Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).

- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.

- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.

- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.

- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

<table>
<thead>
<tr>
<th>FIGURE NUMBER</th>
<th>WHICH TEST?</th>
<th>n</th>
<th>DESCRIPTIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>example</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>one-way ANOVA</td>
<td>Fig legend</td>
<td>9, 9, 10, 15 mice from at least 3 litters/group</td>
<td>Methods para 8</td>
<td>error bars are mean +/- SEM</td>
</tr>
<tr>
<td>results para 6</td>
<td>unpaired t-test</td>
<td>Results para 6</td>
<td>15 slices from 10 mice</td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
</tr>
<tr>
<td>FIGURE NUMBER</td>
<td>WHICH TEST?</td>
<td>TEST USED</td>
<td>n</td>
<td>DESCRiptive STATS (AVerAGE, VARIANCE)</td>
<td>P VALUE</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>* 6 supp</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>35</td>
<td>6 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 1</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>11</td>
<td>6 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 2</td>
<td>paired t-test</td>
<td>results</td>
<td>33</td>
<td>5 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 2</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>75</td>
<td>9 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 2</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>75</td>
<td>on average 15 trials/ unit</td>
<td></td>
</tr>
<tr>
<td>* 2</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>20</td>
<td>3 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 2c</td>
<td>wilcoxon sign-rank</td>
<td>results</td>
<td>19</td>
<td>3 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 2c</td>
<td>wilcoxon sign-rank</td>
<td>results</td>
<td>49</td>
<td>3 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* supp 4</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>16</td>
<td>3 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* supp 3</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>33</td>
<td>3 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* supp 3</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>19</td>
<td>3 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 3</td>
<td>Kruskal-</td>
<td>results</td>
<td>33</td>
<td>5 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 3</td>
<td>Wilcoxon</td>
<td>results</td>
<td>75</td>
<td>9 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 4</td>
<td>2-way ANOVA</td>
<td>results</td>
<td>53</td>
<td>9 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 4</td>
<td>Wilcoxon</td>
<td>results</td>
<td>35</td>
<td>3 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>* 3</td>
<td>paired t-test</td>
<td>results</td>
<td>75</td>
<td>9 mice, 1 recording session each</td>
<td></td>
</tr>
<tr>
<td>supp</td>
<td>paired t-test</td>
<td>results para 16</td>
<td>75</td>
<td>9 mice, 1 recording session each</td>
<td>methods para 6</td>
</tr>
<tr>
<td>supp</td>
<td>paired t-test</td>
<td>results para 13</td>
<td>75</td>
<td>9 mice, 1 recording session each</td>
<td>methods para 6</td>
</tr>
<tr>
<td>supp</td>
<td>paired t-test</td>
<td>results para 13</td>
<td>75</td>
<td>9 mice, 1 recording session each</td>
<td>methods para 6</td>
</tr>
<tr>
<td>supp</td>
<td>2-way anova</td>
<td>results para 13</td>
<td>422 whiskers</td>
<td>4 mice, 1 behavioral session each</td>
<td>fig leg</td>
</tr>
<tr>
<td>supp</td>
<td>2-way anova</td>
<td>results para 13</td>
<td>422 whiskers</td>
<td>4 mice, 1 behavioral session each</td>
<td>fig leg</td>
</tr>
<tr>
<td>supp</td>
<td>2-way anova</td>
<td>results para 13</td>
<td>422 whiskers</td>
<td>4 mice, 1 behavioral session each</td>
<td>fig leg</td>
</tr>
<tr>
<td>2</td>
<td>Wilcoxon sign rank</td>
<td>results para 13</td>
<td>123</td>
<td>11 mice, 1 recording each</td>
<td>fig leg</td>
</tr>
<tr>
<td>5b</td>
<td>Paired t-test</td>
<td>Legend</td>
<td>13</td>
<td>13 pairs of cells, from 10 slices prepared from 5 mice</td>
<td>fig legend</td>
</tr>
<tr>
<td>3d</td>
<td>Wilcoxon</td>
<td>results para 12</td>
<td>45</td>
<td>9 mice, 1 recording session each</td>
<td>results para 12</td>
</tr>
<tr>
<td>Supp fig 6</td>
<td>2-Way ANOVA</td>
<td>results para 18</td>
<td>25</td>
<td>3 mice, 1 recording session each</td>
<td>results para 18</td>
</tr>
<tr>
<td>Supp fig 6</td>
<td>2-Way ANOVA</td>
<td>results para 18</td>
<td>50</td>
<td>5 mice, 1 recording session each</td>
<td>results para 18</td>
</tr>
<tr>
<td>Supp 5</td>
<td>unpaired t-test</td>
<td>fig legend</td>
<td>24 vs 75</td>
<td>9 mice, 1 recording session each</td>
<td>fig leg</td>
</tr>
<tr>
<td>Supp 5</td>
<td>unpaired t-test</td>
<td>fig legend</td>
<td>12 vs 53</td>
<td>9 mice, 1 recording session each</td>
<td>fig leg</td>
</tr>
<tr>
<td>resul ts para 12</td>
<td>2-way ANOVA</td>
<td>results para 12</td>
<td>75</td>
<td>9 mice, 1 recording session each</td>
<td>results para 12</td>
</tr>
<tr>
<td>supp fig 10</td>
<td>2-way ANOVA</td>
<td>Direct transla minar para 6</td>
<td>75</td>
<td>7 mice for DRD3, 1 recording session each</td>
<td>methods para 6</td>
</tr>
<tr>
<td>supp 5</td>
<td>2-way anova</td>
<td>fig legend</td>
<td>24</td>
<td>3 mice, 1 session each</td>
<td>fig leg</td>
</tr>
<tr>
<td>supp 5</td>
<td>2-way anova</td>
<td>fig legend</td>
<td>12</td>
<td>3 mice, 1 session each</td>
<td>fig leg</td>
</tr>
<tr>
<td>para 10</td>
<td>Wilcoxon sign rank</td>
<td>para 10</td>
<td>59</td>
<td>11 mice, 1 recording each</td>
<td>para10</td>
</tr>
<tr>
<td>para 10</td>
<td>Wilcoxon sign rank</td>
<td>para 10</td>
<td>23</td>
<td>4 mice, 1 recording each</td>
<td>para10</td>
</tr>
<tr>
<td>para 10</td>
<td>Wilcoxon sign rank</td>
<td>para 10</td>
<td>24</td>
<td>3 mice, 1 recording each</td>
<td>para10</td>
</tr>
<tr>
<td>Para 30</td>
<td>Fisher’s exact test Results Supp 11A, para 30</td>
<td>55 connections tested onto 12 PV+ cells, recorded in 10 slices taken from 4 mice; 52 connections tested onto 18 GIN cells recorded in 11 slices taken from 3 mice. Contingency table defined as: 5 Connected PV cells, 7 Unconnected PV cells; 0 Connected GIN cells, 18 Unconnected GIN cells</td>
<td>Para 30</td>
<td>Exact numbers reported para 25, 30</td>
<td>0.0056</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Supp 8e-i</td>
<td></td>
<td>31</td>
<td>31 FS cells recorded in 26 slices taken from 13 mice</td>
<td>supp fig 8 legend</td>
<td>Mean, standard error</td>
</tr>
<tr>
<td>Fig 5h</td>
<td></td>
<td>31</td>
<td>31 FS cells recorded in 26 slices taken from 13 mice</td>
<td>fig 5 legend</td>
<td>Mean</td>
</tr>
<tr>
<td>Supp 8a-d</td>
<td></td>
<td>22</td>
<td>22 ChR2+ cells recorded in 12 slices from 5 mice</td>
<td>supp fig 8 legend</td>
<td>Mean, standard error</td>
</tr>
<tr>
<td>Supp 9 a,b,e</td>
<td></td>
<td>16</td>
<td>16 pyramidal cells recorded in 9 slices taken from 4 mice</td>
<td>supp fig 9 legend</td>
<td>Mean, standard error</td>
</tr>
<tr>
<td>Supp 9 c,d</td>
<td></td>
<td>19</td>
<td>19 ChR2+ cells recorded in 11 slices taken from 5 mice</td>
<td>supp fig 9 legend</td>
<td>Mean, standard error</td>
</tr>
<tr>
<td>Supp 9 e</td>
<td></td>
<td>4</td>
<td>4 PV+ cells recorded in 3 slices taken from 2 mice</td>
<td>supp fig 9 legend</td>
<td>Mean</td>
</tr>
<tr>
<td>6d right</td>
<td></td>
<td>15</td>
<td>15 L5 pyramidal neurons, recorded in 12 slices from 3 mice</td>
<td>fig 6 legend</td>
<td>Mean, standard error</td>
</tr>
<tr>
<td>6d left</td>
<td></td>
<td>7</td>
<td>7 L5 FS cells in 7 slices from 3 mice</td>
<td>fig 6 legend</td>
<td>mean, standard error</td>
</tr>
<tr>
<td>6g</td>
<td>t-test results para 26</td>
<td>7</td>
<td>7 FS-PC pairs in 5 slices from 3 mice. Variable number of IPSC measurements for each pair (range 12-31 trials)</td>
<td>fig 6 legend</td>
<td>mean</td>
</tr>
<tr>
<td>Supp 5g</td>
<td>Kruskal-wallis fig legend</td>
<td>125</td>
<td>125 neurons across 4 animals</td>
<td>fig 5H</td>
<td>distribution of preferred positions</td>
</tr>
<tr>
<td>Supp 7g</td>
<td>42 cells in vitro</td>
<td>42 neurons recorded in 36 slices from 17 mice</td>
<td>supp fig 7 legend</td>
<td>Mean, standard error</td>
<td>supp fig 7 legend</td>
</tr>
<tr>
<td>11b</td>
<td>Wilcoxon fig leg</td>
<td>75</td>
<td>9 mice, 1 session each</td>
<td>11b</td>
<td>fraction of HF spikes</td>
</tr>
<tr>
<td>11c</td>
<td>Wilcoxon fig leg</td>
<td>75</td>
<td>9 mice, 1 session each</td>
<td>11c</td>
<td>CV of interspike intervals</td>
</tr>
<tr>
<td>11d</td>
<td>Wilcoxon fig leg</td>
<td>75</td>
<td>9 mice, 1 session each</td>
<td>11d</td>
<td>Change in Burst rate</td>
</tr>
</tbody>
</table>
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper? If so, what figure(s)?

 Yes, figure 1 and 6, and supplemental figure 1 and 2

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability? If so, where is this reported (section, paragraph #)?

 Virally induced opsin expression in SCNN mice was repeated 18 times for this experiment. There is no challenge in repeatability using the described protocol.

 GAD67 co-localization was performed in 1 mouse and analyzed across two separate section of the barrel cortex, totaling 5 barrel columns.
Statistics and general methods

1. **Is there a justification of the sample size?**
 If so, how was it justified?
 Where (section, paragraph #)?
 Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.
 Sample size was not explicitly chosen and we collected data from as many cells as possible. In each case, a specific number of mice were available, they were recorded from, and the data was analyzed. Based on prior experience with multi-channel recordings, we knew that 3 - 6 mice would provide enough cells for statistics.

2. **Are statistical tests justified as appropriate for every figure?**
 Where (section, paragraph #)?
 - If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?
 Yes, each figure legend states the test used for the given p value.
 - Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?
 All data where a wilcoxon sign-rank test were used failed the test for normality.
 - Is there any estimate of variance within each group of data?
 Differences in variance within and between groups was performed by the ANOVA.
 - Are tests specified as one- or two-sided?
 all t-tests and sign-rank tests were paired.
 - Are there adjustments for multiple comparisons?
 no multiple comparisons were performed.

3. **Are criteria for excluding data points reported?**
 Was this criterion established prior to data collection?
 Where is this described (section, paragraph #)?
 Yes
 Yes
 Methods: Analysis of multi-electrode neural data, paragraph 3.

4. **Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data.**
 If no randomization was used, state so.
 Where does this appear (section, paragraph #)?
 No randomization assignment was necessary. Each animal served as its own control.

5. **Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?**
 If no blinding was done, state so.
 Where (section, paragraph #)?
 No blinding done.
6. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included?
 Where (section, paragraph #)?
 Yes. 1st sentence of methods.

7. Is the species of the animals used reported?
 Where (section, paragraph #)?
 yes, 1st paragraph of methods

8. Is the strain of the animals (including background strains of KO/transgenic animals used) reported?
 Where (section, paragraph #)?
 yes, 1st paragraph of methods

9. Is the sex of the animals/subjects used reported?
 Where (section, paragraph #)?
 no, both sexes were used indiscriminately

10. Is the age of the animals/subjects reported?
 Where (section, paragraph #)?
 yes, 1st paragraph of methods

11. For animals housed in a vivarium, is the light/dark cycle reported?
 Where (section, paragraph #)?
 yes, 1st paragraph of methods

12. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 Where (section, paragraph #)?
 yes, 1st paragraph of methods

13. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 yes, 1st paragraph of methods

14. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 No history

 a. If multiple behavioral tests were conducted in the same group of animals, is this reported?
 Where (section, paragraph #)?
 N/A

15. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 no exclusions

 a. How were the criteria for exclusion defined?
 Where is this described (section, paragraph #)?
b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.
 Where is this described (section, paragraph #)?

Reagents

1. Have antibodies been validated for use in the system under study (assay and species)?
 N/A
 a. Is antibody catalog number given?
 Where does this appear (section, paragraph #)?
 b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?
 Where does this appear (section, paragraph #)?

2. If cell lines were used to reflect the properties of a particular tissue or disease state, is their source identified?
 N/A
 a. Were they recently authenticated?
 Where is this information reported (section, paragraph #)?

Data deposition

Data deposition in a public repository is mandatory for:
 a. Protein, DNA and RNA sequences
 b. Macromolecular structures
 c. Crystallographic data for small molecules
 d. Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse.

1. Are accession codes for deposit dates provided?
 N/A
 Where (section, paragraph #)?
Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.

 UltraMegaSort is custom spike sorting software that is available from the author. Custom software written in MATLAB was used for the acquisition and analysis of whole cell recording data.

2. If computer code was used to generate results that are central to the paper’s conclusions, include a statement in the Methods section under "Code availability" to indicate whether and how the code can be accessed. Include version information as necessary and any restrictions on availability.

Human subjects

1. Which IRB approved the protocol?
 Where is this stated (section, paragraph #)?

 N/A

2. Is demographic information on all subjects provided?
 Where (section, paragraph #)?

3. Is the number of human subjects, their age and sex clearly defined?
 Where (section, paragraph #)?

4. Are the inclusion and exclusion criteria (if any) clearly specified?
 Where (section, paragraph #)?

5. How well were the groups matched?
 Where is this information described (section, paragraph #)?

6. Is a statement included confirming that informed consent was obtained from all subjects?
 Where (section, paragraph #)?

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?
 Where (section, paragraph #)?
fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?
 - N/A
 - If yes, is the number rejected and reasons for rejection described?
 - Where (section, paragraph #)?

2. Is the number of blocks, trials or experimental units per session and/or subjects specified?
 - Where (section, paragraph #)?

3. Is the length of each trial and interval between trials specified?

4. Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.

5. Is the task design clearly described?
 - Where (section, paragraph #)?

6. How was behavioral performance measured?

7. Is an ANOVA or factorial design being used?

8. For data acquisition, is a whole brain scan used? If not, state area of acquisition.
 - How was this region determined?

9. Is the field strength (in Tesla) of the MRI system stated?
 - Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated?
 - Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated?

10. Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?
11. Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)?

12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)?

13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc?

14. Were any additional regressors (behavioral covariates, motion etc) used?

15. Is the contrast construction clearly defined?

16. Is a mixed/random effects or fixed inference used?
 a. If fixed effects inference used, is this justified?

17. Were repeated measures used (multiple measurements per subject)?
 a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?

18. If the threshold used for inference and visualization in figures varies, is this clearly stated?

19. Are statistical inferences corrected for multiple comparisons?
 a. If not, is this labeled as uncorrected?

20. Are the results based on an ROI (region of interest) analysis?
 a. If so, is the rationale clearly described?
 b. How were the ROI’s defined (functional vs anatomical localization)?

21. Is there correction for multiple comparisons within each voxel?

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?
Additional comments

Additional Comments