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Abstract

Purpose—To examine associations between phthalate metabolite urinary concentrations during 

early pregnancy and blood glucose levels obtained at the time of screening for gestational diabetes 

mellitus (GDM).

Methods—Upon initiation of prenatal care, women with a mean gestational age of 12.8 weeks 

were recruited for a study of environmental chemical exposures (n = 110) and provided a spot 

urinary specimen. Blood glucose concentrations (mg/dl) were obtained from the electronic 

medical record for those patients who did not experience a pregnancy loss and did not transfer 

care to another facility prior to glucose screening (n = 72). Urinary concentrations of nine 

phthalate metabolites and creatinine were measured at the US Centers for Disease Control and 

Prevention. Associations between tertiles of phthalate metabolites concentrations and blood 

glucose levels were estimated using linear regression.

Results—Compared to pregnant women in the lowest concentration tertile, women with the 

highest urinary concentrations (≥3rd tertile) of mono-iso-butyl phthalate (tertile: ≥15.3 μg/l, β = 

−18.3, 95% CI: −35.4, −1.2) and monobenzyl phthalate (tertile: ≥30.3 μg/l, β = −17.3, 95% CI: 

−34.1, −0.4) had lower blood glucose levels at the time of GDM screening after adjustment for 

urinary creatinine and demographic covariates.
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Conclusion—Because maternal glucose levels increase during pregnancy to provide adequate 

nutrition for fetal growth and development, these findings may have implications for fetal health. 

However, given the limitations of our study, findings should be interpreted cautiously.
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Introduction

Widespread exposure to endocrine disrupting chemicals such as phthalates has led to 

growing concerns about potential associations with adverse health effects. Phthalates, the 

diesters of 1,2-benzenedicarboxylic acid, are a group of synthetic chemicals that are 

ubiquitous in the environment because of their wide array of industrial applications 

(Graham, 1973). Phthalates impart plastics with flexibility and are found in many products 

such as cosmetics, automotive plastics and personal care products. Phthalates may also be 

found in food packaging materials. High molecular weight (HMW) phthalates (≥250 Da), 

such as di(2-ethylhexyl) phthalate (DEHP) are primarily used in the manufacture of flexible 

vinyl and can be found in flooring, medical devices and consumer products. Low molecular 

weight (LMW) phthalates (<250 Da) comprise metabolites of diethyl phthalate and dibutyl 

phthalates (DBP). These phthalates are commonly found in personal care products and are 

used in the making of lacquers, varnishes and in the coatings of medications (Graham, 

1973). Dietary intake of contaminated food, dermal contact and inhalation are potential 

pathways of exposure to phthalates in the general population (Hauser and Calafat, 2005; 

Schettler, 2006). Upon exposure, phthalates undergo phase I and phase II transformations 

into their biologically active monoester metabolites which are excreted in urine and can be 

measured to estimate phthalate exposure in human populations (Frederiksen et al., 2007; 

Wittassek and Angerer, 2008).

Certain phthalates have anti-androgenic properties and can activate peroxisome proliferator 

activated receptors (PPAR), properties that have led researchers to suspect that phthalate 

exposure can impact energy balance and metabolism (Desvergne et al., 2009; Grun and 

Bloomberg, 2009). Experimental studies in rats have shown that diets supplemented with 

DEHP can induce glucose intolerance (Martinelli et al., 2006; Mushtaq et al., 1980), 

decrease blood insulin and increase blood glucose levels (Gayathri et al., 2004). Although 

limited in number, several cross-sectional studies that include adult men (Stahlhut et al., 

2007), adult women (Svensson et al., 2011), and lactating women (Hines et al., 2009) 

support associations between phthalate metabolite urinary concentrations, insulin resistance 

and diabetes mellitus. Widespread phthalate exposure and its potential for substantial public 

health impact have led to studies that describe exposure among vulnerable subgroups such 

as pregnant women and women of reproductive age (Adibi et al., 2008; Braun et al., 2013; 

Peck et al., 2010). While there is concern about the endocrine disrupting properties of 

phthalates, studies have yet to examine whether phthalate exposure during pregnancy is 

associated with metabolic endpoints such as blood glucose levels. Pregnancy naturally 

induces an insulin-resistant state in order to direct maternal metabolism to provide enough 

nutrition to support the growth and development of the fetus. This insulin-resistant state 
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results in higher circulating levels of glucose. An insufficient pancreatic insulin response to 

lower blood glucose into the normal range can lead to gestational diabetes mellitus (GDM) 

(Ryan, 2003).

Given emerging evidence that phthalates may disrupt insulin or glucose action in human 

populations (Hauser and Calafat, 2005), we examined whether phthalate exposure is 

associated with blood glucose alterations during pregnancy, a window when both maternal 

and fetal health are susceptible to changes in glucose action or uptake. We evaluated this 

hypothesis by measuring urinary concentrations of phthalate metabolites during early 

pregnancy and examining associations with blood glucose levels obtained at the time of 

prenatal GDM screening.

Materials and methods

Study population

Pregnant women (n = 110) were recruited for a pilot study of environmental chemical 

exposures during their first prenatal care visit at the University of Oklahoma Medical Center 

Women's Clinic between February and June 2008. Women were eligible to participate in the 

study if their first prenatal care visit occurred before the 22nd week of pregnancy, they were 

18 years of age or older, and spoke either English or Spanish. Women were ineligible to 

participate if at the time of enrollment they presented with a medically threatened 

pregnancy, multiple gestation, or if they had a history of diabetes (type 1 or type 2), 

preeclampsia, preterm rupture of membranes, or preterm labor.

For purposes of this analysis, women were excluded if they reported having a history of 

gestational diabetes (n = 6). Patients were administered a one hour 50 g oral glucose 

challenge test as part of routine GDM screening (median gestational age at screen: 26.3 

weeks; range: 10.3–35.4 weeks). Blood glucose concentrations (mg/dl) were obtained from 

the electronic medical record. Pregnant women with an elevated screening value of ≥135 

mg/dl received further testing (oral glucose tolerance tests) for diagnosis of GDM 

(Carpenter and Coustan, 1982; Metzger and Coustan, 1998). Our analyses were restricted to 

72 pregnant women for whom glucose challenge test results were available in the medical 

record. Reasons for missing glucose challenge test results included experiencing a 

pregnancy loss (n = 10), transferring care to another facility (n = 6) or not returning to the 

clinic for prenatal care (n = 16) prior to GDM screening. The demographic characteristics of 

women who were excluded from analyses did not statistically differ from women whose 

data were available (Table 1).

This study was approved by the University of Oklahoma Health Sciences Center 

Institutional Review Board. The analysis of blinded specimens by the Centers for Disease 

Control and Prevention (CDC) laboratory was determined not to constitute engagement in 

human subjects research.

Biomarkers of phthalate exposure

Upon enrollment, women provided a urine spot sample to measure biomarkers of exposure 

to environmental contaminants and cotinine. Sterile urine collection containers were 
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provided by the CDC laboratory. Following collection, urine specimens were temporarily 

refrigerated in the clinic, until they could be aliquotted for storage (−20 °C) at the end of 

each recruitment day. After the enrollment period ended, in 2011, samples were shipped to 

the CDC laboratory on dry ice.

Urinary concentrations of nine phthalate metabolites and creatinine were measured. The 

metabolites and their respective parent diesters are listed in Appendix A. Phthalate 

metabolites were measured using online solid phase extraction coupled with high 

performance liquid chromatography isotope dilution tandem mass spectrometry as described 

elsewhere (Kato et al., 2005). Creatinine was measured using an enzymatic reaction on a 

Roche Hitachi 912 chemistry analyzer (Roche Hitachi, Basel Switzerland).

Limits of detection (LODs) ranged from 0.2 μg/l for monocarboxypropyl phthalate (MCPP) 

to 1.2 μg/l for mono-2-ethylhexyl phthalate (MEHP). Reported concentrations, including the 

LOD of monoethyl phthalate (MEP) and monobenzyl phthalate (MBzP), were multiplied by 

0.66 and 0.72, respectively, to account for the purity of the analytical standards used 

(Centers for Disease Control and Prevention National Center for Environmental Health 

Divsion of Laboratory Sciences, 2012). All but three of the nine phthalate metabolites were 

detectable in 100% of urine specimens analyzed. MBzP and MCPP were detectable in 98% 

and 99% of urine specimens, respectively. MEHP, a metabolite of DEHP, was detectable in 

78% of urine specimens. For statistical analysis, urinary concentrations of phthalate 

metabolites below the LOD were converted by dividing the LOD by the square root of two 

(Hornung and Reed, 1990).

Measurement of urinary cotinine

Using urine samples collected at enrollment, analysis of urinary cotinine was conducted by 

Lab Stat International in Canada (www.labstat.com) using high resolution capillary-column 

gas chromatography with split/splitless injection, a fused silica capillary column and a 

nitrogen-phosphorus detector. The LOD for urinary cotinine was 1.0 μg/l.

Phthalate exposure variables

Phthalate metabolite concentrations, expressed as continuous variables, were not linearly 

associated with blood glucose concentrations. Therefore, categorical exposure variables 

were created using tertiles of urinary concentrations of each phthalate metabolite (i.e., <33rd 

percentile, 33rd to <66th percentile, and ≥66th percentile). Values defining the 33rd and 

66th percentiles are displayed in Table 2.

Additional variables were created by summing the urinary concentrations of the metabolites 

of DEHP (ΣDEHP), of DBP (ΣDBP), and by molecular weight of the parent compound 

(low: ΣLMW or high: ΣHMW). ΣHMW included MBzP, MCPP and all DEHP metabolites. 

ΣLMW included MEP, mono-n-butyl phthalate (MnBP) and mono-iso-butyl phthalate 

(MiBP).
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Covariates of interest

Participants completed an enrollment interview that provided information on demographics, 

reproductive and medical histories and lifestyle factors. Demographic factors included age, 

race/ethnicity, annual household income and educational level. Self-reported pre-pregnancy 

height (inches) and weight (pounds) were used to calculate pre-pregnancy body mass index 

(BMI) in kg/m2 using the formula weight (lb)/[height (in)]2 × 703. Participants also reported 

date of last menstrual period (LMP), and parity. Gestational age at enrollment (weeks) was 

calculated by subtracting the date of LMP from the date of enrollment and dividing the 

number of days by seven. Gestational age at screening was calculated by subtracting LMP 

date from the date of the glucose challenge test. If a woman self-reported she was currently 

smoking or had urinary cotinine concentrations ≥15 μg/l, she was defined as an active 

smoker (Benowitz et al., 2009).

Statistical methods

Analyses were conducted using SAS version 9.1.3. Continuous and categorical 

characteristics of the sample (n = 72) were summarized using descriptive statistics. 

Geometric mean (GM) concentrations, 95% confidence intervals (CI) and distribution 

percentiles of unadjusted urinary phthalate metabolite concentrations were calculated.

Multiple linear regression was used to assess the association between tertiles of urinary 

concentrations of phthalate metabolites (μg/L) and blood glucose levels (mg/dl), while 

controlling for potential confounders. We included creatinine concentrations as an 

independent factor in all models to adjust for urinary dilution (Barr et al., 2005). We refer to 

models adjusted only for urinary creatinine concentrations as crude models.

We examined confounding by comparing estimates of the crude and adjusted model 

parameters (linear coefficients) for each exposure of interest. Each potential confounding 

variable was added to the model until all possible combinations of confounding factors were 

explored. Covariates were retained in the final models if controlling for the factor(s) 

produced a >10% change in adjusted estimates for phthalate metabolites. Variables 

evaluated as confounders included Hispanic race/ethnicity, having greater than a High 

School degree, reporting an annual household income greater than or equal to $20,000, 

being nulliparous or a current smoker as well as age, pre-pregnancy BMI, gestational age at 

enrollment and glucose screening. Final models evaluating MiBP were adjusted for race/

ethnicity. Models evaluating ΣLMW were adjusted for race/ethnicity and BMI. All other 

models were adjusted for race/ethnicity and gestational age at enrollment.

Results

The women retained in our analytic cohort were similar in demographic and clinical 

characteristics when compared to those that were excluded from analyses (Table 1). The 

majority of pregnant women (n = 72) were younger than 25 years of age, non-Hispanic, had 

a pre-pregnancy BMI classified as overweight or obese and had less than or equal to a High 

School education. Lastly, 29% of women were active smokers (Table 1). The highest and 

lowest urinary metabolite concentrations observed were for MEP (GM = 216.4 μg/L, 95% 
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CI: 161.9, 289.4) and for MEHP (GM = 3.2 μg/L, 95% CI: 2.5, 4.1) and MCPP (GM = 3.7, 

95% CI: 3.1, 4.6), respectively. The GM and distribution percentiles for phthalate urinary 

concentrations are reported in Table 2.

We present crude and adjusted linear regression models of the association between blood 

glucose levels and urinary phthalate metabolite concentrations in the 2nd and 3rd tertiles as 

compared with the 1st tertile in Table 3. Pregnant women with urinary concentrations of 

MiBP (β = −18.30 95% CI, −35.41 to −1.19) and MBzP (β = −17.26 95% CI, −34.12 to 

−0.40) in the highest concentration tertile had mean blood glucose levels approximately 18 

mg/dl lower when compared to those in the 1st tertile after adjustment for urinary creatinine, 

race/ethnicity, and gestational age at enrollment (for MBzP).

Discussion

Certain phthalates can activate PPARs (Desvergne et al., 2009; Grun and Bloomberg, 2009; 

Hurst and Waxman, 2003), receptors known to influence lipid and glucose homeostasis. 

However, our findings showing inverse associations between urinary concentrations of 

MiBP and MBzP and blood glucose levels during pregnancy do not suggest that phthalate 

exposure is associated with insulin resistance and subsequently higher blood glucose levels. 

Although not statistically significant, associations with blood glucose levels were in the 

same direction for all but two of the remaining urinary metabolites examined.

Our findings for MBzP are consistent with a cross-sectional study examining the 

relationship between phthalate exposure and the prevalence of diabetes in 255 non-pregnant 

women living in the northern states of Mexico (Baja California Norte, Chihuahua, Coahuila, 

Durango, Nuevo León, Sonora, and Tamaulipas) (Svensson et al., 2011). In that study, the 

odds of self-reported diabetes (type 1 or 2) were lower for each 1-standard deviation (SD) 

unit increase in log creatinine-adjusted urinary concentrations of MBzP (OR = 0.73, 95% CI 

0.55, 0.97), but not for MiBP (OR = 0.94, 95% CI 0.62, 1.43). In contrast to our findings, 

the odds of self-reported diabetes were higher with increasing levels of urinary 

concentrations for individual DEHP metabolites (except MEHP) and for ΣDEHP (OR = 

1.66 (1.01–2.73). These discrepencies may be due to differences in characteristics between 

source populations.

There are several methodological considerations that need to be taken into account when 

interpreting our results. The pilot and exploratory nature of this study did not allow us to 

explore the associations between maternal urinary phthalate levels and health and/or 

developmental outcomes. While the majority of participants were screened between 24 and 

28 weeks gestation as is typically recommended in the US, eight (11%) and 23 women 

(32%) women were screened at gestational ages before 24 weeks and after 28 weeks, 

respectively. Pregnant women are naturally insulin resistant, which inherently affects 

glucose levels (Ryan, 2003) and hence, limits the generalizability of our findings. Also, 

since metabolic changes increase glucose levels during pregnancy to support fetal growth, 

our findings may have more implications for fetal health as opposed to maternal health. We 

assessed phthalate exposure approximately 15 weeks (range: 3.4–25.1 weeks) before blood 

glucose levels were obtained. It is possible that phthalate exposure at that time was outside 
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the etiologically relevant window for exposure during pregnancy. Alternatively, the 

variability in phthalate metabolite concentrations may have hindered our ability to 

accurately examine the associations of interest. In addition, while their characteristics did 

not statistically differ from our study sample, data for a large proportion of women were 

unavailable (n = 38 or 34%). Our small sample size (n = 72) limited precision, statistical 

power and our ability to assess confounding. We also tested a large number of associations 

and our statistically significant findings could be attributed to chance. However, the fact that 

associations between blood glucose levels and phthalate metabolites were in the same 

(inverse) direction (except for MEHP and MEP), suggests that our results are fairly robust.

Phthalate exposure in this study was categorized from a single spot urine sample collected 

approximately 15 weeks before the screening test. Thus, exposure misclassification is a 

concern given that phthalates are metabolized quickly in humans, with half-lives less than 

24 h (Frederiksen et al., 2007), and exposures are most likely episodic. Evidence from 

studies examining the temporal variability of phthalate metabolites suggests that 

measurements obtained from a single urine sample are relatively predictive of exposure over 

a limited period of time (1–3 months) (Adibi et al., 2008; Cantonwine et al., 2014; Hauser 

and Calafat, 2005; Hoppin et al., 2002; Irvin et al., 2010; Peck et al., 2010). This is 

attributed to the fact that exposure to phthalates via consumer products, such as through the 

use of personal care products, may be recurrent. In a study of phthalate variability during 

pregnancy (Braun et al., 2012), Braun et al. reported the top tertile of trimester-specific 

MBP, MBzP and MEP concentrations had moderate sensitivity (0.62–0.81) and specificity 

(0.80–0.90) for classifying the highest exposure tertile based on an average of three samples 

collected throughout pregnancy. However, Braun et al. also demonstrated that variability 

was biomarker specific. The authors suggest that a single spot urine sample may be adequate 

to classify MBP and MEP concentrations during pregnancy but more than one spot urine 

sample may be necessary for MBzP and the metabolites of DEHP. While we learn a great 

deal regarding the variability of phthalate metabolite concentrations during pregnancy from 

Braun et al., the study population was of higher socioeconomic status, recruited before 

pregnancy as they sought infertility treatment and were told that the study was examining 

the health effects of phthalates and other environmental chemicals. The authors note that 

these factors may have hindered the generalizability of their results and impacted 

participants' behavior before and during pregnancy; accounting for some of the variability in 

phthalate metabolite concentrations observed.

Another study showed better reproducibility for urinary MBzP concentrations measured in 

2–3 urine samples over a 6–8 week period among minority women living in New York City 

than for other metabolites (mean interclass correlation coefficient = 0.64) (Adibi et al., 

2008). Of further relevance to categorical measures, when studies of phthalate variability 

defined exposure tertiles using a single urine measurement and then calculated the geometric 

mean concentrations of repeated samples (3–4 urine samples) from the individuals within 

each tertile, the geometric mean values were consistently lowest for those in the bottom 

tertile and highest for those in the top tertile (Peck et al., 2010; Teitelbaum et al., 2008). 

Thus, the use of a single urine sample to assess exposure in this cohort is expected to 

Robledo et al. Page 7

Int J Hyg Environ Health. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provide a reasonable indication of low, medium or high average phthalate exposure, but the 

measure is not without error.

Despite these limitations, this study was the first to examine the association between blood 

glucose levels and phthalate exposure in a sample of pregnant women. Large prospective 

studies collecting several spot urine samples during pregnancy would provide useful 

information to examine repeated measures of phthalate metabolite concentrations throughout 

pregnancy in relation to metabolic endpoints, as well as the effect of various lag times. 

Indeed, by investigating the etiologically relevant window of exposure before or during 

pregnancy and taking intra-individual variability into account, such studies would contribute 

to improved approaches for exposure assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BzBP benzylbutyl phthalate

DEHP di-2-ethylhexyl phthalate

DBP dibutyl phthalates

DOP di-n-octyl phthalate

GDM gestational diabetes mellitus

MBzP monobenzyl phthalate

MCPP mono-3-carboxypropyl phthalate

MECPP mono-2-ethyl-5-carboxypentyl phthalate

MEHP mono-2-ethylhexyl phthalate

MEHHP mono-2-ethyl-5-hydroxyhexyl phthalate

MEOHP mono-2-ethyl-5-oxohexyl phthalate

MiBP mono-iso-butyl phthalate

MEP monoethyl phthalate

MnBP mono-n-butyl phthalate

NHANES National Health and Nutrition Examination Survey
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Table 1

Demographic and clinical characteristics of obstetric cohort by inclusion status, Oklahoma, 2008.

Characteristic
Analytic cohort (n = 72) Excludedb (n=38)

n % n %

Maternal race/ethnicity

 Hispanic 17 24 5 13

 Non-Hispanic White 21 29 13 34

 Non-Hispanic Black 27 37 16 42

 Other 7 10 4 11

Education level

 ≤High school 47 65 19 50

 >High school 25 35 19 50

Annual household income

 ≤ 19,999 53 74 29 76

 ≥$20,000 19 26 9 24

Parity

 Nulliparous 19 26 8 21

 Multiparous 53 74 30 79

Current smoker

 Yes 21 29 12 32

 No 51 71 26 68

Elevated GDM screen

 Yes (≥135mg/dl) 15 21 - -

Median (range)

Maternal age (years) 22 (18,38) 24 (18,38)

Prepregnancy body mass index (kg/m2) 26 (16, 47) 26 (16, 43)

Gestational age (weeks)

 Enrollment 12.8 (4.6, 22.0) 9.0 (4.0, 22.0)

 At GDMa screen 26.3 (10.3,35.4) - -

Weeks from enrollment to GDMa screen 14.8 (3.4, 25.1) - -

a
GDM, gestational diabetes mellitus.

b
Characteristics between excluded study participants and those retained in the analytical cohort did not differ statistically. P-values for chi-square 

(categorical) or Wilcoxon rank sum tests (continuous) were not <0.05.
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