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Abstract

A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on 

aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission 

measurements performed upstream and downstream of the SMF system were compared, for cases 

when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with 

two formulations of additives containing Fe-based catalysts. The effects were assessed for four 

steady-state engine operating conditions and one transient cycle. The results showed that the SMF 

system reduced the average total number and surface area concentrations of aerosols by more than 

100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed 

very effective in the removal of diesel aerosols. When added at the recommended concentrations 

(30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, 

and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may 

have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. 

The additives had only a minor impact on the concentration and size distribution of volatile and 

semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives 

substantially increased Fe concentration in the EOut, but the SMF system was effective in removal 

of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be 

much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. 

The results support recommendations that these additives should not be used in diesel engines 

unless they are equipped with exhaust filtration systems. Since the tested SMF system was found 

to be very efficient in removing Fe introduced by the additives, the use of these additives should 

not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The 

findings from this study should promote a better understanding of the benefits and challenges of 

*Author to whom correspondence should be addressed. Tel: 412-386-5912; abugarski@cdc.gov. 

SUPPLEMENTARY DATA
Supplementary data can be found at http://annhyg.oxfordjournals.org/.

DISCLAIMER
The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the views of NIOSH. 
Mention of company names or products does not constitute endorsement by the Centers for Disease Control and Prevention. The 
authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial 
interest in the subject matter or materials discussed in this manuscript.

HHS Public Access
Author manuscript
Ann Occup Hyg. Author manuscript; available in PMC 2016 April 01.

Published in final edited form as:
Ann Occup Hyg. 2016 March ; 60(2): 252–262. doi:10.1093/annhyg/mev071.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://annhyg.oxfordjournals.org/


using sintered metal systems and fuel additives to control the exposure of underground miners and 

other workers to diesel aerosols and gases.
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INTRODUCTION

Diesel engines are one of the primary contributors to the presence of ultrafine and nano-

aerosols in ambient air and occupational environments. Due to mounting concern about 

adverse health outcomes, extensive efforts are being made to reduce exposures of the 

general population and workers to diesel aerosols. Retrofit-type diesel particulate filter 

(DPF) systems are extensively used to reduce exposure of underground miners to aerosols 

emitted by diesel-powered vehicles. The systems made with sintered metal filter (SMF) 

media that are regenerated with help of the iron-based fuel borne catalysts (FBCs) and on-

board electrical heaters are considered as a potential solution for curtailing emissions from 

underground mining vehicles operated over light- and medium-duty cycles (Stachulak and 

Hensel, 2010). The FBCs provide direct contact between catalyst and diesel particulate 

matter (DPM), and ameliorate the regeneration process.

With high toxicity and oxidative potential, metals containing nanoparticles are believed to 

be one of the contributors to overall toxicity of diesel aerosols (Sanderson et al., 2014). The 

traditional sources of trace metals in diesel emissions are lubricating oil, engine wear, and 

aftertreatment wash-coat deterioration. Warner et al. (2003) estimated that trace metals from 

those sources typically contribute <1% to the total mass of aerosols emitted by diesel 

engines that are not equipped with exhaust aftertreatment devices.

An additional source of metallic aerosols is the combustion of fuels treated with 

organometallic fuel additives, also known as FBCs. The FBCs are used to improve the 

combustion process, decrease particulate mass emissions, increase fuel efficiency (Richards 

et al., 2006; D'Urbano and Mayer, 2007), and/or to improve the regeneration of DPF 

systems by providing a nucleus for oxidation of soot trapped in the DPF element (Richards 

et al., 2006). The DPF systems that use FBCs with base-metal and base-metal/platinum (Pt) 

formulations that did not show significant potential for oxidation of NO to NO2 (Richards et 

al., 2006; Czerwinski et al., 2007) are of special interest to the underground mining and 

tunnelling industry, where de novo formation of NO2 is one of the major concerns (Cauda et 

al., 2010; Bugarski et al., 2012).

The metals supplied to the combustion chamber by the fuel additives are linked to elevated 

emissions of metal-containing ultrafine and nano-aerosols (Richards et al., 2006; Mayer et 

al., 2010; Sanderson et al., 2014). The emission rates of metals from engines supplied with 

FBCs are primarily a result of the catalyst dosing rate (Mayer et al. 2010) and type of 

exhaust aftertreatment. Combustion of diesel fuel treated with the Fe-based additive 

ferrocene was shown to induce high engine-out concentrations of aerosols with a mobility 

diameter <50 nm (Lee et al., 2006; Richards et al., 2006; Miller et al., 2007). It was 
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suggested (Lee et al., 2006; Miller et al., 2007) that metallic additives at low, but above 

threshold, values promote formation of nucleation metallic nanoparticles and subsequent 

homogeneous and heterogeneous coagulation. In the case of ferrocene, the number and size 

of the self-nucleated nanoparticles were shown to increase with increased levels of dosing 

concentrations, and the nucleation threshold for Fe was linked to the available surface area 

of carbonaceous particles (Miller et al., 2007).

The majority of DPF systems have been shown to be highly efficient in trapping metals 

originating from lubricating oil, fuel, and the use of FBCs (Hu et al., 2009; Liati et al., 

2012). However, a very small fraction of the ash might penetrate the filter wall and may 

reach the atmosphere (Liati et al., 2012). This is more likely to happen in clean DPF systems 

in the initial stages of DPF loading before the DPM cake is formed on the walls of the DPF 

element (Mayer et al., 2010).

The study described in this article is designed to investigate whether a Fe-based FBC added 

to fuel at manufacturer-recommended rates (~30 p.p.m. of iron) might adversely affect the 

concentrations and characteristics of aerosols emitted by a naturally aspirated diesel engine 

retrofitted with a SMF system. With the goal of protecting worker health, it is important to 

gain this knowledge prior to wider implementation of these types of exhaust aftertreatment 

systems in confined spaces of underground mines and other occupational settings.

MATERIALS AND METHODS

Testing facility, exhaust aftertreatment, and fuels

The schematic of the laboratory layout used in this study is shown in Supplementary Fig. S1. 

A mechanically controlled, naturally aspirated, direct-injected diesel engine (Supplementary 

Table S1) was coupled to a water-cooled eddy-current dynamometer (Supplementary Table 

S2). The testing was done for four steady-state engine operating conditions (Supplementary 

Table S3) and one transient (TR) cycle (Supplementary Fig S2). The TR cycle was adapted 

from one that was designed to simulate operation of an engine in underground mining load-

haul-dump vehicles. The 988-s cycle was repeated back-to-back multiple times during each 

of the several-hour-long tests.

The test engine was retrofitted with a full-flow SMF system (Mann + Hummel, M + H, 

SMF-AR®) previously tested in the underground mine (Stachulak and Hensel, 2010). The 

principal components of the SMF system are a filtration element, fuel additive dosing 

system, and electrical heater (Supplementary Fig. S3). Two iron-based fuel additives were 

evaluated in this study: (1) Satacen®, Innospec Ltd. (Cheshire, UK) marketed by M + H as 

DT8i and (2) Eolys Powerflex, Rhodia (La Rochelle Cedes, France) marketed by M + H as 

DT9. Three test fuels were prepared using ultralow sulfur diesel (ULSD) fuel from a single 

batch acquired from a local supplier: (i) baseline fuel (ULSD), (ii) baseline fuel treated with 

DT8i additive (ULSD + DT8i), and (iii) baseline fuel treated with DT9 additive ULSD + 

DT9. The baseline fuel properties are summarized in Supplementary Table S4. The ULSD + 

DT8i and ULSD + DT9 fuels were prepared by blending each of the additives with ULSD in 

200-l barrels prior to transferring the fuels to the engine supply tank used during the tests. 

The ULSD + DT8i and ULSD + DT9 blends were obtained by adding 1.65 ml l−1 of DT8i 
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and 0.61 ml l−1 of DT9, respectively, as recommended by Mann + Hummel. The 

concentration of iron in samples of all three fuels and lubricating oil was determined using 

an inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyser and 

following the NIOSH Method 7300 (NIOSH, 2003). The iron concentrations in the ULSD, 

ULSD + DT8i, USLD + DT9, and lubricating oil were 1.2, 29.5, 26.2, and 2.5 mg kg−1, 

respectively.

Sampling, measurement, and analytical methodology

The measurements and samplings were performed during 2-h EOut (engine-out) or 12-h 

FOut (filter-out) tests, respectively. The results were used to assess the net effects of the 

system and additives on aerosol and gaseous emissions. The aerosol sample collections and 

measurements were performed in the diluted exhaust that was consecutively drawn from the 

exhaust ports located upstream (EOut) and downstream (FOut) of the SMF systems 

(Supplementary Fig. S1). A two-stage partial dilution system (Dekati, Model FPS 4000) was 

used to dilute EOut and FOut exhaust ~30 times. Diluted exhaust temperatures after the 

second stage dilution were between 20 and 22°C.

A fast mobility particle sizer spectrometer (FMPS, TSI, Model FMPS™ 3091) was used to 

measure size distributions and total number concentrations (TNCs) of submicron aerosols in 

the diluted exhaust (Supplementary Fig. S1) for both steady-state and TR measurements. 

The FMPS distributions were fitted with log-normal curves using DistFit 2009 software 

from Chimera Technologies. The surface area of aerosols in the diluted exhaust that would 

theoretically be deposited in the alveolar region of human lungs was measured using a 

nanoparticle surface area monitor (NSAM) (TSI, Model 3550) (Fissan et al., 2007). Total 

mass concentrations of aerosols in the EOut and FOut diluted exhaust were continuously 

monitored using a tapered element oscillating microbalance (TEOM) ambient mass monitor 

(Model TEOM 1405; Thermo Scientific, Franklin, MA). The sampling flow rate was set at 

2.0 l min−1.

Elemental carbon concentrations (ECCs) in the diluted EOut and FOut exhaust were 

determined using results of carbon analysis performed on the sample concurrently collected 

on three sets of tandem 37-mm quartz fiber filters (QFFs; Pall Science, QAT2500). The 

QFFs were prefired at 600°C to minimize filter media contamination and sealed in tandem 

configu-ration in the five-piece cassettes (SKC, SureSeal). The five-piece cassettes are used 

to allow for uniform deposition of the sample on QFFs. Critical orifices (BGI Inc., Model 

S02) and vacuum pumps (Leybold, SV25b) were used to maintain a constant nominal 

sampling flow rate of 12 l min−1 through each of the cassettes. The sampling flow rates were 

established as an average between measurements performed using a bubble flow meter 

(SensiDyne, Gilian Gillibrator-2) prior and after the sampling. In the case of the tests used to 

collect EOut samples, the sampling times were 120 min. In an effort to increase the amount 

of material on the sampling filters, the sampling times for FOut tests were extended to 720 

min. The primary and secondary filters were analysed individually for EC carbon content by 

the NIOSH OMSHR laboratory using a thermal optical transmittance-evolve gas analysis 

(TOT-EGA) following NIOSH Method 5040 (NIOSH, 1999). The results performed on 

three blank samples were used for each group of samples to correct for background 
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contamination. For I50, I100, and TR engine operating conditions, the average concentration 

of Fe was determined by analysing filter samples of diluted exhaust collected concurrently 

onto three sets of tandem 37-mm-diameter, 0.8-μm pore, mixed cellulose ester (MCE) 

filters. The concentration of Fe in samples was determined using ICP-AES (Spectro, Model 

Analytical-ICP-AES CIROS) and the NIOSH method 7300 (NIOSH, 2003).

The effects on particle morphology and size-resolved elemental composition were studied 

on the EOut and FOut samples collected for I50 and I100 steady-state engine operating 

conditions. Samples for electron microscopy (EM)/energy dispersive spectroscopy (EDS) 

were collected using an electrostatic precipitator (ESP) (Miller et al., 2010) and a 

thermophoretic precipitator (TPP) sampler (Miller et al., 2012). The 3-mm-diameter disks 

made with four different media types were used to sample diesel aerosols. Carbon-filmed 

EM grids were selected for imaging for their superior transmittance and quality of images. 

The samples for EDS analysis were collected on three types of carbon-free media, SiO-

filmed EM grids, metallic foil (copper), and pure silicon. Samples were analysed using EM 

and EDS. High-resolution EM was performed using a scanning transmission electron 

microscope (STEM), either a Hitachi 5500 STEM or Hitachi 2300 STEM, equipped with an 

EDS system. This system allows for obtaining elemental maps for the samples collected on 

EM grids with 10–20 nm resolution. Samples collected on foils and silicon media were 

analysed using a field emissions scanning electron microscope (FESEM, Hitachi S-5500). 

The basic EM analysis of each sample provided qualitative assessment of the sample and a 

number of images to show typical particle morphologies. In addition, the EDS spectra were 

generated for a few particles of different morphologies, to investigate whether different 

morphologies had different metal/carbon ratios.

RESULTS AND DISCUSSION

The effects of the fuel additives and SMF system on emitted aerosols were assessed by using 

the results of various measurements performed in the diluted exhaust. To compensate for 

slight test-to-test variations in dilution rate (DR), the results were normalized to a DR of 30. 

The averages of the results obtained using direct measurements with FMPS and NSAM were 

calculated using data recorded during the last hour of each test. The standard deviations of 

means were included to show variability between individual tests.

The effects of SMF system and fuel additives on TNC in diluted EOut and FOut exhaust 

were assessed using the results of FMPS measurements for four steady-state and one TR 

tests.

Results show that, for all test conditions, the SMF system reduced the average TNC emitted 

by the test engine by more than 100-fold (Fig. 1a). The additives did not induce any 

substantial change to the overall effectiveness of the SMF system (Fig. 1a). The effects of 

additives on EOut TNC were found to be dependent on engine operating conditions (Fig. 

1b). For I100, DT8i had adverse and DT9 had favourable effects. The indications were that 

the additives had an adverse effect on FOut TNC (Fig. 1b). Due to very low FOut TNC, the 

importance of these changes was relatively minor.
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In general, the SMF system had a profound effect on the size distributions of aerosols. The 

EOut aerosols were primarily distributed in accumulation modes with the count median 

diameters (CMDs) ranging between ~50 and 70 nm (Fig. 3a and Supplementary Table S5). 

The CMDs of the EOut aerosols in the accumulation mode were found to be in the following 

ascending order: R50, R100, I50, and I100. Depending on test conditions, the FOut size 

distributions were single-modal or bimodal (Fig. 2b and Supplementary Table S5). The 

FOut aerosols were distributed between accumulation and nucleation modes. The CMDs for 

aerosols in FOut accumulation modes were consistently higher than the corresponding 

CMDs for aerosols in EOut accumulation modes, ranging between ~60 and 95 nm 

(Supplementary Table S5). The relatively minor increase in the concentration of FOut 

nucleation mode aerosols observed for the R100 and I100 ULSD cases could be linked to 

penetration of hydrocarbon-rich gases through the system under high exhaust temperature 

operating conditions and subsequently nucleation of those downstream of the system and to 

penetration of iron-reach solid aerosols potentially sourced to FBCs.

The effects of the additives on the size distributions of EOut and FOut aerosols were 

relatively minor and, in general, less pronounced than the effects of the SMF and engine 

operating conditions. The results show that the DT8i and DT9 additives, when added at the 

recommended concentrations, had a relatively minor impact on the size distribution of EOut 

aerosols (Fig. 2a, Supplementary Table S5). For all test conditions, the CMDs for the EOut 

accumulation mode aerosols were slightly smaller when the engine was fueled with ULSD + 

DT8i than with the other two fuels. In the case of ULSD and ULSD + DT9, the EOut 

accumulation mode CMDs were similar. Only in the case of the ULSD + DT9 I50 test did 

the FMPS measurements indicate some presence of EOut aerosols distributed in nucleation 

mode, with the CMD of 13 nm (Fig. 2a and Supplementary Table S5). In several cases when 

the treated fuels were used (ULSD + DT8i R50, R100, I50, and ULSD + DT9 I100) the 

FMPS measurements indicated some presence of FOut aerosols in nucleation mode. Total 

and peak concentrations of nucleation mode aerosols (Fig. 2b, Supplementary Table S5) 

were substantially lower than corresponding total and peak concentrations of accumulation 

mode aerosols. Apparently, the use of additives at those relatively low dosing rates did not 

result in high increases in EOut and FOut concentrations of nucleation mode aerosols 

previously observed by other researches for generally higher dosing rates (Lee et al., 2006).

DR-normalized data collected with a nanoparticle surface area monitor (NSAM) were used 

to assess the effects of the SMF system and additives on total surface area concentrations 

(TSACs) of aerosol deposited in the alveolar region of lungs. For all test conditions, the 

SMF reduced the average TSAC of aerosols by 100-fold. For all but a few cases, the 

additives slightly reduced EOut TSAC and contributed to slightly higher FOut TSAC. As a 

result, for all but R50 conditions, the additives had barely quantifiable adverse effects on the 

effectiveness of the SMF system.

The results of the TOT-EGA carbon analysis were used to assess the effects of the system 

and additives on ECC, respectively. The FOut ECC were found to be very low at, or in, a 

number of cases, even below the level of quantification (LOQ) of TOT-EGA analysis (0.1 

μg m−3). Therefore, the calculated effectiveness of the system in removal of ECC, shown in 

Fig. 3, should be treated as an estimate. The ECC results corroborate TNC and TSAC results 
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and confirm that the SMF system was very effective in removal of diesel aerosols (Fig. 3a). 

With the exception of one case (ULSD + DT9, R100), the additives had favourable effects 

on concentrations of EOut ECC.

The presence of Fe in aerosol samples was studied using results of ICP-AES analysis 

performed on EOut and FOut aerosol samples collected for I50, I100, and TR conditions 

(Fig. 4).

For all three test conditions, the introduction of Fe with DT8i and DT9 additives 

substantially increased Fe concentration in the EOut aerosols samples. For all three tested 

fuels, the Fe concentrations in the FOut samples were found to be below the LOQ of applied 

ICP-AES analysis (2 μg m−3). The FOut Fe concentrations for all three tested fuels were 

found to be much lower than the corresponding EOut Fe concentrations for the case of 

untreated ULSD fuel. Therefore, it can be concluded that for all test conditions, the SMF 

system effectively removed Fe aerosols including those originating from the fuel and 

lubricating oil and those introduced with the additives.

EM and EDS were used to discern the influence of tested Fe-based fuel additives on the 

morphological and chemical properties of EOut and FOut aerosols. One of the objectives 

was to investigate if metals introduced with additives could trigger the formation of metal-

rich particles during the combustion process, and whether those would penetrate the 

filtration system and therefore be emitted into the atmosphere.

The EOut aerosols emitted by the test engine fueled with ULSD were found to have 

primarily fractal-like diesel agglomerated structure (Fig. 5a). This is in general agreement 

with results previously reported in the literature for aerosols emitted by diesel engines (Park 

et al., 2004; Mathis et al., 2005; Lapuerta et al., 2007; Mustafi and Raine, 2009). The 

general morphology of the EOut aerosols was not discernibly affected by the additives and 

engine operating conditions. Many of the agglomerates collected when fuels treated with the 

additives were used contained small ‘nuggets’ of iron-rich material. This suggests that the 

ratio of iron to carbon during the post-combustion phase was at or above a threshold that 

would trigger self-nucleation of iron as described in a previous study (Miller et al., 2007). 

Under one test condition (I50-DT9), the nucleation of iron was prominent enough to 

produce a separate population of iron-rich nanoparticles (Fig. 5b), which appears as a small 

nucleation mode in the data of Fig. 2a. EM and EDS analysis of samples from that engine 

condition verified the existence of iron-rich spherical nanoparticles.

The image analysis software (AnalySIS; Soft Imaging System Inc.) was used to isolate and 

measure the size of individual particles in agglomerates. For EOut samples, between 15 and 

56 primary particles were measured per agglomerate. The primary particle sizes were easiest 

to ascertain for ULSD samples. The ULSD particle images were the most fractal and the 

boundaries between individual particles were relatively easy to identify. The ULSD + DT8i 

and ULSD + DT9 particles were slightly more compacted and therefore it was more difficult 

to accurately discern primary particle size. The statistical parameters including CMD, σ, and 

TNC for those distributions are summarized in Table 1.
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The CMDs of primary particles observed in this study (29–38 nm) are at the upper part of 

size ranges of those found for different engines and engine operating conditions by Mathis et 

al. (2005) [17.5–32.5 nm], Müller et al. (2006) [25 nm], Neer and Koylu (2006) [28–34 

nm], Lapuerta et al. (2007) [18–30 nm], and Mustafi and Raine (2009) [25–30 nm]. In all 

cases, the mean size and number of primary particles were equal or greater for I100 than for 

I50 conditions.

The EM analysis of FOut samples confirmed that the relatively few (compared to EOut) 

particles in the post-aftertreatment exhaust were distributed between (i) nucleation and (ii) 

agglomeration modes. The agglomerated FOut aerosols had a similar morphology to the 

corresponding EOut aerosols and were possibly a result of minor blow-by caused by 

imperfections in the filter construction. The nucleation mode particles were typically low-

density particles that varied widely in morphology and composition, postulated to have 

formed from semi-volatile compounds that penetrated the filter as gases and subsequently 

self-nucleated.

CONCLUSIONS

The study showed that the SMF system was very effective in reducing TNC (>99%), TSAC 

(>99%), and ECC (>99%) emitted by the test engine. The results of ICP-AES analysis 

showed that the system was also very efficient in removing Fe-containing aerosols from the 

exhaust. When added at the recommended concentrations, the additives had only a minor 

effect on the size distribution of aerosols emitted by the engine and by the SMF system and 

on the concentration and size distribution of nucleation aerosols emitted out of the SMF 

system. The results of ICP-AES analysis showed that in all cases when fuel was treated with 

the additives, the FOut concentrations of Fe in aerosols were at non-detectable levels and 

below those determined for aerosols emitted by the engine supplied with untreated fuel. 

Therefore, the great majority of Fe supplied by the additives should be trapped in the filter 

media and by design should catalyse the SMF regeneration process.

The results of this study indicate that the system and additives, if used in conjunction and in 

the recommended fashion, should not introduce significant additional quantities of de novo 

pollutants in the underground environment. However, further toxicology studies on the FOut 

aerosol samples would be needed to support a more definitive health-related conclusion. The 

results indicate that those relatively minor increases in the concentration of FOut nucleation 

mode aerosols can be attributed to the increase in both: (i) the concentrations of aerosols 

formed via heterogeneous and homogeneous nucleation of hydrocarbon-rich gases 

downstream of the system and (ii) the concentrations of iron-reach solid aerosols potentially 

sourced to FBCs. The results of ICP-AES and EM/EDS analyses showed that the additives 

substantially contributed to Fe concentration in the EOut aerosols samples. Therefore, in 

order to prevent the release of potentially hazardous iron-rich aerosols into the environment, 

these additives should not be used in diesel engines that are not equipped with full-flow 

filtration systems.
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Figure 1. 
(a) Effects of SMF system on TNC and (b) effects of fuel additives on EOut TNC and FOut 

TNC (changes are given with respect to the ULSD case).
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Figure 2. 
Size distributions of aerosols measured with FMPS for steady-state operating conditions in 

the diluted (a) EOut and (b) FOut exhaust.
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Figure 3. 
(a) Effects of SMF system on ECC and (b) effects of fuel additives on EOut ECC.
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Figure 4. 
Fe concentrations in the diluted (DR = 30) EOut and FOut exhaust for I50, I100, and TR 

conditions.
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Figure 5. 
(a) Typical morphology of EOut particles emitted by the test engine fueled with ULSD + 

DT8i and operated at I50. Note: Image created intentionally using ‘dark field’ TEM to 

highlight the bright spots, which represent higher density, and were shown with EDS to be 

iron-rich. (b) Typical iron-rich nucleation mode particles emitted by engine fueled with 

ULSD + DT9 and operated at I50.

Bugarski et al. Page 15

Ann Occup Hyg. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bugarski et al. Page 16

Table 1

Primary particle statistics.

Fuel Mode CMD σ TNC

nm — #/agglomerate

ULSD I50 32.5 1.370 39

I100 32.7 1.374 39

ULSD + DT8i I50 28.9 1.434 45

I100 35.0 1.292 57

ULSD + DT9 I50 31.7 1.243 28

I100 38.2 1.337 41
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