and the ones of the present study may be due to 

several factors. The acceleration nozzle of Lee’s single-stage impactor was rectangular (W = 

0.15 cm and L = 5.59 cm), with a substantially larger cutpoint (5.26 μm) than the impactor 

developed for the NRD sampler. Additionally, the loading tests of Lee et al. were performed 

with glass spheres with size ranging between 3 and 10 μm, very different from the irregular 

surfaces of the dust particles used in this study’s loading tests.(33) Particles with uneven 

surfaces may experience increased adhesion to the greased impaction surface, making them 

less prone than spheres to the formation of a cone in the center of the impaction plate. The 

formation of a cone of deposited particles on the impaction surface has been found to shift 

the efficiency curve to smaller diameter particles.(34, 35) However, visual inspection 

confirmed the absence of these cones after the loading tests performed on the impaction 

plate of the NRD sampler.

Effective Deposition to the Screens of the NRD Sampler

The direct measurement of effective deposition of particles to the eight screens of the NRD 

sampler is shown in Figure 4 (open symbols). Deposition was lowest (6% ± 2%) for 500 nm 

particles, where the impactor efficiency was at its maximum, and gradually increased with 

decreasing particle size. This figure shows that the deposition to the screens was in 

agreement with the NPM sampling criterion (solid line), within uncertainty, for all points 

with the exception of the 200 and 500 nm particles where it matched within <4%. This 

means that particles deposited on the screens can be analyzed to determine the concentration 

of nanoparticles that would deposit in the respiratory system.

Few examples of samplers with efficiencies matching respiratory deposition can be found in 

the literature. Of note is the size-selective inlet designed to mimic a modified ICRP lung 

deposition fraction for particles smaller than 1 μm developed by Kuo et al.(36) The inlet was 

designed to remove large (>1 μm) and small (<0.02 μm) particles and produce a resulting 

aerosol that simulates only the fraction reaching the ciliated regions of the lungs. No 

collection substrate following the inlet was developed, and rationale for the target curve that 

they used was not provided. Koehler et al.(37) used polyurethane foam (PUF) as a selector 

and collector for particles to mimic total aerosol deposition in the respiratory tract. This PUF 

sampler follows the ICRP total respiratory deposition model. The PUF sampler provides a 

more physiologically relevant estimate of aerosol hazard than samplers that estimate aerosol 

aspiration fractions;(37) however, the PUF sampler is not specific to nanoparticles.

The NRD sampler presents an advantage over samplers traditionally used to collect particles 

in workplaces. Inhalable, thoracic and respirable particulate matter samplers are designed to 

collect particulate matter that penetrates to a specific region of the respiratory tract.(15, 38) 

These samplers cannot be used for accurate estimation of particulate matter deposited in the 

respiratory tract because not all particles that are aspirated deposit.(37) In contrast, particles 
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collected to the deposition stage of the NRD sampler represent the fraction of particulate 

matter smaller than 300 nm that deposits in the respiratory system. This deposited fraction 

provides a more reliable dose estimate and may better reflect adverse health effects related 

to nanoparticle aerosol inhalation.(39) This is particularly true for particles smaller than 300 

nm as their deposition can occur anywhere in the respiratory tract.(19)

Unlike respirable and inhalable particles, there is currently no available consensus on a 

sampling criterion for nanoparticles. In the absence of a consensus, the NPM criterion was 

developed as target efficiency for the NRD sampler, following the best available deposition 

curve for nanoparticles in the respiratory tract and agreeing with experimental lung 

deposition studies. The NRD sampler can be modified in the future to follow a different 

deposition curve, should a different international standard than the one proposed here 

ultimately be adopted. The impaction stage can be modified (using impaction theory) to 

adjust for the size fraction penetrating into the diffusion stage, and the number and mesh 

size of the screens in the diffusion stage can be modified (using filtration theory) to match a 

different deposition curve.

The NRD sampler has some limitations that constrain its intended use to the estimation of 

personal exposures to airborne metal and metal-oxide nanoparticles. Sections of the nylon 

mesh screens can be analyzed with scanning electron microscopes for sizing, counting and 

assessing chemical composition of the particles collected on the nylon fibers. However, a 

comprehensive analysis of the particulate collected with the NRD sampler at this time 

requires digestion of the nylon media and recovery of the particles, which we are working 

on for metallic nanoparticles. The collection efficiency of the NRD sampler has been 

characterized for spherical and agglomerate metal particles. Its performance for fibrous 

particles such as carbon nanotubes is unknown. Fibrous particles may remain trapped in the 

impaction stage and depending on their orientation in the airstream their deposition on the 

diffusion stage of the NRD sampler may not reflect the NPM criterion for deposition in the 

respiratory tract.

The lightweight, personal NRD sampler was developed to selectively collect particles 

smaller than 300 nm similar to their typical deposition in the respiratory tract. The pressure 

drop of the NRD sampler is sufficiently low to permit its operation with conventional, belt-

mounted sampling pumps. With chemical analysis of the diffusion media, the NRD sampler 

can be used to directly assess exposures to nanoparticles of a specific composition apart 

from other airborne particles.

Future work will include field tests of the NRD sampler to distinguish nanoparticles apart 

from background aerosols. Practical considerations will be assessed, including sample 

duration, frequency of impaction plate cleaning and regreasing, the effects of tipping the 

cyclone-based sampler, and increases of pressure drop across the diffusion stage with mass 

loading. In addition, analytical techniques require further elaboration, including nylon mesh 

digestion and detection limit determination.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Total deposition fraction versus particle diameter (aerodynamic). — is the NPM criterion; 

···· is deposition in all regions of the respiratory tract as defined by the ICRP.(19) All other 

symbols are deposition fraction in the normal lung at FRC=3000 mL for controlled 

breathing patterns. Open symbols are data from Heyder et al. (1986): □ is Vt = 500 mL, Q = 

250 mL/s; △ is Vt = 1000 mL, Q = 250 mL/s; ○ is Vt = 1000 mL, Q = 500 mL/s. Closed 

symbols are data of Kim and Hu (1998) and Kim and Jaques (2000): □ is Vt = 500 mL, Q = 

250 mL/s; ▲ is Vt = 1000 mL, Q = 250 mL/s; ● is Vt = 1000 mL, Q = 500 mL/s. Vt = tidal 

breathing volume and Q = air flow rate.
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Figure 2. 
The components and schematic drawing with airflow paths of the NRD sampler.
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Figure 3. 
Collection efficiency by size of the impaction stage. Open symbols represent SMPS data; 

closed symbols represent APS data. Particle diameter is the mobility equivalent diameter. 

APS particle size intervals were converted to mobility equivalent diameter following Peters 

et al.(21)
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Figure 4. 
NPM sampling criterion, ICRP total respiratory deposition(19) and effective deposition on 

the diffusion stage of the NRD sampler.
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Table 1

Physical Characteristics, Flow Parameters and Experimental Results of the Impaction Stagea

Physical Characteristics

W (cm) 0.053

L (cm) 0.135

S/W 1.9

Flow Parameters

Re 2212

V (cm/sec) 6295

Experimental Results

d50 (μm) 0.295

√Stk50 0.47

σ 1.53

ΔP (kPa) 2.49

a
Note: W, nozzle width; L, nozzle lengths; S, impaction plate-to-nozzle distance; Re, Reynolds number; V, nozzle air velocity; d50, 50% cutpoint; 

√Stk50, square root of Stokes number at 50% collection efficiency; σ, collection efficiency curve sharpness; ΔP, pressure drop; Stokes number at 

the 50% cut-off diameter is calculated as Stk50 = (4ρpQdp2Cc)/(9πnμW3), where dp is the mobility equivalent particle diameter, and Cc is 

Cunningham slip correction factor.

Environ Sci Technol. Author manuscript; available in PMC 2016 February 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cena et al. Page 18

Table 2

Effects of Loading on Collection Efficiency of the Impaction Stage

particle diameter [nm] prior impactor loading [mg/m3 × h]

0 13.6 21.5

collection efficiency (stdev)

15 0.26 (0.08) 0.11 (0.08) 0.15 (0.06)

50 0.12 (0.02) 0.08 (0.04) 0.07 (0.02)

80 0.07 (0.01) 0.07 (0.04) 0.04 (0.01)

100 0.08 (0.03) 0.09 (0.02) 0.06 (0.02)

300 0.54 (0.02) 0.57 (0.01) 0.57 (0.08)

500 0.90 (0.03) 0.89 (0.01) 0.86 (0.07)

800 0.98 (0.02) 0.97 (0.01) 0.92 (0.08)

1000 0.99 (0.01) 0.97 (0.01) 0.93 (0.07)
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