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Abstract

The bimolecular rate coefficients  and  were measured using the 

relative rate technique at (297 ± 3) K and 1 atmosphere total pressure. Values of (2.7 ± 0.7) and 

(4.0 ± 1.0) × 10−15 cm3 molecule−1 s−1 were observed for  and , 

respectively. In addition, the products of  and  gas-

phase reactions were investigated. Derivatizing agents O-(2,3,4,5,6-

pentafluorobenzyl)hydroxylamine and N, O-bis (trimethylsilyl)trifluoroacetamide and gas 

chromatography mass spectrometry (GC/MS) were used to identify the reaction products. For 

 reaction: hydroxyacetaldehyde, 3-hydroxypropanal, 4-hydroxybutanal, 

butoxyacetaldehyde, and 4-(2-oxoethoxy)butan-2-yl nitrate were the derivatized products 

observed. For the  reaction: benzaldehyde ((C6H5)C(=O)H) was the only 

derivatized product observed. Negative chemical ionization was used to identify the following 

nitrate products: [(2-butoxyethoxy)(oxido)amino]oxidanide and benzyl nitrate, for 

 and , respectively. The elucidation of these products 

was facilitated by mass spectrometry of the derivatized reaction products coupled with a plausible 

2-butoxyethanol or  reaction mechanisms based on previously published 

 gas-phase mechanisms.

INTRODUCTION

Indoor environment concentrations of the nitrate radical ( ), an important reactive 

species, have been estimated by Sarwar et al. to be approximately 1.1 parts per trillion (ppt) 

(2 × 107 molecules/cm3) [1]. The indoor concentrations of volatile organic compounds 

(VOCs) can be elevated from activities such as cleaning, washing, and painting and as a 

result of building energy-saving measures [2,3]. Therefore, in the indoor environment, 

reactions between VOCs and  are possible and based on previous  rate 

coefficient measurements, the transformation of VOCs into oxygenated organic reaction 

products can effectively compete with building air exchange [4]. Potential VOC oxidation 
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products include alcohols, aldehydes, ketones, dicarbonyls, carboxylic acids, and organic 

nitrates [5–7]. These products have the potential to cause a number of adverse health effects 

including asthma, allergy, and respiratory irritation [8,9].

Benzyl alcohol, an aromatic primary alcohol, is used as a solvent in paint stripper and 

waterborne-coating applications and as an intermediate for the synthesis of target molecules 

used in pharmaceuticals, cosmetics, preservatives, and flavoring and fragrance agents. 

Production capacity worldwide of benzyl alcohol is estimated at 50 kT [10]. The 

kOH•+benzyl alcohol ((28 ± 7) × 10−12 cm3 molecule−1 s−1) and the kO3+benzyl alcohol, (~ 6 × 

10−19 cm3 molecule−1 s−1) and the respective reaction products have been investigated 

previously [11]. Liu et al. have investigated electric plugin air freshener emissions and found 

the benzyl alcohol concentration reached a maximum of about 0.05 ppm (1.2 × 1012 

molecule cm−3) after about 50 h and remained relatively stable even after ozone was 

introduced into the system [12].

2-Butoxyethanol, a butyl ether of ethylene glycol, is used as a solvent in paints and surface 

coatings and other consumer products such as inks, cleaning products, liquid soaps, and oil 

spill dispersants. Worldwide production of 2-butoxyethanol in 1994 was estimated to be 300 

kT [13]. The kOH•+2-butoxyethanol (18.6 × 10−12 cm3 molecule−1 s−1) [14] and the reaction 

products have been investigated [15]. A recent assessment of emissions from a typical 

consumer glass cleaner showed concentrations of 0.04–0.17 ppm (1.0–4.2 × 1012 molecule 

cm−3) of 2-butoxyethanol for about 4 h after cleaning [16]. Other studies have suggested 

that 2-butoxyethanol emissions will continue over hours or even days after using a product 

containing this chemical [17,18]. Exposures may take place both during the cleaning process 

and from remnants left after cleaning.

In this study, the kinetics and reaction products of benzyl alcohol and 2-butoxyethanol with 

 have been determined. This is important for assessing occupant exposures since both 

chemicals are in wide use, and the products formed could be potential human health hazards. 

The relative rate technique was used to determine the  reaction kinetics of benzyl 

alcohol and 2-butoxyethanol using gas chromatography/mass spectrometry (GC/MS). 

Products from the reaction of these chemicals and  were determined using the chemical 

derivatization agents O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PF-BHA) and N, O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) with GC/MS and also using negative 

chemical ionization (NCI) mass spectrometry to detect gas-phase nitrate species.

EXPERIMENTAL

Apparatus and Materials

Experiments to measure the gas-phase rate coefficient of the  and 

benzyl alcohol reactions were conducted with a previously described apparatus [19]. A brief 

description is provided here. Reactants were introduced, and samples were withdrawn 

through a 6.4-mm Teflon® Swagelok fitting attached to a 65-L Teflon film chamber. 

Compressed air from the National Institute for Occupational Safety and Health (NIOSH) 

facility was passed through anhydrous CaSO4 (Drierite, Xenia, OH) and molecular sieves 

(Drierite) to remove both moisture and organic contaminants. This dry compressed air was 
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added as a diluent to the reaction chambers and measured with a 0–100 L min−1 mass flow 

controller (MKS, Andover, MA). Analysis of this treated compressed air by gas 

chromatography/mass spectrometry revealed that if contaminants were present they would 

be below the part per trillion range. The treated compressed air was also analyzed for nitric 

oxide (NO) using a Thermo Electron model 42i NO–NO2–NOx analyzer (Waltham, MA) 

and showed that 6 ppb (1.4 × 1011 molecule cm−3) NO is present in the background in 

NIOSH air. The filler system was equipped with a syringe injection port, facilitating the 

introduction of both liquid and gaseous reactants into the chambers with the flowing air 

stream. All reactant mixtures and calibration standards were generated by this system. An 

additional port was added to the Teflon chamber to facilitate the injection of N2O5 

(synthesis described below).

Two separate 65-L Teflon-film reaction chambers were used in these experiments. The 

reaction chamber contents were sampled for 5 min, using a solid-phase microextraction 

(SPME) fiber (Supelco, Milwaukee, WI), which was then inserted through a Merlin 

Microseal (Half Moon Bay, CA) and into the heated injector of either one of two (Agilent, 

Wilmington, DE) 6890 gas chromatographs each with a 5975 mass selective detector 

(GC/MS) and Agilent ChemStation software. The GC temperature program used was the 

same for both systems: An injection port was set to 250°C, and the oven temperature began 

at 40°C for 6 min and was ramped 20°C min−1 to 240°C and held for 2 min. All data were 

compiled from both systems and were used to determine the  rate coefficient for each of 

the compounds

Identification of reaction products was made using PFBHA to derivatize carbonyl products, 

whereas carbonyl alcohols were derivatized using BSTFA [20]. Experimental methods for 

reaction product identification were similar to methods used for kinetic experiments, except 

the reference compound was excluded from the reaction mixture.

Derivatized reaction products were analyzed using a Varian (Palo Alto, CA) 3800/Saturn 

2000 GC/MS system operated in both the electron ionization (EI) and chemical ionization 

(CI) modes [20]. Compound separation was achieved by a J&W Scientific (Folsom, CA) 

DB-5MS (0.32 mm i.d., 30-m long, 1-μm film thickness) column and the following GC oven 

parameters: 60°C for 1 min then 20°C/min to 170°C, then 3°C/min to 280°C and held for 5 

min.

Samples were injected in the splitless mode, and the GC injector was returned to split mode 

1 min after sample injection, with the following injector temperature parameters: 60°C for 1 

min then 180°C/min to 250°C and held to the end of the chromatographic run [20]. The 

Saturn 2000 ion trap mass spectrometer was tuned using perfluorotributylamine (FC-43). 

Full-scan EI spectra were collected from m/z 40 to 650. Acetonitrile was the CI reagent used 

for all CI spectra. When possible, commercially available samples of the identified products 

were derivatized and subsequently analyzed to verify matching ion spectra and 

chromatographic retention times.

Nitrate products were analyzed using NCI on an Agilent (Wilmington, DE) 6890 gas 

chromatograph with a 5975 mass selective detector (GC/MS) and Agilent ChemStation 
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software. The GC temperature program used was the injection port was set to 150°C and 

oven temperature began at 30°C for 2 min and was ramped 8°C min−1 to 150°C and held for 

16 min and then ramped 20°C min−1 to 220°C and held for 5 min. Full-scan NCI spectra 

were collected from m/z 40 to 700. Hydrogen was the CI reagent used for all NCI spectra.

Nitrate radicals were generated by the thermal decomposition of N2O5 using a similar 

method as described by Atkinson et al. [5,21]. N2O5 (solid) kept at −85°C was removed 

from cold trap and allowed warm slightly and transferred to an evacuated 2-L collection 

bottle until manifold pressure was between 0.1–0.6 Torr. The collection bottle was then 

pressurized with ultra-high purity nitrogen up to 1000 Torr and connected to the reaction 

chamber via a Teflon shutoff valve. The valve to the collection bottle and the chamber 

shutoff valve were opened, and the system was allowed to equilibrate for 10 s. For kinetics 

and product experiments, approximately 30 min elapsed before any samples were collected 

after the introduction of N2O5. Initial experiments with just the individual reference, N2O5, 

and compound of interest are run prior to combining all of these to ensure that the 

compounds or products do not have retention times that interfere with peaks that are used for 

the relative rate technique.

All compounds were used as received and had the following purities: from Sigma-Aldrich 

(Milwaukee, WI): benzaldehyde (99%), 1,3,5-trimethylbenzene (mesitylene) (98%), 4-

isopropyltoluene (p-cymene) (99%), 2-butoxyethanol (99.5%), benzyl alcohol (99.8%), 

acetonitrile (99.93%), BSTFA (99%), O-(2, 3,4,5,6-pentafluorobenzyl)hydroxylamine 

hydrochloride (PFBHA) (98+%), and methanol (99%). Nitrogen dioxide as a 5% mixture in 

nitrogen and ultra-high purity (UHP) oxygen was obtained from Butler Gases (Morrisville, 

PA). Helium (UHP grade), the carrier gas, was supplied by Amerigas (Sabraton, WV) and 

used as received. Experiments were carried out at (297 ± 3) K and 1 atmosphere pressure.

Procedures

The experimental procedures for determining the 2-butoxyethanol or 

 reaction kinetics were similar to those described previously 

[19]. The  rate coefficient experiments for 2-butoxyethanol employed the use of two 

reference compounds: benzaldehyde and mesitylene. The  rate coefficient experiments 

for benzyl alcohol employed the use of two reference compounds: p-cymene and 

mesitylene:

(1)

(2)

The rate equations for reactions (2) and (3) are combined and integrated, resulting in the 

following equation:
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(3)

If a reaction with  is the only removal mechanism for 2-butoxyethanol or benzyl alcohol 

(Alcohols) and reference, a plot of ln([Alcohols]0/[Alcohols]t) versus ln([Ref]0/[Ref]t) yields 

a straight line with an intercept of zero. Multiplying the slope of this linear plot by kRef 

yields  or  (Figs. 1 and 2). Using two different reference 

compounds with different  rate coefficients improves the accuracy of the 

 or  rate coefficient measurement. The 

simultaneous plotting of two Alcohols/Ref data sets demonstrates that other reactions are not 

removing 2-butoxyethanol or benzyl alcohol.

For the  and  kinetic experiments, the typical 

concentrations of the pertinent species in the 65-L Teflon chamber were 0.3–0.9 ppm ((0.7–

2) × 1013 molecule cm−3) 2-butoxyethanol or benzyl alcohol, 0.3–0.8 ppm ((0.7–2.0) × 1013 

molecule cm−3) reference, 3.9–23 ppm ((1–5.7) × 1014 molecule cm−3) of N2O5 (0.1–0.6 

Torr, which corresponds to an  concentration of 0.3–1.5 ppm at 298 K) and 6 ppb (1.4 × 

1011 molecule cm−3) NO as background in NIOSH air. The gas-phase mixtures were 

allowed to reach equilibrium before initial species concentration ([X]0) samples were 

collected. The total ion chromatogram (TIC) peak area from the Agilent 5973 mass selective 

detector was used to determine 2-butoxyethanol/benzyl alcohol and reference 

concentrations.

Derivatization of the carbonyl reaction products was initiated by flowing 15–25 L of 

chamber contents at 3.8 L min−1 through an impinger containing 4 mL of methanol with no 

effort to prevent methanol evaporation during sample collection. The sample was removed 

from the impinger, and 100 μL was withdrawn and analyzed using NCI. To the remaining 

sample solution (approximately 2 mL), 250 μL of 0.02 M PFBHA in acetonitrile was added 

to derivatize the carbonyl reaction products to oximes [20]. This solution was allowed to 

react for 24–48 h in the dark. The reacted solutions were gently blown to dryness with UHP 

N2, reconstituted with 100 μL of methanol, and then 1 μL of the reconstituted solution was 

injected onto the Varian 3800/Saturn 2000 GC/MS system. The derivatization of hydroxy 

groups (alcohols) was achieved by subsequent reconstitution of the dried PF-BHA oximes 

with 150 μL of commercially available BSTFA. These PFBHA/BSTFA solutions were 

heated to approximately 60°C for 45 min to complete the silylation and then 1 μL of the 

solution was injected into the Varian 3800/Saturn 2000 GC/MS system [22].

RESULTS

 Reaction Rate Coefficient

The  rate coefficient for 2-butoxyethanol was obtained using the relative rate method 

described above. The plot of a modified version of Eq. (3) is shown in Fig. 1. The ln([Ref]0/

[Ref]t) term is divided by the respective reference rate coefficient (benzaldehyde (2.4 ± 0.5) 
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× 10−15 cm3 molecule−1 s−1 or mesitylene (8.8 ± 2.2) × 10−16 cm3 molecule−1 s−1) [23] and 

multiplied by 10−15 cm3 molecule−1 s−1, resulting in a unitless number. This yields a slope 

that is equal to the  rate coefficient, , divided by 

10−15 cm3 molecule−1 s−1. This modification allows for a simultaneous comparison of the 

two reference compound/2-butoxyethanol data sets. The slope of the line shown in Fig. 1 

yields an  bimolecular rate coefficient, , of (2.7 ± 0.2) × 10−15 cm3 

molecule−1 s−1. The use of benzaldehyde and mesitylene as references resulted in 

 bimolecular rate coefficients of (2.0 ± 0.2) and (2.9 ± 0.4) × 10−15 

cm3 molecule−1 s−1, respectively (see Table I). The data points at the origin are 

experimental points before  addition, t = 0, data showed no detectable loss of 2-

butoxyethanol or reference. The error in the rate coefficient stated above is the 95% 

confidence level from the random uncertainty in the slope. Incorporating the uncertainties 

associated with the reference rate coefficients (±25% for benzaldehyde and mesitylene) [23] 

used to derive the  rate coefficient yields a final value for 

, of (2.7 ± 0.7) × 10−15 cm3 molecule−1 s−1 [23]. The ratios 

 and  incorporating the 

uncertainties are 1.0 ± 0.3 and 3.1 ± 0.8, respectively. The  rate 

coefficient, , has not been previously reported.

 Reaction Rate Coefficient

The  rate coefficient for benzyl alcohol was also obtained using the relative rate method, 

and a plot of a modified version of Eq. (3) is shown in Fig. 2. The ln([Ref]0/[Ref]t) term is 

divided by the respective reference rate coefficient (p-cymene (1.0 ± 0.3) × 10−15 cm3 

molecule−1 s−1 and mesitylene (8.8 ± 2.2) × 10−16 cm3 molecule−1 s−1) [23] and multiplied 

by 10−15 cm3 molecule−1 s−1. The slope of the line shown in Fig. 2 yields an 

bimolecular rate coefficient, , of (4.1 ± 0.3) × 10−15 cm3 molecule−1 s−1. 

The use of p-cymene and mesitylene as references resulted in 

bimolecular rate coefficients of (4.3 ± 0.4) and (4.0 ± 0.4) × 10−15 cm3 molecule−1 s−1, 

respectively (see Table I). The error in the rate coefficient stated above is the 95% 

confidence level from the random uncertainty in the slope. Incorporating the uncertainties 

associated with the reference rate coefficients (±25% for p-cymene and mesitylene) [23] 

used to derive the  rate coefficient yields a final value for 

, of (4.0 ± 1.0) × 10−15 cm3 molecule−1s−1. The ratios 

 and  incorporating the 

uncertainties are 4.0 ± 1.0 and 5.0 ± 1.0, respectively. The  rate 

coefficient, , has not been previously reported.

 and  Reaction Products Using PFBHA and NCI

Derivatization of nonsymmetric carbonyls using PF-BHA or PFBHA/BSTFA typically 

resulted in multiple chromatographic peaks due to stereoisomers of the oximes. 
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Identification of multiple peaks of the same oxime compound is relatively simple since the 

mass spectra for each chromatographic peak of a particular oxime are almost identical [20]. 

In most cases, the m/z 181 ion relative intensity for the chromatographic peaks due to 

 or  reaction product oximes was the base peak 

in the mass spectrum and was used to generate selected ion chromatograms. The mass 

spectra of compounds additionally derivatized with BSTFA could contain m/z 73 ion from 

the [Si(CH3)3]+ fragments [20]. The product data are described below.

The following chromatographic retention time and mass spectra data were observed utilizing 

PF-BHA derivatization and the Varian 3800/Saturn 2000 GC/MS system. The reaction 

products’ chromatographic peak areas were a function of the initial 2-butoxyethanol/benzyl 

alcohol concentration and were observed only after  initiation of 2-butoxyethanol/

benzyl alcohol/methanol/air mixtures. Derivatization experiments performed in the absence 

of 2-butoxyethanol or benzyl alcohol, but in the presence of all other chemicals in the 

reaction chamber ( ) did not result in any of the data reported below.

The PFBHA reaction products observed from the  via hydrogen 

abstraction are hydroxyacetaldehyde, 3-hydroxypropanal, 4-hydroxybutanal, and 

butoxyacetaldehyde and 4-(2-oxoethoxy)butan-2-yl nitrate. The PFBHA reaction product 

observed from the  via hydrogen abstraction was benzaldehyde. 

Elucidation of the proposed reaction products for 2-butoxyethanol (listed in Table II) was 

facilitated by mass spectrometry of the derivatized reaction product coupled with plausible 

 reaction mechanisms based on the previously published 

gas-phase reaction as described below [7,23–27].

The chromatographic retention time and mass spectra data were observed for NCI utilizing 

the Agilent 6890/5975 GC/MS system. TIC from the Agilent 5973 mass selective detector 

was used to determine products for  and 

reactions. The reaction products’ chromatographic peak areas were a function of the initial 

2-butoxyethanol/benzyl alcohol concentration and were observed only after  initiation 

of 2-butoxyethanol/benzyl alcohol/methanol/air mixtures. Experiments performed in the 

absence of 2-butoxyethanol or benzyl alcohol, but in the presence of all other chemicals in 

the reaction chamber ( ) did not result in any of the data reported below. 

The presence of a strong m/z 46 ion relative intensity is an indicator of a nitrate product 

[28,29].

Oxime at Retention Time of 10.0 and 10.3 min

The oxime observed with a chromatographic retention time of 10.0 and 10.3 min had ions of 

m/z (relative intensity): 57 (8%), 99 (8%), 117 (8%), 161 (8%), 181 (100%), 195 (19%), 226 

(6%), and 238 (5%). In the CI spectra, an M + 1 ion of m/z 256 was observed for the 

PFBHA-derivatized sample. The m/z 256 ion is the result of a PFBHA derivatization, 

indicating a reaction product with a molecular weight of 60. A proposed reaction product 

assignment of hydroxyacetaldehyde (CH(=O)CH2OH) (glycolaldehyde) was based on the 

observed data and previous investigations [22].
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Oxime at Retention Time of 10.0, 10.3, and 10.5 min

The oxime observed with a chromatographic retention time of 10.0, 10.3, and 10.5 min had 

ions of m/z (relative intensity): 99 (7%), 117 (7%), 161 (6%), 181 (100%), 194 (18%), 225 

(17%), and 238 (7%). In the CI spectra, an M + 1 ion of m/z 270 was observed for the 

PFBHA-derivatized sample. The m/z 270 ion is the result of a PFBHA derivatization, 

indicating a reaction product with a molecular weight of 74. A proposed reaction product 

assignment of 3-hydroxypropanal (CH(=O)CH2CH2OH) was based on the observed data.

Oxime at Retention Time of 10.5 min

The oxime observed with a chromatographic retention time of 10.5 min had ions of m/z 

(relative intensity): 99 (7%), 117 (7%), 161 (7%), 181 (100%), 195 (11%), and 238 (8%). In 

the CI spectra, an M + 1 ion of m/z 284 was observed for the PFBHA-derivatized sample. 

The m/z 284 ion is the result of a PFBHA derivatization, indicating a reaction product with a 

molecular weight of 88. A proposed reaction product assignment of 4-hydroxybutanal 

(CH(=O)CH2CH2CH2OH) was based on the observed data.

Oxime at Retention Time of 13.6 min

The oxime observed with a chromatographic retention time of 13.6 min had ions of m/z 

(relative intensity): 57 (16%), 99 (7%), 161 (8%), 181 (100%), 195 (8%), 207 (12%), 225 

(14%), and 239 (17%). In the CI spectra, an M + 1 ion of m/z 312 was observed for the 

PFBHA-derivatized sample. The m/z 312 ion is the result of a PFBHA derivatization, 

indicating a reaction product with a molecular weight of 116. A proposed reaction product 

assignment of butoxyacetaldehyde (CH3CH2CH2CH2OCH2CH(=O)) was based on the 

observed data.

Oxime at Retention Time of 16.1 min

The oxime observed with a chromatographic retention time of 16.1 min had ions of m/z 

(relative intensity): 45 (6%), 57 (15%), 71 (17%), 99 (6%), 117 (6%), 161 (7%), 181 

(100%), 195 (9%), and 255 (16%).%). In the CI spectra, an M + 1 ion of m/z 326 was 

observed for the PFBHA-derivatized sample. The m/z 326 ion is the result of a PFBHA 

derivatization, indicating a reaction product with a molecular weight of 177. The major ion 

observed at 16.1 min was m/z = 131, which is probably due to the loss of one NO2 molecule 

(m/z = 46). A proposed reaction product assignment of 4-(2-oxoethoxy)butan-2-yl nitrate 

(CH3CH(NO2)CH2CH2OCH2CH(=O)) was based on the observed data.

PFBHA and BSTFA can be utilized in a two-step derivatization method (see above) to 

derivatize compounds that contain both a carbonyl and a hydroxyl group. The oximes at 

retention times of 10.0, 10.3, and 10.5 min are proposed products, all of which contain a 

carbonyl and hydroxyl group. PFBHA/BSTFA experiments were attempted but were 

unsuccessful in capturing any of the oximes with the hydroxyl group at retention times 10.0, 

10.3, and 10.5 min. The lack of observation could be due to their low product yield coupled 

with inefficient derivatization chemistry. No evidence of any fragments was observed at m/z 

73 ions, which is a characteristic ion of the OH functional group derivatization [20]. 
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Glycolaldehyde has been observed by this group, and both the mass spectrum and retention 

times are in good agreement with previous work [22].

NCI 2-Butoxyethanol Nitrate Product at 18.5 min

For 2-butoxyethanol, the ion at a chromatographic retention time of 18.5 min had ions of m/z 

(relative intensity) 46 (100%), 58 (18%), 90 (22%), 115 (70%), and 117 (25%). The 

proposed identity of the ion at 18.5 min was made by observance of an ion at m/z = 117, 

which is due to the loss of one NO2 molecule (m/z = 46). This loss has been commonly 

observed in mass spectra of alkyl and arylalkyl nitrates [28,29]. The m/z 117 ion observed in 

the NCI spectrum indicates a reaction product with a molecular weight of 163. A proposed 

reaction product assignment of [(2-butoxyethoxy)(oxido) amino]oxidanide 

(CH3CH2CH2CH2OCH2CH2ONO2) was based on the observed data.

The PFBHA reaction product observed from the  via hydrogen 

abstraction is benzaldehyde. The  reaction product observed and 

positively identified using the pure compound for verification by derivatization was 

benzaldehyde.

Benzaldehyde ((C6H5)C(O)H)

The oxime observed with a chromatographic retention time of 17.2 and 17.5 min had ions of 

m/z (relative intensity) 181 (100%), 271 (38%), 300 (27%), 301 (55%), and 302 (11%). The 

m/z 301 ion is the result of a PFBHA derivatization, indicating a reaction product with a 

molecular weight of 106. Using acetonitrile for CI, an M + 1 ion of m/z of 302 was observed 

for the PFBHA-derivatized sample. The PFBHA-benzaldehyde oxime was synthesized to 

confirm this chromatographic assignment [11].

NCI Benzyl Alcohol Nitrate Product at 21.1 min

For benzyl alcohol, the ion at a chromatographic retention time of 21.1 min had ions of m/z 

(relative intensity) 46 (90%), 62 (10%), 77 (38%), 105 (100%), and 107 (60%). The 

proposed identity of the ion at 21.1 min was made by observance of an ion at m/z = 107, 

which is due to the loss of one NO2 molecule (m/z = 46). The m/z 107 ion observed in the 

NCI spectrum indicates a reaction product with a molecular weight of 153. A proposed 

reaction product assignment of benzyl nitrate ((C6H5)CH2ONO2) was based on the observed 

data.

DISCUSSION

A rate coefficient of (2.7 ± 0.7) × 10−15 cm3 molecule−1 s−1 was determined for the reaction 

of  and 2-butoxyethanol using benzaldehyde and mesitylene as references (Fig. 1). Even 

though the same number of data points was collected for each 2-butoxyethanol reference 

pair, the kinetic plot shows a wider distribution of data points for the 2-butoxyethanol/

mesitylene pair. This wider distribution is likely due to mesitylene’s  rate coefficient 

being a factor of 3 slower than benzaldehyde’s  rate coefficient. It should be noted that 

the individual  rate coefficients determined using a single reference 

were (2.0 ± 0.2) × 10−15 cm3 molecule−1 s−1 and (2.9 ± 0.4) × 10−15 cm3 molecule−1 s−1 for 
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benzaldehyde and mesitylene, respectively. It can be observed that these two rate 

coefficients are not within the 95% confidence limit regression error of each other as has 

been typically observed by this group. However, the discrepancy in the references’ rate 

coefficients does not significantly impact the determined  rate 

coefficient from the entire data set.

Rate Coefficient Data Comparison Ratio

The nitrate radical ( ) like the hydroxyl radical (OH•) can react with VOC by H-atom 

abstraction and/or addition to carbon–carbon double bonds [7,25,27,30]. (Structures 1 and 2 

show the sites for these nitrate radical reactions.) The similarity of these reactants’ 

mechanisms could be used to address the limited number of measured  rate coefficients 

by comparing measured OH• rate coefficients and  rate coefficients. Using the value 

determined here, the measured  of (2.7 ± 0.7) × 10−15 cm3 molecule−1 s−1 

and the previously measured kOH•+2-butoxyethanol of 18.6 ×10−12 cm3 molecule−1 s−1 [14] can 

be compared to one another. The ratio of rate coefficients ( ) is 6889 for 2-

butoxyethanol. Likewise for benzyl alcohol, the ratio of rate coefficients ( ) is 

7000 [11]. The similarity of these two ratios prompts an expanded comparison.

An overall ratio of rate coefficients  can be estimated by using the average alcohol 

rate coefficient values for kOH• and . These average values can be determined from 

published measurements from Atkinson and Arey for all of the alcohols rate coefficients that 

have been measured [23]. To date, the average alcohol kOH• is 9.7 × 10−12 cm3 molecule−1 

s−1 and the average alcohol  is 1.4 × 10−15 cm3 molecule−1 s−1 (20 alcohol kOH• 

measurements and 4 alcohol  measurements) [23]. Using these average values, the ratio 

of rate coefficients  for the entire set of alcohols that have been measured to date 

is 6929, which is consistent with the rate coefficient ratio from the measurements presented 

here. Dividing known kOH• alcohol rate coefficients by 7000 may be a suitable approach for 

approximating unknown  alcohol rate coefficients.

 PFBHA Reaction Products

For the  and  reactions, the experimental 

parameters were set to minimize side reactions and highlight the  hydrogen abstraction 

and/or  addition. The possible mechanistic steps leading to product formation are 

described below. The NO2 is present due to the dissociation of N2O5 into  and NO2.

Oximes at Retention Time of 10.0, 10.3, and 10.5 min—The oximes proposed as 2-

hydroxyacetaldehyde (CH(=O)CH2OH) (glycolaldehyde), 3-hydroxypropanal 

(CH(=O)CH2CH2OH), and 4-hydroxybutanal (CH(=O)CH2CH2CH2OH) were observed in 

the PFBHA derivatization experiments from the  reaction. The 

radical CH3CH2CH2CH2OCH(•)CH2(OH) is formed by hydrogen abstraction (position B on 

Structure 1) of the molecule as seen in Fig. 3. The radical reacts with oxygen to form the 
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peroxyradical, CH3CH2CH2CH2OCH(OO)(•)CH2(OH). This species then dissociates to 

form (•)(OO)CHCH2(OH) and CH3CH2CH2CH2O(•). The (•)(OO)CHCH2(OH) radical can 

further react with a RO molecule to form RO2 and CH(=O)CH2OH. The 

CH3CH2CH2CH2O(•) radical isomerizes to form CH3CH(•)CH2CH2OH or 

(•)CH2CH2CH2CH2OH. The CH3CH(•)CH2CH2OH radical reacts with oxygen to form the 

peroxyradical, CH3CH(OO)(•)CH2CH2OH and then loses a CH3 group. The CH(OO)

(•)CH2CH2OH radical can further react with a RO molecule to form RO2 and 

CH(=O)CH2CH2OH. The (•)CH2CH2CH2CH2OH radical reacts with oxygen to form the 

peroxyradical, (•)(OO)CH2CH2CH2CH2OH. This can further react with a RO molecule to 

form RO2 and CH(=O)CH2CH2CH2OH.

Oximes at Retention Time of 13.6 and 16.1 min—The oximes proposed as 

butoxyacetaldehyde (CH3CH2 CH2CH2OCH2CH(=O)) and 4-(2-oxoethoxy)butan-2-yl 

nitrate (CH3CH(NO2)CH2CH2OCH2CH(=O)) were observed in the PFBHA derivatization 

experiments from the  reaction. The radical 

CH3CH2CH2CH2OCH2CH(•)(OH) is formed by hydrogen abstraction (position A on 

Structure 1) of the molecule as seen in Fig. 3. This then reacts with O2 to give 

CH3CH2CH2CH2OCH2CH(=O) and HO2. The CH3CH2CH2CH2OCH2CH(=O) molecule 

can react with another  to form CH3CH(•) CH2CH2OCH2CH(=O). This then reacts with 

NO2 to form CH3CH(NO2)CH2CH2OCH2CH(=O).

 PFBHA Reaction Products

Benzaldehyde Retention Time of 17.2 and 17.5 Min—Benzaldehyde (C6H5C(=O)H) 

was the only product observed in the PFBHA derivatization experiments from the 

 reaction. The radical (C6H5)CH(•)(OH) is formed by hydrogen 

abstraction of the alkyl hydrogen (position A on Structure 2) and a subsequent reaction with 

O2 to give C6H5C(=O)H and HO2 (see Fig. 4).

 and  Nitrate Reaction Products

The  reaction product proposed as [(2-butoxyethoxy)(oxido) 

amino]oxidanide (CH3 CH2CH2CH2OCH2CH2ONO2) was detected using NCI. The radical 

CH3CH2CH(•)CH2OCH2CH2OH is formed by hydrogen abstraction (position C on 

Structure 1) of the 2-butoxyethanol molecule as seen in Fig. 3. The radical then isomerizes 

to form CH3CH2CH2CH2OCH2CH2O(•) and then adds NO2 to form 

CH3CH2CH2CH2OCH2CH2ONO2.

The  reaction product proposed as benzyl nitrate ((C6H5)CH2ONO2) 

was detected using NCI. The radical (C6H5)CH(•)(OH) is formed by hydrogen abstraction 

(position A on Structure 2) of the alkyl hydrogen (see Fig. 4). This rearranges via a 

hydrogen shift to (C6H5)CH2O(•), then adds NO2 to form (C6H5)CH2ONO2.

To investigate the role NO2 plays in the formation of benzyl nitrate, experiments were 

conducted using 2 ppm NO2 and 0.75 ppm of either benzyl alcohol or benzaldehyde in a 65-

L reaction chamber using very similar procedure as described above. The NCI system was 

employed to determine the possible products. These experiments did not lead to the 
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formation of any detectable benzyl nitrate. Therefore, the benzyl nitrate formation pathway 

is dependent on the presence of  and the formation of the alkoxy radical 

((C6H5)CH2O(•)).

Atmospheric Implications in Indoor Air

An indoor environment nitrate radical concentration of 2 × 107 molecules/ cm−3 

(approximately 1.1 ppt) has been previously estimated by Sarwar et al. [1]. Recently indoor 

nitrate radical concentrations of 1–58 ppt have been measured [31]. Using the 

 rate coefficients reported here, a pseudo–first-order 

rate coefficient (k′) of 0.0002–0.01 h−1 and 0.0003–0.017 h−1, respectively, was determined. 

A comparison of this value to a typical indoor air exchange rate of 0.6 h−1 [4] suggests that 

air exchange is the most likely removal mechanism for 2-butoxyethanol and benzyl alcohol 

in the indoor environment. However, surface reactions may be important due to the fact that 

both compounds are large volume solvents and cleaners and can be applied to surfaces 

repeatedly.

An Agilent NCI GC/MS system provides the capability to analyze reaction products directly 

without the use of derivatization agents. This system can detect organic nitrates, which may 

be important components in indoor air. Some specific organic nitrates such peroxyacyl 

nitrates have demonstrated the potential to cause a number of adverse health effects 

including asthma, respiratory irritation, and is possibly a carcinogen [32,33]. It is anticipated 

that a number of organic nitrate compounds may be present in indoor air, may have harmful 

health effects, and should be investigated further [34].
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Figure 1. 
2-Butoxyethanol relative rate plot with benzaldehyde (◇) and mesitylene (■) as reference 

compounds. The  rate coefficient, , was measured 

to be (2.7 ± 0.7) × 10−15 cm3 molecule−1 s−1.
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Figure 2. 
Benzyl alcohol relative rate plot with p-cymene (△) and mesitylene (◆) as reference 

compounds. The  rate coefficient, kNO3•+benzyl alcohol, was measured to 

be (4.0 ± 1.0) × 10−15 cm3 molecule−1 s−1.
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Figure 3. 

Proposed reaction mechanisms for observed products with 2-butoxyethanol and .
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Figure 4. 

Proposed reaction mechanisms for observed products with benzyl alcohol and .
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Structure 1. 
2-Butoxyethanol.
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Structure 2. 
Benzyl alcohol.
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Table I

Rate Constants Measured from  Reaction

Compound Reference kalc/kref kalc[cm3 molecule−1 s−1]

2-Butoxyethanol Benzaldehdye 1.0 2.0 × 10−15

2-Butoxyethanol Mesitylene 3.1 2.9 × 10−15

2-Butoxyethanol Overall 2.7 × 10−15

Benzyl alcohol p-Cymene 4.0 4.3 × 10−15

Benzyl alcohol Mesitylene 5.0 4.0 × 10−15

Benzyl alcohol Overall 4.0 × 10−15
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Table II

Products Observed from  Reaction

Retention Time (min) Structure Molecular Weight (amu) CI Ions Observed

10.0 60

25610.3

10.0 74 270

10.3

10.5

10.5

88 284

13.8

116 312

16.1

177 326

Negative chemical ionization spectra

18.5

163 163
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