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The fundamental goal of this article is to describe, de-
fine, and analyze the components of the risk characterization
process for occupational exposures. Current methods are de-
scribed for the probabilistic characterization of exposure, in-
cluding newer techniques that have increasing applications for
assessing data from occupational exposure scenarios. In addi-
tion, since the probability of health effects reflects variability in
the exposure estimate as well as the dose-response curve—the
integrated considerations of variability surrounding both com-
ponents of the risk characterization provide greater informa-
tion to the occupational hygienist. Probabilistic tools provide a
more informed view of exposure as compared to use of discrete
point estimates for these inputs to the risk characterization pro-
cess. Active use of such tools for exposure and risk assessment
will lead to a scientifically supported worker health protection
program. Understanding the bases for an occupational risk
assessment, focusing on important sources of variability and
uncertainty enables characterizing occupational risk in terms
of a probability, rather than a binary decision of acceptable
risk or unacceptable risk. A critical review of existing methods
highlights several conclusions: (1) exposure estimates and
the dose-response are impacted by both variability and un-
certainty and a well-developed risk characterization reflects
and communicates this consideration; (2) occupational risk
is probabilistic in nature and most accurately considered as
a distribution, not a point estimate; and (3) occupational
hygienists have a variety of tools available to incorporate
concepts of risk characterization into occupational health and
practice.
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INTRODUCTION

For an occupational health and safety professional to make
risk-based decisions regarding an occupational exposure

scenario, workplace exposure concentrations may be com-
pared to a health-protective exposure limit. This occupational
health risk assessment decision process has two primary
components:

1) exposure assessment: an expression of the exposure
concentration in the workplace, and

2) risk characterization: a method for comparing the ex-
posure assessment to toxic potency of the chemical
involved and translating the result into a risk of adverse
health outcomes.

Judgments about risk are often complicated because the
exposure estimates are not single values—rather they represent
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a range of values due to both variability and uncertainty. The
probability of adverse health effects will change with exposure
concentration and measures of exposure are distributions; thus,
a characterization of risk is most accurately reflected as a
probability distribution, not a point estimate. In practice, most
occupational risk assessments do not fully address the concepts
of risk in a quantitative manner. Comparison of measured or
estimated exposure concentrations to the reference occupa-
tional exposure limit (OEL) provides insight as to relative
exposure acceptability, but does not provide full information
of the likelihood or severity of adverse effects as exposure
exceeds or is below the OEL. Interpretation of the comparison
of workplace exposure concentrations with an OEL (i.e., risk
characterization) is important when making decisions about
effective exposure control strategies (i.e., risk management
measures). Such information will be the driving input for
decisions such as identification of processes where engineering
controls are necessary, new work practices may be introduced
or respiratory protection may be needed. Risk management
decisions often depend on the anticipated amount of risk
reduction among exposure control alternatives.

This article highlights the basis for key ingredients in an oc-
cupational exposure assessment, focusing on important
sources of variability and uncertainty that can be useful for
characterizing occupational risk in terms of a probability rather
than a binary decision of “acceptable risk or unacceptable risk.”

This article highlights current methods related to the char-
acterization of exposure. Considerations are also described for
interpreting exposure assessments in the context of exposure or
dose-response relationships as an essential aspect of estimating
occupational health risks. The primary points of emphasis
are:

• Occupational risk is probabilistic in nature and is associated
exposure distributions and imprecise OELs, not precise
point estimates.

• Exposure estimates and exposure limits are impacted by
both variability and uncertainty —a well-developed risk
characterization reflects and communicates these consider-
ations.

• Occupational hygienists have a variety of tools available
to incorporate probabilistic concepts into risk assessments.
Active use of these tools leads to a more robust occupational
health program by initiating exposure sampling campaigns,
medical surveillance programs, or use of personal protective
equipment.

Health and Science Policy Basis for Establishing
OELS

The term occupational exposure limit (OEL) is a general
term to reflect an airborne exposure concentration that has been
recommended as guidance or promulgated as a regulatory con-
trol limit for the protection of worker health. The definitions
and bases for establishing OELs vary among organizations
(Table I). One way to categorize different types of OELs
is to denote those that are based solely on considerations

related to the expected concentration-response behavior of
the agent (i.e., health-based OELs) vs. those that are de-
rived with the additional considerations of technical feasibil-
ity and cost-benefit analyses. However, even beyond such a
simple dichotomy, there are additional levels of science and
policy decision making that ultimately affect the final OEL
(Figure 1).

Describing Exposures
Exposure estimation starts with a definition of the pop-

ulation of exposures to be characterized. Examples include
the average exposure of a group of workers performing the
same work on a given day, the highest 1-min average exposure
generated during a specific work task, or the average daily
exposure of an individual worker over a year. Estimation may
be based on measurements or on a non-measurement approach
such as modeling.

When measuring exposures, resource limitations typically
prevent all exposures from being measured, and stratification
or grouping is often used to simplify the measurement effort.
The sampling unit is defined by the population, group, indi-
vidual, or task to be characterized; location; exposure agent
of interest; exposure averaging period; and possibly additional
descriptors of the exposure scenario. Measurements based on
the sampling unit definition are then collected from a pre-
defined portion of the population or group.

For the exposure characterization to have meaning beyond
a single characterization effort, such as the basis for pre-
dictions about future exposures, random sampling within a
group or strata should be conducted. Inference is also only
possible when the exposure distribution being characterized
is stationary or not fundamentally changing over time, i.e.,
there are not changes in factors that modify exposures such as
a process change or installation of exposure controls. When
such changes occur, a new target group is defined and the new
exposure distribution must be characterized separately. When
a specific scenario is being evaluated for a specific purpose,
i.e., evaluating the use of engineering controls or specific work
practices, then a sampling scheme that focused on “worst case”
sampling could be employed. The purpose of the sampling
campaign is uniquely tied to the decisions on how and where
to sample.

Variability and Uncertainty in Exposure Estimation
Fully descriptive exposure information can be quite com-

plex since workplace exposures can vary spatially and over
time. This intrinsic variability cannot be reduced but can be
characterized with sufficient information and proper survey
design. Although not always interpreted as such, exposure con-
centrations are stochastic. The fullest description of exposures
is usually in the form of a statistical exposure distribution for
a defined set of exposure scenario descriptors. The exposure
distribution is also termed an “exposure profile” within the
profession of occupational hygiene. (1)
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FIGURE 1. Sources of uncertainty and variability in occupational exposure limit derivation.

Variability of Occupational Exposures
Variability is heterogeneity in a well-characterized pop-

ulation. It is a property of nature and the combination of
physical mechanisms creating the exposure. Variability is not
reducible by collecting better or more data; it is only more fully
characterized. Thus, variability from day to day and worker to
worker is unavoidable despite efforts to define groups of work-
ers having similar exposures. Exposure is a random process
with many sources of variability that interact multiplicatively
and jointly produce very wide ranges of exposures. Due to
the multiplicative nature of factors affecting exposures, ex-
posure distributions are skewed and usually well defined by
the lognormal distribution.(2,3) The lognormal distribution also
reflects that exposure measurements cannot be below zero,
while low-frequency high-exposure results are also present.
While variability cannot be changed, it can be measured or
estimated with appropriate sample survey design including
repeated measurements. A repeated measurement campaign
would include assessing an individual’s exposure on a pre-
scribed number of days (i.e., three days or more) to assess how
much variability is present in exposure characterization.

Uncertainty in Exposure Estimation
Uncertainty is lack of perfect information about the expo-

sure being characterized. Uncertainty depends on the quality,
quantity, and relevance of the data available and can sometimes
be reduced by further or better measurement. When predictive
models, either empirical or deterministic, are used to estimate
exposures, the relevance and reliability of the models, input
parameters, and model assumptions influence uncertainty. Ad-
ditionally, assumptions associated with statistical models such
as distributional form, independence of data or homogeneity
of variance within group or strata also contribute to uncer-
tainty. Perhaps the largest source of uncertainty associated
with deterministic exposure models is a lack of data or specific
information on the predictor values. In the absence of empirical
data, assumptions must be used regarding the distributional
parameters and shapes of these critical drivers. (4)

The magnitude of uncertainty describes the difference be-
tween the estimated (i.e., calculated) and the true value. The
most common method of reducing uncertainty is to collect ad-
ditional information and in the case of exposure

measurement, to collect additional measurements. The Inter-
national Programme on Chemical Safety (IPCS)(5) published a
comprehensive review of uncertainty in exposure assessment
with case studies of both qualitative and quantitative uncer-
tainty analyses. Figure 2 summarizes sources of uncertainty in
exposure estimation.

Uncertainty in exposure assessment is categorized into sce-
nario, parameter, and model uncertainty. An exposure scenario
includes all the assumptions, descriptors, and boundaries about
the exposure situation to be analyzed. Scenario uncertainty
is due to missing, incorrect or incomplete information about
the descriptors and determinants of exposures, and may come
from spatial or temporal approximations, homogeneity as-
sumptions, lack of representativeness, errors in professional
judgment, incomplete analysis of information available, and
insufficient information such as whether the exposure con-
trolling factors are continuous or intermittent and whether
exposures are far-field (larger sources releasing to the general
environment) or near-field (sources close to the worker). Thus,
the exposure scenario defines the exposures for a specific
population or group performing a specific job, activity, or task.

For measurement surveys, scenario uncertainty is reduced
through clear identification of purpose and an appropriate
associated survey design, collection of sufficient information,
evidence-based judgments, and validation of assumptions. In
measurement surveys, exposure uncertainty is based on mea-
surement errors, unless exposure levels are below the limit
of detection. Reduction in uncertainty associated with mea-
surement requires more measurements and more sensitive

FIGURE 2. Sources of uncertainty in exposure estimation.
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analytical methods. The uncertainty due to statistical sampling
variability is represented by the standard error on the mean
and stems from “variability” of occupational exposures. When
modeling exposures, scenario uncertainty is reduced by using
appropriate exposure distributions and models, improving the
quality of the information used to define the scenario, and
validating the assumptions.

The other sources of uncertainty, parameter, and model
also need consideration. Parameter uncertainty with respect to
exposure modeling is the imperfect knowledge of the true value
of all model inputs. Additionally, model uncertainty exists
because models are imperfect representations of truth. The
accuracy of model assumptions, the range of applicability of
the model, and whether model predictions have been extrapo-
lated beyond the model’s useful range and the degree to which
the model reflects the complex forces governing exposure
distributions also play a role. Model validation incorporating
the distributional nature of exposures is essential to determine
the latter.

Methods for Estimating Exposures
Both measurement and exposure modeling are used to

estimate the extent of human exposure, although retrospective
exposure assessment may utilize additional or hybrid methods.
Exposure models follow the general form:

Exposure Intensity = f(Predictors of Exposures). (1)

Ideally, exposure estimation by modeling accounts for the
intrinsic variability and the uncertainty of quantitative predic-
tors of exposure and the impact of these on model predictions
and the breadth of possible modeled outcomes. Although ex-
posure variability can be quite high, (e.g., geometric standard
deviation (GSD) of 3 or higher) uncertainties associated with
multiple predictors of exposure in a model will compound and
may dominate, causing the estimated exposure range to be
quite large. At the simplest level uncertainty can be computed
deterministically by propagation of each individual source of
uncertainty. Deterministic methods use point values to repre-
sent random variables.

Resource limitations often prevent all worker exposures
from being estimated. A significant amount of professional
judgment is used to identify the exposure scenarios expected
to pose the greatest risk, to deem other exposure scenarios as
acceptable and therefore exempt from further consideration, to
group workers or tasks into similar exposure groups (SEGs),
and to designate exposure scenarios as unchanging over time.
If worst case measurement or modeling is used, judgment is
used to select the worst case. Hybrid approaches combining
judgment with exposure measurements are also used, such as
when SEGs are defined based on prior exposure measurements
rather than observationally. Uncertainty associated with judg-
ment is usually qualitative and based on the accuracy of the
knowledge base available about the exposure scenario as well
as the experience, training, and objectivity of the occupational
hygienist.(6–9)

Measurement-Based Approaches to Occupational
Exposure Estimation

Exposure measurement is usually preceded by workplace
observation, formation of similar exposure groups or tasks,
prioritization, and review of past data if extant, followed by
sampling survey design and one or more measurement cam-
paigns. Exposure measurement may involve both sampling
and analysis or simultaneous sampling and detection with
direct reading instruments. Sampling and analytical errors are
normally distributed and have uncertainties that depend on
the agent and the sophistication of the sampling and analysis
methods used. A sample survey design is specified or implic-
itly assumed, ranging from a single worst case sample mea-
surement to a stratified random sampling plan with multiple
measurements. Uncertainty may result from judgments used
in grouping, prioritization and designing the survey. Sampling
and analysis errors are usually much smaller than the natural
variability of exposures, i.e., typical sampling analytical errors
are often less than ± 25% whereas the use of a few samples
to estimate the mean or high-end percentile of the exposures
of a group of workers can lead to uncertainties of 2–4 fold
(200–400%).(3,10)

Modeling Approaches to Occupational
Exposure Estimation

Exposure modeling methods range from simple determin-
istic physical models such as the single zone box model of
a well-mixed room, to complex models with stochastic input
parameters.(11–13) Indeed, the simplest method to characterize
overall uncertainty and variability is to conduct boundary anal-
yses with input parameter values from the upper and lower end
of the ranges that provide the “worst case” and the “best case”,
which are easier to appreciate than other statistics like the mean
and standard deviation.(14) Bounds may be estimated from
physical limits, detection limits, historical data, and analogy
to other exposure agents the expert is familiar with. When
the exposure model has multiple input parameters, the end-
of-range values that maximize and minimize the exposure
prediction are used for each parameter. The primary advantage
of this approach is that it provides upper and lower exposure
estimates that reflect the exposure level uncertainty.

Probabilistic methods are often used in computer simula-
tions of physical and mathematical systems or models and are
commonly used to quantify uncertainty. Monte Carlo methods
are computational algorithms that rely on repeated random
sampling from the probability distribution associated with each
input parameter to compute their results. Exposure estimates
are calculated repeatedly by resampling, and then aggregated,
yielding a distribution of the predicted exposures with associ-
ated point estimates of exposure levels and interval estimates
of the propagated uncertainty. Correlations between the in-
put random variables are not quantified in most occupational
hygiene applications in practice.

In 1999, Cullen and Frey(15) summarized situations in which
probabilistic analyses are useful (Table II). Probabilistic meth-
ods can be used to conduct sensitivity analyses when modeling
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TABLE II. Exposure Assessment Cases in Which Probabilistic Uncertainty Analyses are Useful (modified
from Cullen and Frey (15))

• When consequences of poor or biased exposure estimates are unacceptably high.
• When screening exposure estimates indicate potential risk, but the estimates have substantial uncertainty.
• When it is uncertain whether the collection of additional samples or information will improve the quality of the decision to be

made.
• When uncertain information stems from multiple sources.
• When comparing potential interventions with different costs and differential impacts on workers.
• When ranking or prioritizing exposure levels, exposure groups or exposure agents are important.
• When exposure reduction costs are high.

exposures by exploring the variation in model output caused by
specific model inputs. Thus, sensitivity analysis can indicate
which input variable(s) contribute most to variation in the
model outputs and aid model development.(5) Probabilistic
methods can be used either with exposure measurement or
exposure modeling. When used with exposure measurement,
the measured values are used to simulate the idealized prob-
ability distribution that most likely would have generated the
observed values. With modeling, one or more input parameters
are assumed to be random variables represented by probability
distribution functions. In general, even the most sophisticated
exposure models may have significant uncertainty.

In 2002, Nicas and Jayjock(16) developed a framework
for the comparison of uncertainty associated with the long-
term mean exposure levels estimates made by modeling vs.
monitoring. The authors showed for a sample size of three
or fewer workdays, mathematical modeling rather than air
monitoring should provide a more accurate estimate of the
mean exposure. They argue that directing research funding to
the development and validation of mechanistic exposure mod-
els would ultimately provide the most cost effective exposure
assessment tools.

Other Approaches to Exposure Estimation
With Uncertainty

Probabilistic or Monte Carlo methods have become more
common, particularly for environmental exposure
estimation.(6,17) However, when information is sparse and im-
precise or imperfect, probabilities are more difficult to define.
Also, probabilistic methods do not easily incorporate contra-
dictory information, being based on binary logic.(18) Further,
although probabilistic methods work well for stochastic sys-
tems of random variables, exposure information may be a col-
lection of evidence with varying degrees of quality associated
with each part, ranging from known probability distributions
to professional judgment. For these cases, other approaches
may be used for uncertainty estimation. These methods in-
clude fuzzy sets and Bayesian likelihood methods.(18,19) These
methods use available knowledge as constraints to distinguish
what is possible from what is not. They are not point-based
and the methods can be more flexible in incorporating different
types of exposure descriptor information.

Fuzzy set theory can be used when there is incomplete
knowledge about the exposures being modeled and the proba-
bility distributions for the model input parameters. Uncertain-
ties are fuzzy membership functions rather than probability
distribution functions. Fuzzy set theory describes imprecisely
defined classes or sets while allowing the quantification of
uncertainty. Set members are grouped into classes that do not
have sharply defined boundaries. Fuzzy sets incorporate con-
cepts and techniques for dealing with sources of uncertainty or
imprecisions that are non-statistical in nature. In classical set
theory, an object either belongs to a set or does not, whereas
fuzzy set theory allows an object to have partial membership of
a set. Huang et al.(20) proposed a fuzzy interval risk assessment
methodology for studying the adverse effects in a petroleum-
contaminated site. Dahab et al.(21) developed a rule-based
fuzzy set approach for risk analysis of nitrate-contaminated
groundwater. Donald and Ross(22) used fuzzy logic for risk
management of hazardous wastes. Liu et al.(23) developed an
exposure dose model and a fuzzy risk assessment model for
petroleum contamination in groundwater.

Interval analysis is related to worst case scenario analysis in
that the largest and smallest possible values of input parameters
are propagated through the exposure estimation algorithm or
model. Similarly, probability boundary analysis uses boundary
distributions where the parameter estimates are described by
intervals.(24,25) Upper and lower distributions define what is
known as a p-box. These are boundaries of the exposure
estimates. Probability boxes are used when the distributions of
input parameters are not exactly known and the dependencies
between input parameters are not known. P-boxes have been
used in environmental risk assessment but have not yet been
applied to occupational exposure assessment.(26)

Ramachandran(27) described the use of Bayesian methods
to develop retrospective exposure estimates. Hewett et al.(28)

described the first use of hierarchical Bayesian methods for
prospective estimation of occupational exposures using judg-
ment combined with one or more exposure measurements.
The result is a set of Bayesian posterior likelihoods of the
true exposure falling within four or five exposure categories
expressed as fractions of the OEL. Sottas et al.(29) devel-
oped a unified Bayesian method combining measurements,
expert judgment, and exposure model estimates in an empirical
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hierarchical Bayesian model. These methods show promise for
future occupational exposure estimation for static processes
when baseline exposure data exist.

RISK CHARACTERIZATION

Once an OEL has been defined, information about occu-
pational exposure levels in a specific work scenario is

compared to the OEL to make a decision about the acceptabil-
ity of exposures. A number of methods exist for making this
comparison.

OEL Interpretation in Risk Characterization
Exposure limits comprise at minimum a limiting concentra-

tion, an averaging time over which that concentration applies,
and a definition of to whom the limit applies. Averaging time
may be an 8-hr day or a short term such as a 15-min time-
weighted average (TWA). There may be additional constraints
associated with the exposure limit such as a defined number
of excursions above the limit permitted within a specific time-
period as in case of some short-term exposure limits (STELs).
(Concentration limits applied to area or work rooms are not
occupational exposure limits; however, they may be used as
such if there is a basis for assuming that all workers in the area
or room are exposed at or below the level and this assumption
is explicitly stated.)

In risk characterization, the OEL cannot be dissociated from
the methods used to compare worker exposures to the OEL.
The selection of methods can reflect risk policy considerations
(e.g., regulatory compliance vs. long-term health surveillance
studies). There are additional scientific factors such as propen-
sity for effects from a single exposure that can influence the
preferred approach and resulting risk interpretations. These
methods range from simple comparison to more complicated
methods. In addition to the comparison method itself, factors
related to the quality of the worker exposure point estimate
directly affect the risk characterization.

Methods for Comparing Exposure Data to OELS
Hazard Quotients

Occupational hygienists use OELs routinely to facilitate
risk decisions in the workplace. Together the exposure profile
and the OEL will create the Hazard Index or Hazard Quotient
as defined by the following equation:

Hazard Quotient = Exposure Point Estimate

Occupational Exposure Limit
. (2)

The hazard quotient is termed the “risk characterization ra-
tio” within the European Union. In its simplest form this com-
parison represents a hazard quotient where the point estimate
for exposure is divided by the OEL. This unitless ratio informs
the risk manager of the degree to which exposure exceeds or is
below the concentration expected to carry little health risk. The
hazard quotient does not estimate the likelihood for adverse
effects as exposure reaches and exceeds the OEL, although
theoretically as the hazard quotient diverges greatly from a

value of unity the potential for adverse effects also increases or
decreases, while hazard quotients in the close to or exceeding
a value of 1 would suggest the need for closer examination.
No uniformly accepted guidelines have been provided for an
acceptable distance below a hazard quotient of unity. The haz-
ard quotient value is used to determine regulatory compliance
and to determine the need for and type of risk management
measures.(1) Such applications are discussed below.

NIOSH and OSHA Compliance Approaches
NIOSH recommends a method for comparing exposure data

to an OEL that incorporates the hazard quotient concept based
on collection of a single measurement.(30) Approaches include
collecting samples from the worst case exposure scenario or
randomly from a defined similar exposure group of interest.
The measurement is compared to the OEL and is classified into
one of three decision categories: clearly below the limit, clearly
above the limit, or too close to the limit for an immediate
decision. In the last case, a confidence interval (CI) around
the measurement is computed based on sampling and analysis
uncertainty only without consideration of environmental vari-
ability within-worker over time or between similarly exposed
workers. If the measurement is over the OEL, the lower end of
the CI is compared to the OEL; conversely, if the measurement
is below the OEL the upper end of the CI is compared to the
OEL. The NIOSH method became the basis for the OSHA
compliance approach.(31) Limitations on these approaches,
when they are based on a single measurement and do not
address environmental (e.g., weather conditions) variability,
have been discussed elsewhere.(3,32–36) In addition, limited
sampling may not generate confidence bounds that reflect the
actual process variability, and support the use of lognormal
distributions to characterize probability.

AIHA Exposure Assessment Strategy
Following publication of criticisms of the compliance ap-

proach to exposure risk decision-making, (3,32–36) methods were
proposed that shifted from a compliance focus using sin-
gle measurement of a worst-case exposure to a more com-
prehensive approach applicable to all workers over all work
days. (1,34,37) A committee within the AIHA published an expo-
sure assessment strategy that recommended that TWA OELs be
interpreted as upper limits of exposure (e.g., 95th percentile)
for each similar exposure group (SEG) and that the expo-
sure distribution profile of each SEG should be controlled so
that the 95th percentile exposure is less than the OEL over
time.(1) Since the 95th percentile of the presumed lognormal
distribution depends on both the mean and the variance of
the measurements, this approach sets an upper limit on the
entire exposure distribution and goes beyond comparison of a
single measurement to the OEL using the hazard quotient. Rec-
ommendations include collecting at least six measurements
per SEG. This approach is well specified but lacks a formal
statistical hypothesis-testing framework.
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Frequentist Approaches with Sufficient Sampling
Several authors have proposed a frequentist approach with

formal hypothesis testing of exposures compared to an
OEL.(3,38,39) The strategy groups workers, collects measure-
ments from multiple workers and at least two repeat measure-
ments per measured worker, and first assesses goodness of
fit to the lognormal model. If the fit is acceptable, the next
step uses a Wald-type test to determine if the probability of
overexposure within the group is below an a priori specified
value, e.g., less than 10%. Overexposure is the probability that
the mean exposure of a randomly selected worker is greater
than the OEL. If exposures are acceptable by this criterion,
the effort is complete. If exposures are not acceptable, the
within-group variability is then examined for heterogeneity. If
exposures within-group vary widely, one or a few individuals
have higher exposures than the others and the focus is placed
on evaluating and controlling individual tasks and activities. If
within-group (between-worker) exposures do not vary much
compared to within-worker exposures, the group exposures are
homogeneous and exposures are unacceptable for the group as
a whole, leading to engineering or administrative controls and
re-evaluation. The formal testing structure of this approach is
desirable; however, the sample size requirement can be quite
large, depending on the overall variability in exposures and
how close the exposures are to the OEL. When exposures are
far below the OEL, the acceptability decision does not require
many samples. The greatest advantage of this approach is the
evidence-based guidance for either an individual or group-
based exposure control strategy.

Bayesian Methods
Hewett et al.(28) proposed a Bayesian updating approach.

First, judgment is used to estimate the prior probability that
the true exposure will fall within one of five categories, which
are based on fractions of the OEL (e.g., 0.0–0.1, 0.1–0.5,
0.5–0.9, 0.9–1.0, or > OEL). Then one or more measurements
are combined with the prior probabilities using hierarchical
Bayesian updating to obtain the posterior probabilities in each
category. A feature of the Bayesian method as specified by
AIHA(1) is that the exposure metric used is not the mean
but the 95th percentile exposure. The greatest advantage of
Bayesian estimation methods is the use of a formal structure
for combining non-quantitative information and judgment with
a small number of measurements. Clearly, the expertise of the
occupational hygienist is key. Research is underway to identify
methods for training occupational hygienists to produce better
judgments through data interpretation exercises and recali-
bration of judgments. These methods hold great promise but
are in the developmental stages. Similar methods have been
incorporated into the Advanced REACH Tool (ART)(40,41) and
a new version of Stoffenmanager, two exposure-estimating
and decision-making tools developed in Europe. Sensitivity
analyses were used to partially evaluate uncertainty associated
with the exposure risk decision during model validation for
both of these tools.

Tools for Exposure Estimation and Decision-Making
In occupational exposure risk determination, there is long

history of making one or several measurements and an ad
hoc comparison with an OEL to determine acceptability of
exposures. Even in cases where larger exposure data sets exist,
quantitative analysis of exposure data is often not performed.
Several quantitative exposure data analysis tools exist for
evaluating, summarizing, and visualizing exposure measure-
ment data. These include SPEED (The Statistical Program
for the Evaluation of Exposure Data) (Version 1, Institute
for Risk Assessment Sciences (IRAS), Netherlands),(42) IH
Stats,(43,44) and IH Data Analyst (V1.27, Exposure Solutions,
Inc., Morgantown, WV).(45) SPEED is based on the strategy
described by Rappaport et al.(34) and Lyles et al. (46) Each of
these tools permits visualization of the idealized distribution
that best fits the measurement data and, computation of sum-
mary descriptive metrics such as the 95th percentile exposure
and the exceedance fraction.

DISCUSSION

Brief Summary of Findings
In this article we focus on traditional and evolving interpre-

tations of occupational exposure assessment with an emphasis
on the probabilistic nature of the risk characterization effort.
The tools for risk characterization used most commonly by the
occupational hygienist, i.e., OELS and exposure estimates, are
not single deterministic values—rather they are estimates with
a probability range. Many occupational hygienists do not make
full use of the probabilistic nature of these random variables
to inform their risk management decisions. Understanding
uncertainty could increase the ability to understand variability
of exposures and associate them with specific tasks to reduce
exposures. This article describes current tools and methods
in exposure-response evaluation and exposure assessment that
can provide occupational hygienists with greater access to
consideration of probability in characterizing health outcomes
and designing effective control strategies.

Research Needs and Gaps
Exposure-Response Methods for Estimating
Risk at an OEL

In this article, we use the term occupational exposure limit
(OEL) as a general term to reflect an airborne exposure concen-
tration that has been recommended as guidance or promulgated
as a regulatory control limit for the protection of worker health.
The definitions and bases for establishing OELs vary among
organizations (Table I). Two practical outcomes that result
from the complex series of decisions embedded in an OEL
are (1) that OELs are likely to vary in value among different
organizations (and possibly appear inconsistent) and (2) OELs
derived as a series of complex decisions are imprecise esti-
mates of a safe exposure.(47) Although imprecise, OELs are
not arbitrary with methods applied in their derivation expected
to yield protective limits. Since the occupational hygienist
will often face a range of potential OEL values, it is critical for
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FIGURE 3. Low-dose extrapolation methods for estimating risk. Approaches are shown for extrapolation to exposures below the range of
available health effects data. Panel (A) shows a hypothetical exposure response curve with the probability of adverse effect shown to increase
with increasing exposure concentration. Panel (B) shows the application of an uncertainty factor (UF) to a point of departure (POD) in region of
low effect incidence to estimate an occupational exposure limit (OEL). Panel (C) shows the linear extrapolation from the POD to an OEL or a
hypothetical point of no exposure or excess risk (the graphical origin). The slopes of the resulting lines are used by some organizations as an
upper bound estimate of risk. Panel (D) is an alternative to linear extrapolation when the use of the health effects data supports the derivation
of an exposure-response curve directly in the exposure region of interest. This is most typical when large data sets are adequate to estimate
risk in the 1:1000 range or when a high degree of knowledge of the underlying biology of the adverse effect is available to infer the shape of the
curve at low concentrations.

users of an OEL to understand the implications of a particular
methodology in applying an OEL to support worker health risk
decisions.

Despite the push for increased use and development of
risk-based exposure guidance, for most OELs the probability
of adverse health effects with increasing exposure is not easily
determined. This is because the OELs published by most
organizations represent a single value with no clear articulation
of the incremental level of risk as exposure reaches or exceeds
the OEL. A variety of exposure response analysis methods
have been proposed to address this limitation in the context
of setting health risk assessment guidelines for environmental
or occupational scenarios. The impacts of exposure-response
methods(48) and application uncertainty factors for OEL deriva-
tion(49) are described in detail elsewhere. In addition to these
methods, options for specifically addressing the question of

probability of effects in derivation and application of OELs
are also being explored.

In 2001, Jayjock and colleagues(50) provide a rationale using
multiple low-dose extrapolation models for the quantitative es-
timation of the level of residual risk (with resulting uncertainty
bands) that is extant at any documented OEL.

Low-dose extrapolation using benchmark dose modeling
is one relatively simple method for estimating risk proba-
bilities (Figure 3). Incorporating an early effect biomarker
into the exposure-response assessment can also extend the
interpolation range of the exposure-response curve to lower
doses, as well as help identify lower levels of risk in the
data range.(51) Techniques such as categorical or ordinal re-
gression may also be useful for characterizing probability
of adverse effects.(52–55) U.S. EPA has developed a software
tool to facilitate the application of categorical regression for
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risk assessment applications (CatReg Software, Version 2,
U.S. EPA, Research Triangle Park, NC).(56) As an alterna-
tive to these techniques that center on the exposure-response
curve, the uncertainty factor (UF) can be characterized us-
ing probabilistic methods. Two approaches have grown out
of environmental exposure research in this area. The first
assumes distributions for each of the commonly applied un-
certainty factors and subsequent health-based reference lim-
its.(57–59) A second approach estimates the hypothesized risks
below, at, or above a health-based reference limit(60–63) based
on the use of standard uncertainty factors that estimate the
likely human equivalent dose at a given response. The in-
traspecies and/or interspecies uncertainty factor distribution is
used to estimate the likely probability for the critical effect in
humans.(64)

As shown above and previously stated, there are many alter-
native approaches related to the exposure-response assessment
techniques in OEL development that provide information on
risk probabilities. An issue critical to the integrity and utility
of any OEL resides in the appropriateness and transparency of
its documentation. The documentation of most OELs does not
include estimates of the probability of effects associated with
that limit. Transparency of uncertainty in the risk value is an
important aspect of appropriate risk characterization.

OEL development based on exposure-response data ac-
companied by risk level data is needed by occupational risk
managers. However, risk-based OELS have yet to see sig-
nificant application in most IH programs. From a exposure-
response perspective, barriers to the full use of probabilistic
techniques relate to toxicological data gaps, science uncer-
tainty, and debate surrounding exposure-response behavior at
the low range of exposures, and needs for broader education of
the occupational hygiene community on the exposure-response
tools available for providing a probabilistic view of risk.

As described above, OELs are already derived and applied
on a probabilistic basis in some cases, usually where large
epidemiology data sets are available with sufficient statistical
power to described changes in risk as a function of expo-
sure concentration. Such data sets reduce the uncertainties
related to interspecies as well as low-dose extrapolation. Since
epidemiology studies are complex and resource intensive, it
is not likely that the expansion of probabilistic concepts for
most OELs will come from a fundamental change in the ready
availability of large human effects data sets, which are increas-
ingly more difficult to initiate due to resource limitations and
difficulty in obtaining occupational exposure information. In
the future, greater use of molecular epidemiology tools and
approaches based on individualized medicine can be envi-
sioned as one path to address this challenge. Since most OELs
are derived on the basis of toxicology studies, changes in the
availability of data in this area will also impact developing
exposure-response assessments in a way that facilitates better
characterization of exposure-response behavior in the low-
dose range. The increased focus on early effects and sys-
tems biology data(65) coupled with developments in computa-
tional biology are already moving us in the direction of better

characterizations of effects at low levels of exposure. This
concept has become a significant emphasis in the toxicology
and risk assessment field; an example is the U.S. EPA NexGen
Program.(66) DeBord et al.(51) described the implications of
these developments for OEL settings. In the near term, data
collection and methods development are recognized as a vital
aspect of the problem formulation step of risk assessment. The
importance for risk management decision-making at low ex-
posures helps to prioritize the necessary research based on the
value of the new information. Value-of-information concepts
are growing as an integral part of risk assessment.(60,67)

Exposure Assessment
Challenges remain in occupational exposure assessment.

Collecting exposure measurements using a well-defined sta-
tistical sampling strategy can be resource intensive, a potential
barrier to developing the type of empirical data sets that reduce
uncertainty in decision making. As an alternative to such
sampling campaigns, exposure modeling or other estimation
methods have replaced measurement of exposures in some
applications.(68) The primary repositories of exposure mea-
surements are private companies that are generally reluctant
to share data with risk assessors. Exposure modeling has an
established history of routine use within the environmental risk
assessment realm, but is still expanding within occupational
exposure science. Occupational exposure modeling has been
greatly expanded within the European Union in the last decade
due to the implementation of the Registration, Evaluation
and Authorization of Chemicals Directive or REACH.(40,69)

However, uncertainty analyses within these contexts are still
rudimentary. Model validation is essential yet not always per-
formed due to lack of data, access, or resources. Further,
no universal agreement exists about what constitutes model
validation. Indeed, existing models are “useful” but their utility
and value as optimally cost-effective tools within any compre-
hensive risk assessment and management scheme awaits the
necessary resources and research to develop them.(17) In addi-
tion, software tools are needed to make these approaches more
attainable by field practitioners. A few specialized tools exist
for analyzing exposure data, visualizing exposure distribu-
tions, and comparing exposure estimates to OELs for decision-
making: IHSTAT,(44) SPEED (Version 1, Institute for Risk
Assessment Sciences (IRAS), Netherlands),(42) IHMOD,(43)

and IHDA (V1.27, Exposure Solutions, Inc., Morgantown,
WV).

Tools for Communicating Uncertainty in the Exposure
Assessment and Risk Characterization

In general, there is oversimplification and under-appreci-
ation of true uncertainties associated with exposures and ex-
posure risk decisions due to the skewed nature of exposure
distributions and the difficulty in collecting adequate expo-
sure measurements. Therefore, efforts to more fully com-
municate the basis of uncertainties are needed. For exam-
ple, IPCS(5) published a broader definition of data quality in
exposure assessment and defined hallmarks of data quality:
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TABLE III. Summary of Key Considerations during Phases of Risk Assessment

Phase of Risk
Assessment Critical Question(s) Key Resources

Problem
Formulation

What is the occupational exposure scenario under
consideration?

• NRC: Science and Decisions: Advancing Risk
Assessment (2009).(60)

• Bullock, W.H., and J.S. Ignacio: A Strategy for
Assessing and Managing Occupational (2006).(1)

• IPCS: Uncertainty and Data Quality in Exposure
Assessment (2008).(5)

OEL Derivation
(Toxicity
evaluation and
exposure-
response)

What are the key sources of variability and
uncertainty in the OEL?

• Nelson, D.I.: Chapter 9: Risk Assessment in the
Workplace In The Occupational Environment: Its
Evaluation, Control, and Management (2011).(71)

• Haber, L.T. et al: Noncancer Risk Assessment:
Principles and Practice in Environmental and
Occupational Settings (2012).(54)

Exposure
Assessment

What are the methods for characterizing
occupational exposures and their uncertainties?

• Rappaport, S.M. and L.L. Kupper: Quantitative
Exposure Assessment (2008).(3)

• Sources of variability • IPCS: Uncertainty and Data Quality in Exposure
Assessment (2008).(5)

• Uncertainties in exposure estimation • Cullen, A.C., and H.C. Frey: Probabilistic
Techniques in Exposure Assessment (1999).(15)

• Methods for estimating exposures • O’Hagan, A. et al: Uncertain Judgments:
Eliciting Experts’ Probabilities (2006).(6)

• Measurement-based approaches
• Modeling approaches

Risk Characteri-
zation

What methods are used to compare exposure
estimates to OELs for decision-making about
the acceptability of exposures?

• Bullock, W.H., and J.S. Ignacio: A Strategy for
Assessing and Managing Occupational (2006).(1)

• Rappaport, S.M., and L.L. Kupper: Quantitative
Exposure Assessment (2008).(3)

What tools exist to support risk characterization? • AIHA: Exposure Assessment Strategies
Committee: IH STAT Excel Spreadsheet Tool.
https://www.aiha.org/get-involved/Volunteer
Groups/Documents/EASC-IHSTAT-V235.xls.
(2014).(44)

• Drolet, D. et al.: Exposure Assessment Strategies
Committee: IH MOD Excel Exposure Models
Suite. https://www.aiha.org/get-involved/
VolunteerGroups/Documents/IHMOD
Korean-AIHA-MathModel209.xls (2014).(43)

• Hewett, P.: IHDA for Bayesian Decision
Analysis. http://www.oesh.com/software.php.
V1. 27, Exposure Solutions, Inc., Morgantown,
WV (2011).(45)

Risk
Management

What problems are associated with this exposure
scenario?

• NRC: Science and Decisions: Advancing Risk
Assessment (2009).(60)

What actions could be taken? • Bullock, W.H., and J.S. Ignacio: A Strategy for
Assessing and Managing Occupational (2006).(1)What additional information is needed to evaluate

possible risk management options?

appropriateness, accuracy, integrity, and transparency. These
tools and concepts should be applied in designing exposure
assessments and assessing data used in risk assessment. Fur-
ther guidance is provided by the U.S. EPA published guidance

on well-conducted risk characterization that highlights four
key elements: transparency, clarity, consistency, and reason-
ableness.(70) Such concepts should be applied in communicat-
ing risk assessment results. Published tools are needed that
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relate the likelihood of adverse effects at a worker’s measured
exposure levels relative to OELs.

CONCLUSION

Both the exposure-response relationship and exposure in-
tensity are integral to the assessment of occupational

health risk when developing and interpreting OELs. We
showed in this article that probabilistic approaches applied
to exposure estimation are needed to provide a stronger basis
for occupational risk management. The integration of these
concepts has not been typically applied when making risk
decisions. This article highlights the need for more complete
use of these concepts in field application of occupational risk
assessment. Occupational health and safety professionals can
improve risk management practices through the applications
of such approaches. Greater education and outreach on the
use of these techniques as well as provision of user guides
and information would be an important step forward. Table III
provides a list of key steps and associated resources to facilitate
the use of probabilistic approaches in occupational health risk
assessments.

DISCLAIMER

The findings and conclusions in this article are those of the
author(s) and do not represent the views of the National
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