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Summary

The cerebellum is a prominent vertebrate brain structure that is critically involved in sensorimotor 

function. During locomotion, cerebellar Purkinje cells are rhythmically active, shaping descending 

signals and coordinating commands from higher brain areas with the step cycle. However, the 

variation in this activity across steps has not been studied, and its statistical structure, afferent 

mechanisms, and relationship to behavior remain unknown. Here, using multi-electrode recordings 

in freely moving rats, we show that behavioral variables systematically influence the shape of the 

step-locked firing rate. This effect depends strongly on the phase of the step cycle and reveals a 

functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between 

patterns of variability driven by the parallel and climbing fibers. These results suggest that 

Purkinje cell activity not only represents step phase within each cycle, but is also shaped by 

behavior across steps, facilitating control of movement under dynamic conditions.

Introduction

Trial-to-trial variability is a widespread and fundamental feature of neural activity, evident 

from the periphery through higher brain areas. Responses to sensory stimuli vary over 

repeated presentations, and this variability is modulated by stimulus onset (Churchland et 

al., 2010; Monier et al., 2003), depends strongly on network architecture (Litwin-Kumar and 

Doiron, 2012), and is altered by successive stages of sensory processing (Kara et al., 2000). 

Furthermore, trial-to-trial correlations between neurons influence the accuracy of neural 

codes (Averbeck et al., 2006; Moreno-Bote et al., 2014), and are highly dependent on global 

changes in brain state (Ecker et al., 2014). During the preparation and execution of 

movement, neural activity often varies considerably across repetitions, even when the 

movement is highly stereotyped. Such variability is thought to impose critical constraints on 

motor performance (Shenoy et al., 2013; Todorov and Jordan, 2002), the capacity of motor 
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codes (Averbeck and Lee, 2003; Lee et al., 1998; Maynard et al., 1999), and learning 

(Chaisanguanthum et al., 2014; Mandelblat-Cerf et al., 2009).

Several features make locomotion a powerful framework for studying neural variability in 

motor systems. First, locomotion is an ethologically relevant, nearly universal characteristic 

of animal life. Many aspects of legged overground movement are remarkably consistent 

across a wide range of species, from stick insects to humans (Orlovsky et al., 1999; Shik and 

Orlovsky, 1976), and the insights obtained from its study will likely generalize beyond the 

model organism chosen. Second, locomotion and other periodic behaviors are paradigmatic 

cases of motor repetition, with centrally generated rhythms shaped by modulatory 

influences. Third, studying locomotion eliminates the need for delays between experimental 

trials, allowing efficient acquisition of data from a large number of cycles and improving the 

statistical detection of patterns.

The cerebellum plays a critical role in the coordination of locomotion (Armstrong, 1988; 

Arshavsky et al., 1986; Shik and Orlovsky, 1976), and damage to the cerebellar vermis 

severely impairs the control of limbs and posture in animal models and in human patients 

(Dow and Moruzzi, 1958; Martino et al., 2014; Morton and Bastian, 2004). Furthermore, 

mouse mutant lines with cell-type-specific abnormalities in the cerebellar cortex exhibit 

locomotor deficits in speed, accuracy, consistency, and multi-joint coordination (Vinueza 

Veloz et al., 2014). During stepping, pathways from the spinal cord carry proprioceptive, 

cutaneous, and rhythmogenic signals to the cerebellar cortex (Arshavsky et al., 1986; Bosco 

and Poppele, 2001; Oscarsson, 1965). Mossy fibers related to the forelimbs, hindlimbs, and 

head have different distributions over cerebellar lobules but largely overlap (Adrian, 1943; 

Anderson, 1943; Dow and Moruzzi, 1958; Matsushita and Hosoya, 1979; Snyder et al., 

1978; Tolbert and Gutting, 1997), and vestibular pathways terminate in the same areas 

(Barmack et al., 1992; Barmack et al., 1993; Denoth et al., 1979; Jensen, 1985; 

Kotchabhakdi and Walberg, 1978; Manzoni et al., 1999; Matsushita and Wang, 1987; Precht 

et al., 1977). Signals from these pathways are relayed through the parallel fibers to Purkinje 

cells in the vermal and intermediate cortex, which discharge periodically during stepping 

(Armstrong and Edgley, 1984, 1988; Edgley and Lidierth, 1988; Orlovsky, 1972; Udo et al., 

1981) and impose their rhythm on routes descending back to the spinal cord (Arshavsky et 

al., 1986). This rhythmic discharge provides direct signals to the spinal limb controllers, and 

also gates motor commands from higher brain centers, ensuring that these commands are 

coordinated with the ongoing locomotor pattern (Orlovsky et al., 1999).

Although the cerebellar contribution to the control of locomotion has been studied 

extensively, a number of experimental challenges remain. Previous studies have used 

decerebrate (Arshavsky et al., 1986; Orlovsky, 1972; Udo et al., 1981) and awake 

(Armstrong and Edgley, 1984, 1988; Edgley and Lidierth, 1988) cats restricted on a 

treadmill, but none have examined step-locked simple and complex spikes in freely 

behaving rodents. Furthermore, treadmill studies of constant-speed stepping have dominated 

the study of cerebellar activity, but are limited in their ability to reveal the neuronal 

dynamics that occur in freely moving animals that spontaneously initiate, maintain, and 

terminate locomotion. Several studies have imaged calcium transients in Purkinje cell 

ensembles, revealing olivo-cerebellar interactions during locomotion (De Gruijl et al., 2014; 
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Flusberg et al., 2008; Ghosh et al., 2011; Hoogland et al., 2015; Ozden et al., 2012). These 

transients, however, reflect complex spikes, which constitute only a small fraction of the 

spiking output. Few simultaneous recordings of simple spikes from multiple Purkinje cells 

have been made during locomotion (Smith, 1995), and correlations between pairs of neurons 

across steps have not been studied. Finally, Purkinje cell activity has been reported to vary 

extensively across steps (Armstrong and Edgley, 1984), but there has been no systematic 

study of this variation and its relationship to behavior, though some evidence suggests that 

animal speed can influence activity averaged over many steps (Armstrong and Edgley, 

1988).

Here, we use chronically implanted multi-tetrode arrays in conjunction with 

electromyography and behavioral measurements in freely moving rats to address several 

open questions. First, is the step-locked firing pattern for a Purkinje cell highly stereotyped, 

or does it change extensively across steps? Furthermore, if this pattern is flexible, what are 

its major modes of variation? Second, how is neuronal variability related to behavior? 

Correlations between neuronal activity and behavioral factors would suggest that step-to-

step variation plays a functional role in motor control, while the absence of correlations 

might indicate that such variation is noise. In addition, if such correlations are present, do 

they influence only the mean firing rate within a step cycle, or does interaction between 

behavior and spiking occur on a finer time scale through step-phase-dependent effects? 

Third, is the activity of multiple Purkinje cells correlated across steps? Uncorrelated activity 

would suggest that variation reflects intrinsic noise at the level of individual neurons, while 

pairwise correlations would be consistent with coordinated inputs. Fourth, how is Purkinje 

cell output shaped across steps by its two afferent systems, the parallel and climbing fibers? 

The contributions of these two pathways can be distinguished using extracellular recording: 

the parallel fibers control the rate of simple spikes, while the climbing fibers produce 

complex spikes (Eccles et al., 1966). One possibility is that both pathways use an analog rate 

code for sensorimotor variables both within steps (representing step phase) and across steps 

(representing behavioral factors such as speed). Alternatively, the two pathways might 

encode distinct features using qualitatively different coding schemes.

Results

Tetrode recordings from freely moving rats reveal high step-to-step variability

Using chronically implanted multi-tetrode arrays, we recorded spiking activity from 120 

Purkinje cells in the medial cerebellar vermis of freely behaving rats (n=3; Figure 1A). Most 

cells were located in lobule V (n=74) and VI (n=42), with a small number in lobule IV (n=4) 

(Figure S3). All recorded neurons were identified as Purkinje cells by the presence of 

complex spiking (Eccles et al., 1966), and in many of these cells (n=65), it was possible to 

reliably distinguish between simple and complex spikes throughout the session (Figure 1B). 

The animals were trained to walk freely on a linear track for water reward at ports 

positioned at the ends of the track, while we recorded head location, head attitude, an EMG 

of acromiotrapezius activity, and the timing of licks at the water ports (Figure 1A, Figure 

S1). For most cells, firing rates were elevated during locomotion, relative to inactivity and 

licking (Figure S4C, p < 10−7 and p < 10−6, respectively, paired t-tests), and complex spikes 
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also exhibited rate increases for the same states (Figure S4D, p = .0011 and p = .015, paired 

t-tests). Phasic increases in firing occurred at the onset of locomotion, and phasic increases 

or decreases were common during movement termination (Figure S4A). Lick times were 

recorded for 114 cells, and 101 of these were significantly modulated by licking (Figure 

S4B, Kuiper’s test, false discovery rate set at q = .05).

All cells discharged rhythmically during locomotion (Figure 1C, Figure 2A, B; q = .05, 

Kuiper’s test), consistent with previous studies of paravermal lobule V in awake cats on a 

treadmill (Armstrong and Edgley, 1984, 1988; Edgley and Lidierth, 1988). Cells exhibited 

one (n=26), two (n=69), or three (n=25) peaks in the step cycle, and the location of these 

peaks was widely dispersed across cells (Figure 2B). However, although the average activity 

of each cell exhibited clear tuning to step phase, an inspection of spiking patterns across 

individual steps revealed a high degree of variability. The firing rate of the Purkinje cell in 

Figure 1C, for instance, shows large fluctuations within each step cycle, but even more 

striking are the changes in its amplitude and shape across steps. This extensive step-to-step 

variability was typically observable in the step-locked spike rasters (Figure 2A, lower 
panel) and firing rate curves (Figure 2C).

In order to quantify this variability, we computed the variance-to-mean ratio, or Fano factor, 

for the spike counts within a window starting at the EMG peak for each step cycle (Figure 

2D, above). For a Poisson process, the count variance equals the count mean, and the Fano 

factor is one. By contrast, Purkinje cell spike counts typically had higher variances than 

means (Figure 2E, left panel), with a mean Fano Factor of 1.58 for a window duration of 

350ms. These values indicate that spiking is more variable than expected for a Poisson 

process, and more variable than previously reported for macaque neocortical neurons during 

visually-guided reaching (e.g. supplementary motor area (Averbeck and Lee, 2003; 

Mandelblat-Cerf et al., 2009), motor cortex (Mandelblat-Cerf et al., 2009), premotor cortex 

(Churchland et al., 2010; Churchland et al., 2006), and the parietal reach region (Churchland 

et al., 2010)). Interestingly, we observed a strong disassociation between patterns of 

variability for simple spikes, which were over-dispersed relative to a Poisson process, and 

for complex spikes, which were under-dispersed (Figure 2D, below, 2E, center and right).

Patterns of variability in step-locked firing rates

If firing patterns differ across steps, what are the major modes of variation? In order to 

address this question, we performed principal component analysis on the step-locked firing 

rates for each cell. This produced an effective reduction of the data, with the first three 

components accounting for an average of 75% of the variance (Figure 3B, left). Sorting 

cycles by principal component scores (Figure S5) or visualizing the effects of the 

coefficients as perturbations of the mean firing rate curve (Figure 3A) revealed several 

common patterns: “bias” (an additive shift in the curve with little change in its shape), 

“amplitude” (multiplicative scaling of the curve), and “phase” (a horizontal shift of the 

curve forward or backward in time). These same three patterns have been independently 

identified in kinematic data from humans during locomotion (Ramsay and Silverman, 2005). 

While many cells had components that directly reflected one of these modes, more complex 

patterns were observed, as well. For instance, some cells with multiple peaks exhibited 
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components that shifted the firing rate around one of the peaks, while imposing little change 

on the rest of the curve (e.g. component 1 for the cell marked with red arrow in Figure 3A, 

corresponding to the neuron from Figure 1C).

To quantify the extent to which a component represented a change in bias, amplitude, or 

phase, we computed three scores corresponding to these patterns: Sbias, Samp, and Sphase (see 

methods section). Across the sample of Purkinje cells, the first principal component had 

much higher bias scores than the second (p < 10−9, Kolmogorov-Smirnov test) and third (p < 

10−23) components (Figure 3B), and the second component had higher bias scores than the 

third (p < 10−4), indicating that differences across steps were due largely to shifts in the 

mean firing rate. By contrast, the phase shift scores were much lower for the first principal 

component than for the second (p < 10−6) and third (p < 10−11), and for the second than the 

third (p = .0023). Furthermore, three-dimensional scatterplots revealed an aggregation of 

neurons around a pure bias shift for the first component, and around a pure phase shift for 

the third component (Figure 3C).

Neural variability exhibits step-phase-dependent correlations with behavior

Are these step-to-step fluctuations in neuronal spiking related to behavior? Examination of 

the spiking activity of individual neurons over several laps often suggested systematic 

changes in step-locked firing rates with behavioral variables, such as speed (Figure 4A). In 

order to characterize this further, we first measured the animals’ average head speed, 

acceleration, roll, pitch, and EMG amplitude within each step and examined their 

relationship to the firing rates. For each neuron and behavioral variable, we divided the steps 

into intervals according to the value of the variable and averaged the firing rate curves 

within each interval (see methods section). This often produced a sequence of curves that 

varied smoothly and systematically as the behavioral parameters changed (Figure 4B, C). In 

order to quantify the effects of behavior on neuronal activity, we estimated a linear model 

for each Purkinje cell, with speed, acceleration, roll, pitch, and EMG amplitude as 

independent variables and the mean firing rate on each cycle as the dependent variable. 

Speed, acceleration, and head attitude had significant effects for many cells. Out of 120 total 

Purkinje cells, 81 were modulated by speed, 84 by acceleration, 70 by roll, and 54 by pitch 

(Figure S6A). By contrast, only 27 neurons were significantly modulated by EMG 

amplitude. For each independent variable, both positive and negative regression coefficients 

were observed, but most significant values were positive for speed (p = .014, binomial test). 

An examination of coefficients for pairs of variables failed to reveal any clustering of 

Purkinje cell tuning properties: instead, a broad distribution of values was observed (Figure 

S6B).

If behavior is correlated with Purkinje cell activity, what is the structure of its relationship to 

the step-phase-dependent firing rate? This question is central, for two reasons. First, cycle-

to-cycle variability is not restricted to shifts in mean firing rate, but can express a variety of 

patterns, as indicated by the analysis of principal component coefficients (Figure 3). Second, 

the behavioral variables – particularly roll, pitch, and EMG amplitude – can fluctuate on a 

faster time scale than that of a single step cycle (Figure S1). In order to address this 

question, we estimated regression curves parameterized by step phase for each cell and 
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behavioral variable. These curves capture how a given behavioral variable modulates the 

shape of the step-locked firing rate for each cell. For many cells, the relationship between 

behavior and neural activity varied in magnitude, and in some cases in sign, according to the 

phase of the step cycle (Figure 4D). For example, the neuron on the left in Figure 4D shows 

a decrease with speed during the first half of the step cycle, but an increase with speed 

during the second half. Consequently, this neuron’s speed regression curve has a shape 

similar to its average firing rate curve, and imposes a strong amplitude shift. To further 

quantify the patterns of this behavioral modulation, we computed bias, amplitude, and phase 

scores for these curves (see Supplemental Experimental Procedures). Three-dimensional 

scatterplots of scores (Sbias, Samp, and Sphase) for the regression curves revealed large 

differences between behavioral variables, as well as the presence of clusters (Figure 4E). We 

performed a hierarchical cluster analysis on the (Sbias, Samp, Sphase) observations for cells 

with significant tuning to each variable, and this analysis revealed several key features. First, 

all variables except EMG amplitude exhibited a large aggregation of cells around a pure bias 

shift. Second, speed and pitch exhibited clusters near a pure amplitude shift. Third, roll and 

acceleration exhibited clusters near a pure phase shift. These results demonstrate a 

functional segregation in Purkinje cell properties that is not observed after averaging 

behavior and firing rates within each step cycle.

Purkinje cell pairs exhibit correlated activity across steps

In many sessions, it was possible to record simultaneously from multiple Purkinje cells, and 

step-averaged firing rates for pairs often appeared to covary across steps (Figure 5A). Such 

covariation may result in part from similar tuning to measured behavioral variables, so we 

first removed the effects of these factors using the regression models and then examined 

correlations between the residuals. Scatterplots of the residual firing rates for pairs recorded 

on distinct tetrodes revealed clear associations in many cases (Figure 5B, above), and 40 out 

of 89 pairs were significantly correlated (Figure 5B, below; q = .05, partial rank correlation), 

with both positive and negative correlations observed. Further analysis of the residuals and 

the rank-transformed variables indicated that the correlations were unlikely to be due to 

nonlinear interactions between measured behavioral variables and firing rates (Figure S7). 

These correlations suggest that step-to-step variability is not independent, intrinsic noise at 

the level of individual Purkinje cells, but is rather driven by coordinated inputs. The relative 

spatial location of recorded cells did not influence correlations: no significant differences 

were observed between ipsilateral and contralateral pairs (p = .27, two-sample t-test), 

between cells in the same lobule and in different lobules (p = .35, two-sample t-test), or 

between cells at different mediolateral or rostrocaudal distances (p = .95, .92, respectively, 

one-way ANOVA) (Figure 5C).

Parallel and climbing fiber inputs carry qualitatively distinct signals

Because the climbing fiber system plays an essential role in motor performance and 

learning, we examined the relationship between complex spikes, which are driven by this 

pathway, and step phase, speed, acceleration, head posture, and EMG. In contrast to simple 

spikes, which were strongly modulated by the stepping rhythm for all Purkinje cells, 

complex spikes were modulated in a minority of neurons (12/65; q = .05, Kuiper’s test; 

Figure 6A, B). The depth of modulation was larger for simple than complex spikes (p < 
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10−9, paired t-test), though high values were occasionally observed for complex spikes 

(Figure 6B, left). Most of these observations, however, were from datasets with relatively 

few steps (Figure 6B, right), and did not achieve statistical significance, suggesting that 

some large deviations from uniformity might have been artifacts of small sample size. 

Furthermore, the estimation of linear models for step-locked spike counts failed to reveal 

effects of speed, acceleration, roll, pitch, and EMG amplitude: no regression coefficients 

differed significantly from zero (q = .05, Figure 6C). Thus, our data suggest that while 

simple spikes are strongly related to locomotor behavior within steps (through step phase) 

and across steps (through speed, acceleration, and head posture), complex spikes show only 

modest tuning to step phase, and no tuning to behavioral variables across steps.

Purkinje cell properties differ across cerebellar lobules

Although the mossy fiber pathways into cerebellar lobule V and into lobule VI overlap 

extensively, they differ in their density, anatomical origin, and function. For instance, 

proprioceptive and cutaneous pathways from the forelimbs terminate more extensively in 

lobule V, whereas inputs from the head and neck are more prominent in lobule VI (Adrian, 

1943; Anderson, 1943; Barmack et al., 1992; Barmack et al., 1993; Dow and Moruzzi, 1958; 

Kotchabhakdi and Walberg, 1978; Matsushita and Hosoya, 1979; Snyder et al., 1978; 

Tolbert and Gutting, 1997). We therefore explored potential differences between our 

samples of lobule V and lobule VI Purkinje cells. Although cells in both regions were tuned 

to the stepping rhythm and exhibited speed-, acceleration-, and head posture-related 

variation across steps, several differences between lobules emerged. In lobule VI, mean 

firing rates were higher (Figure 7B, p < 10−4), and there was a stronger relationship between 

head posture and step-locked activity (p = .012), while lobule V cells were more strongly 

modulated by acceleration (p = .0011). Although we observed lobular differences in the 

distributions of several features, these distributions were largely overlapping, and did not 

result in a clear separation of lobule V and VI neurons (Figure 7C). Furthermore, a higher 

fraction of cells had multiple peaks in the step cycle for lobule V than lobule VI (Figure 7A; 

91% vs 55%, p < 10−4, Fisher’s exact test). These differences are consistent with a 

functional segregation in the vermis during locomotion, with lobule V playing a greater role 

in limb control and lobule VI acting to maintain postural stability of the head.

Discussion

The data obtained and analyzed here represent, to our knowledge, the first recordings of 

simple and complex spikes from cerebellar Purkinje cells in freely moving rodents during 

stepping, as well as the first study of step-to-step fluctuations in these cells in any species. 

While natural movement is expected to produce variable neural responses, we wish to 

emphasize not the absolute magnitude of variability, but its rich statistical structure, which 

reveals several key insights. First, the variability expresses characteristic bias, amplitude, 

and phase motifs, which are consistent with the encoding of kinematic variables. Second, 

this variability is related to multiple movement parameters in a step-phase-dependent way. 

Third, an analysis of the phase-dependent regression curves reveals functional clusters of 

Purkinje cells: for instance, one group of cells is amplitude-modulated by speed, while 

another is phase-modulated by head roll. Fourth, the presence of step-to-step correlations for 
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many pairs of cells, as well as correlations between behavior and spiking, suggest variability 

is not mainly due to intrinsic, single-neuron noise. Finally, there is a pronounced 

disassociation between patterns of variability driven by the parallel and climbing fiber 

systems, suggesting that they use qualitatively distinct coding schemes.

One limitation of our chronic, freely moving preparation is that it does not allow direct 

assessment of proprioceptive, vestibular, and somatosensory properties of neurons, which 

must be measured under much more controlled conditions (typically, head fixation and 

anesthesia). Furthermore, optical measurements of multi-joint kinematics are highly 

challenging in small animals freely navigating an environment. Thus, while we can establish 

a correspondence between neuronal activity and measured variables such as speed and head 

attitude, it is difficult to establish whether these are the primary variables encoded, or are 

simply correlated with other variables that drive the responses. However, in contrast with 

head fixed and treadmill-based designs, our approach allows a direct measurement of 

neuronal activity during the natural initiation, modulation, and termination of locomotion, 

and reveals much richer statistical structure in this activity than previously demonstrated.

Several factors could be responsible for the observed variability across steps. If Purkinje 

cells encoded kinematic variables such as joint angle, the neural variability might reflect 

variability in kinematics. For instance, at higher speeds of locomotion, joint angle 

excursions tend to be larger (Costa et al., 2010), and neural signals encoding angle should 

have larger amplitudes at higher speeds. Indeed, the strong amplitude modulation by speed 

observed for many cells (Figure 4C, D, E) is consistent with this hypothesis. Alternatively, 

the step-to-step variability could reflect variation in external forces (Bernstein, 1967). In 

order to maintain a periodic movement trajectory, the nervous system must compute the 

difference between the desired periodic force profile and perturbations due to ground 

reaction forces, gravity, and other external sources. These external perturbations may be 

aperiodic and highly variable, and might consequently produce a neural difference signal 

that is much more variable than the movement itself. Our observation of step-locked firing 

profiles that varied considerably, even for consecutive steps (Figure 1C, 2A), might result in 

part from the participation of Purkinje cells in this computation.

The behavior-dependent modification of the step-locked firing pattern likely enhances motor 

performance both directly, through feedforward routes to the spinal cord, and indirectly, by 

gating neocortical commands. The direct, feedforward pathways provide speed- and posture-

dependent modification of motor parameters, such as the amplitude, duty cycle, and timing 

of muscle activity, while leaving the basic stepping rhythm intact. On the other hand, the 

indirect, gating pathway could coordinate cortically-initiated commands with locomotion, as 

when a walking animal needs to brake suddenly in response to a visual stimulus, correct a 

postural disturbance, or step over an obstacle. In order to execute these movements 

effectively, the descending control signals must meet two criteria. First, they must have an 

amplitude that scales with the animal’s speed or posture across steps; for instance, at higher 

speeds, a larger braking signal is required to generate larger extensor forces and stop the 

animal. Second, they must be appropriately timed within the step cycle; a braking command 

that increases extensor activity during swing will likely cause the animal to stumble. These 

two criteria could be satisfied through a multiplicative interaction between a binary 
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neocortical command and a cerebellar gating signal that depended on both step phase and 

speed. The resulting output would scale with the animal’s speed, producing larger braking 

forces when the animal moved faster. Crucially, it would also vary with step phase within 

each cycle, allowing braking to be initiated only during the correct part of the cycle. Thus, a 

cortical signal with a fixed amplitude initiated at an arbitrary speed and step phase would 

produce a descending control signal with the appropriate amplitude and timing.

Previous work in cats performing treadmill locomotion at two discrete speeds has 

demonstrated that step-averaged Purkinje cell firing rates tend to be higher at faster speeds 

(Armstrong and Edgley, 1988). Our results advance this work in four key respects. First, our 

use of continuous, natural variation in behavior over a wide range rather than at two discrete 

points allows us to precisely estimate the magnitude of behavioral effects on firing rate 

(Figure S6A). Second, our simultaneous measurement of several behavioral variables 

enables us to model the joint effects of these variables in the same cells (Figure S6B). Third, 

our estimation of phase-dependent regression curves demonstrates that behavioral variables 

do not merely produce changes in mean firing rate, but may also have effects that depend 

strongly on step phase (Figure 4D). Finally, our analysis of bias, amplitude, and phase 

scores for these regression curves reveals that the Purkinje cell population is not uniform, 

but highly heterogeneous, and exhibits functional clusters (Figure 4E). For instance, speed 

and pitch tend to influence either the bias or the amplitude of the firing rate curve, while 

acceleration and roll may modulate the phase. These results depend critically on our analysis 

of variability both across steps and within the step cycle, and would be obscured by 

averaging over either.

Our findings show that the parallel and climbing fiber systems convey different types of 

information to Purkinje cells during locomotion: simple spikes are modulated both within 

the step cycle (by step phase) and across steps (by speed and head posture), while complex 

spikes show only moderate tuning within the step cycle, and no effect of behavioral 

variables across steps. In addition, the low Fano factors observed for complex spikes suggest 

that behavioral fluctuations during movement do not imply that neural responses will be 

variable throughout the motor system. These findings are consistent with the idea that the 

climbing fiber system conveys a sparse, impulse-like signal that shapes parallel fiber 

synaptic weights, but does not use an analog rate code for sensorimotor variables (Albus, 

1971; Marr, 1969). However, because our experimental approach does not permit high-

density sampling of complex spikes from Purkinje cells within the same microzone, our 

results do not rule out the possibility that locomotor parameters are encoded through 

complex spike synchrony, rather than rates. Indeed, recent calcium imaging studies have 

demonstrated that correlated complex spike activity increases significantly during 

locomotion relative to rest, particularly around movement onset (De Gruijl et al., 2014; 

Ozden et al., 2012), but that this increase does not occur in mice lacking connexin36, which 

is essential for gap junction coupling of olivary ensembles (De Gruijl et al., 2014). 

Furthermore, mice with P/Q-type calcium channel abnormalities exhibit a lack of 

microzonal complex spike synchrony and pronounced deficits in timing, accuracy, and 

interlimb coordination during stepping (Hoogland et al., 2015).
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Although complex spikes were tuned to step phase for only a minority (12/65) of Purkinje 

cells, this result contrasts with previous work in the paravermis (Armstrong et al., 1988) and 

lateral vermis (Andersson and Armstrong, 1987) of awake, intact cats, which did not reveal 

statistically significant complex spike modulation during stepping. This discrepancy might 

be due to our analysis of a larger number of steps (mean of 1064 cycles, compared with 

approximately 100 cycles), or to our choice of statistical technique (a test based on the 

circular empirical distribution function, compared with a test based on histogram extrema). 

The difference might also be due to the location of the recorded cells, which were more 

medial in our sample, or to our use of rats as experimental animals, instead of cats.

We observed large correlations between many pairs of simultaneously-recorded Purkinje 

cells, providing further evidence that step-to-step variability does not merely reflect intrinsic 

noise at the level of individual neurons, but is rather a result of coordinated inputs (Lee et 

al., 1998). These correlations are not simply due to similar tuning to speed, acceleration, and 

head posture, since they persist after removing the effects of these factors. Furthermore, the 

prevalence of both positive and negative partial correlations suggests that the coordination is 

not merely shared drive from the central pattern generator or from a single muscle or joint, 

but rather reflects cells’ different weightings of a range of inputs. As previous studies in 

cerebral cortex have suggested (Averbeck and Lee, 2003; Lee et al., 1998; Maynard et al., 

1999), the presence of correlations in ensemble activity might constrain the encoding of 

movement parameters.

Several overlapping pathways into lobules V and VI of the vermis are likely responsible for 

the influence of step phase, speed, acceleration, and head attitude on Purkinje cell activity. 

Proprioceptive and cutaneous information from the forelimbs and hindlimbs arrives through 

spinocerebellar and cuneocerebellar tracts (Adrian, 1943; Anderson, 1943; Matsushita and 

Hosoya, 1979; Snyder et al., 1978; Tolbert and Gutting, 1997), some of which also carry 

signals from the spinal rhythm generating network (Arshavsky et al., 1986). Information 

about head posture arrives through primary (Barmack et al., 1993) and secondary (Barmack 

et al., 1992; Kotchabhakdi and Walberg, 1978; Matsushita and Wang, 1987) vestibular 

projections and through the central cervical nucleus (Matsushita and Hosoya, 1979; Snyder 

et al., 1978), which receives both vestibular and neck proprioceptive signals (Popova et al., 

1995; Thomson et al., 1996). The convergence of vestibular and proprioceptive pathways in 

the dorsal vermis is consistent with physiological studies (Jensen, 1985; Precht et al., 1977), 

which have identified individual Purkinje cells responsive to both neck and vestibular 

stimulation (Denoth et al., 1979; Manzoni et al., 1999). The modulation of Purkinje cell 

activity both within and across steps, then, likely reflects the integration of signals from 

diverse pathways and modalities.

Although Purkinje cells in both lobule V and lobule VI are modulated by step phase, speed, 

acceleration, and head posture, our data do provide evidence for functional differences 

between lobules. Cells in lobule V were more strongly influenced by acceleration and had 

multiple firing peaks in the step cycle, suggesting that they might control the activity of 

multiple joints, or of single joints undergoing multiple cycles of flexion and extension per 

step. Cells in lobule VI, on the other hand, were more strongly modulated by head posture 
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than lobule V cells, suggesting that they help maintain the stability of the head during 

stepping.

Taken together, these results reveal several novel features of Purkinje cell activity during 

locomotion that would not have been apparent after averaging. The strategy of averaging 

within steps to obtain a scalar firing rate for each cycle (Figure 8B) has the advantage of 

revealing the relationship between behavioral variables and neuronal activity, but obscures 

the functionally critical (Arshavsky et al., 1986) and often complex dependence of activity 

on step phase. On the other hand, averaging across steps to obtain the phase-dependent 

firing rate (Figure 8C) obscures the extent and statistical structure of step-to-step variability, 

as well as step-to-step correlations between behavior and Purkinje cell activity, and between 

the firing rates of multiple neurons. Our findings suggest a dynamic view of neuronal 

activity during locomotion, in which a step-phase-dependent firing pattern is itself 

modulated by behavior during ongoing movement (Figure 8D).

Experimental Procedures

Task and behavioral measurements

Three male Long-Evans rats were trained to walk for water reward on a 1.8m-long linear 

track (Figure 1A). Animal position was measured using three headstage-mounted LEDs and 

an overhead camera. Head pitch and roll were estimated using a head-mounted inertial 

measurement unit. The stepping rhythm was identified by detecting sequences of peaks in 

the acromiotrapezius EMG (see Supplemental Experimental Procedures, Figure S2). The 

step phase was obtained by linear interpolation, with the EMG peak defined as 0 for cells 

ipsilateral to the muscle and on the midline, and as π for contralateral cells.

Electrophysiology

Rats were chronically implanted with twenty independently adjustable tetrodes targeted to 

lobules V and VI of the cerebellar vermis, spanning +/− 1mm of the midline (Figure S3). 

Signals were buffered on the headstage, amplified, and acquired as 24-bit samples at 25kHz. 

Spikes were clustered by fitting a mixture model in a 12-dimensional feature space, using 3 

waveform principal components per tetrode channel (Calabrese and Paninski, 2011; Ecker et 

al., 2014; Tolias et al., 2007). For cells with large and stable complex spikes, a second stage 

of clustering was performed on the raw waveforms within −2/+10 ms of each spike to 

distinguish simple from complex spikes. For analyses that did not compare simple and 

complex spike activity, the cell’s spike train was taken to be the union of spikes of both 

types. At the end of each experiment, electrolytic lesions were applied at each recording site, 

and the tetrode locations were verified in Hoescht-stained tissue sections (Figure S3).

Statistical analysis

The state-dependent mean firing rates for locomotion, licking, and inactivity were defined as 

the total number of spikes occurring in the state divided by the total duration of the state 

throughout the dataset. For each Purkinje cell, a circular distribution was fit to the step 

phases sampled at the spike times. To determine whether spiking was locked to the step 

cycle, Kuiper’s test was used (Mardia and Jupp, 2000) for both simple and complex spikes. 
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The step-to-step variability of spike counts was quantified using the variance-to-mean ratio, 

or Fano factor (Figure 2D), computed for spike counts within windows starting at each EMG 

peak.

In order to study the shape of step-locked firing rate curves, the spike trains were smoothed 

with a 25ms Gaussian kernel, and the curves were extracted for each step, with the time axis 

normalized so that each curve was parameterized by step phase θ, rather than time. Principal 

component analysis was performed on the curves for each cell, and the effect of each 

component, w(θ), was visualized as a perturbation of the mean curve, f(θ) (Ramsay and 

Silverman, 2005). The extent to which each component was an additive shift, a 

multiplicative scaling, or a phase shift was determined by computing bias, amplitude, and 

phase scores, respectively (see supplemental experimental procedures).

The influence of behavioral variables on Purkinje cell activity across steps was first 

determined by averaging speed, forward acceleration, sin(roll), and sin(pitch), and EMG 

amplitude within each step cycle. To study the variation in curve shape with behavior, 

slicing intervals for behavioral values were determined using an equal-count algorithm with 

twelve (Figure 4B) or six (Figure 4C) intervals and 50% overlap (Cleveland, 1993). Step-

locked firing rates were then averaged within each interval.

In order to quantify the influence of behavior on spiking, we defined the firing rate on each 

step to be the number of spikes occurring during that step divided by the step duration. We 

converted the firing rate and the behavioral variables to z-scores, and estimated a multiple 

regression model for each cell. In order to study how the relationship between neural activity 

and behavior varies throughout the step cycle, we next estimated step-phase-dependent 

regression curves (Figure 4D) and computed bias, amplitude, and phase scores for these 

curves (see Supplemental Experimental Procedures). For each behavioral variable, we 

performed a cluster analysis of these bias, amplitude, and phase triplets (Figure 4E). The low 

rate of complex spikes did not permit the analysis of step-locked firing rates; instead, we 

studied the effects of behavioral variables on the number of complex spikes, within a 350ms 

window starting at the onset of each step cycle. For each Purkinje cell with stable complex 

spikes, we estimated a Poisson regression model.

Coordinated activity between pairs of cells was assessed using the partial rank correlations 

in the step-averaged firing rates: the effects of the behavioral variables were first removed 

using the multiple regression model, and Spearman’s ρ was computed between the residuals. 

For the analysis of step phase modulation, the linear models, and the pairwise correlations, 

corrections for multiple comparisons were made by setting the false discovery rate to q = .05 

(Benjamini and Hochberg, 1995).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tetrode recordings from Purkinje cells during locomotion in freely moving rats
(A) Experimental setup. Rats were trained to walk for water reward on a 1.8m long track 

(see Figure S1). Animal position was measured using an overhead camera and an LED 

bracket fixed to the headstage (LED). Head pitch and roll were monitored using an inertial 

measurement unit (IMU), and the stepping rhythm was detected using an electromyogram 

from the acromiotrapezius (EMG). Purkinje cell activity was recorded using a multi-tetrode 

array (TET) and headstage-mounted preamplifier (AMP). Behavior in a typical session is 

shown in the lower right: the animal’s position (x-axis) is plotted as a function of time (y-

axis). (B) Tetrode recording from a Purkinje cell. Simple (red) and complex spike (blue) 

waveforms for all four channels, as well as spike amplitudes on a pair of channels, are 

shown. Simple and complex spike firing rates depended on behavioral state (see Figure S4). 

(C) Raw data from a single tetrode, along with step phases at spike times and EMG trace 

(black). The EMG peaks correspond to a step phase of π. The firing rate of the Purkinje cell 

is shown in the bottom panel. Within each step cycle, the firing rate changes with step phase, 

but the shape and magnitude of these changes vary extensively across steps.
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Figure 2. Purkinje cell activity is rhythmically modulated during locomotion, but highly variable 
across steps
(A) Above, histograms of the step phase at spike times and density fits for four neurons. The 

example cell from Figure 1 is marked with a red arrow. Below, step-locked spike rasters for 

the first 120 steps from each dataset. Darker colors represent later cycles. (B) All recorded 

Purkinje cells were significantly tuned to the stepping rhythm, but the number, location, and 

height of the modes were diverse. Each red marker corresponds to one mode, and the 

horizontal extent of each bar corresponds to half the distance between the mode and the 
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nearest trough. The scale bar shows the height of the density peaks, encoded as pseudocolor 

hue. (C) Step-locked firing curves for twenty consecutive steps, colored as in (A). These 

curves exhibit a high degree of variability, which is not evident in the averaged data. (D) 
Variance-to-mean ratios (Fano factors) for step-locked spike counts (above) and complex 

spikes (below). Each curve represents the Fano factor for a single cell, as a function of the 

length of the window starting at the EMG peak. Bold lines represent the averages across 

cells, +/− SEM. The solid green lines show the Fano factor expected for a Poisson process, 

which is identically one. (E) From left to right: spike count variance versus mean, complex 

spike variance versus mean, and complex versus simple spike Fano factor for a 350ms 

window. These data indicate that simple spikes are significantly over-dispersed relative to a 

Poisson process, while complex spikes are under-dispersed.
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Figure 3. Patterns of step-to-step variability
(A) Mean firing rate curves (black) for six Purkinje cells (columns). Each row shows the 

effect of adding or subtracting one of the first three principal components for each cell (see 

also Figure S5). For a mean firing rate curve f(θ) and a principal component coefficient 

vector w(θ), the green curve shows f(θ) + c*w(θ), and the magenta curve shows f(θ) - 

c*w(θ), where c = 100 is a constant. In many cases, the components impose a shift in bias, 

amplitude, or phase. In each panel, the three inset scales show (1) bias score, Sbias, (2) 

amplitude score, Samp, and (3) phase score, Sphase. The example cell from figures 1 and 2 

(fourth column) is marked with a red arrow. (B) Distribution of curve properties across the 

Purkinje cell population. The left panel shows the cumulative fraction of curve variance due 

to the first (blue), second (lavender), third (yellow), and fourth through tenth (gray) principal 

components. The three panels on the right show the distribution of bias, amplitude, and 

phase scores for each of the first three components. (C) Joint distribution of bias, amplitude, 
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and phase scores. In the left panel, the location and RBG value of each point represent (Sbias, 

Samp, Sphase) for the first principal component of a single Purkinje cell. For example, the cell 

marked with the blue arrow is the cell in the first column in (A), and the location of this 

point corresponds to the bias, amplitude, and phase values on the inset scale in the first row 

and first column of (A). This cell exhibits a high bias value, but low amplitude and phase 

values. Similarly, the center and right panels show (Sbias, Samp, Sphase) for the second and 

third components, respectively. For many cells, the first component (left panel) is close to a 

pure bias shift: (Sbias, Samp, Sphase) ≈ (1, 0, 0) (red points). By contrast, the third component 

(right panel) often reflects a phase shift: (Sbias, Samp, Sphase) ≈ (0, 0, 1) (blue points).
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Figure 4. Behavior modulates step-to-step variability in a step-phase-dependent way, revealing 
functional clusters of Purkinje cells
(A) Spike train and firing rate for a Purkinje cell over two laps, along with the animal’s 

position and speed, and step and lick times. (B) Above: wireframe plot showing the 

dependence of firing rate on animal speed for the cell in (A). Each curve is the average 

firing rate for steps on which the animal’s speed falls within the specified slicing interval. 

Note the smooth transition from a low-amplitude to high-amplitude curve with increasing 

speed. Below: slicing intervals used in upper panel. Twelve slicing intervals are used, with 

50% overlap. (C) Speed-, acceleration-, roll-, pitch-, and EMG-dependent firing rates for 

three example cells. Six slicing intervals are used, with 50% overlap. The neuron from (A) 
and (B) is shown in the left column. The regression coefficients for the step-averaged firing 

rates are shown in Figure S6. (D) Phase-dependent regression curves for the cells in (C). 
Bands show 95% confidence intervals. Behavior has a strong, phase-dependent effect on 

firing rates for many cells, which varies across different behavioral variables. (E) Bias, 

amplitude, and phase analysis of regression curves reveals functional clustering of Purkinje 

cells. For each behavioral variable, the 3D scatterplot shows (Sbias, Samp, Sphase) values of 

the regression curves for cells significantly modulated by that variable. Points are colored 

using RGB values of the cluster averages of (Sbias, Samp, Sphase). Note a concentration of 

points around (Sbias, Samp, Sphase) = (1, 0, 0) (bias shifts) for all behavioral variables except 
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EMG amplitude, around (Sbias, Samp, Sphase) = (0, 1, 0) (amplitude shifts) for speed and 

pitch, and around (Sbias, Samp, Sphase) = (0, 0, 1) (phase shifts) for acceleration and roll.
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Figure 5. Step-to-step variability is correlated across Purkinje cells
(A) Stepping sequences on four consecutive laps, along with spike trains and firing rates for 

a pair of simultaneously-recorded neurons (orange and teal). The step-averaged firing rates, 

shown as dots, often suggested coordinated changes between pairs. (B) Above: a scatterplot 

of residual firing rates for the pair of cells in (A) reveals that the step-averaged firing rates 

were correlated after removing the effects of behavioral factors. These correlations were not 

due to nonlinear interactions between measured behavioral variables and firing rates (Figure 

S7). Below: the partial rank correlations (Spearman’s ρ for the regression residuals) between 

firing rates for pairs of cells (z-scores) are shown with 95% confidence intervals (above). 

Many pairs are significantly correlated (q = .05, bold), both positively and negatively. (C) 
Pairwise correlations do not depend on the relative anatomical location of the recorded cells. 

Panels show the distribution of correlation values for pairs on the same and opposite sides of 

the brain, in the same or different lobules, and as a function of mediolateral and rostrocaudal 

separation. Correlation values significantly different from zero are plotted in red.
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Figure 6. Complex spikes show modest tuning to step phase, but are not related to behavioral 
variables across steps
(A) Simple spike (red) and complex spike (blue) step phase histograms for the two example 

Purkinje cells highlighted in orange, along with the spike rasters for the first 120 steps. Cell 

2 showed statistically significant complex spike tuning. (B) Left: step tuning strength 

(Kuiper’s statistic; see Methods) for simple and complex spikes. Cells with significant 

complex spike tuning are plotted in blue. Simple spike tuning was significant for all 

recorded cells. Right: complex spike step tuning strength against the number of steps in the 

dataset. Some of the largest values of step tuning strength likely result from a small number 

of observed step cycles. (C) Linear model coefficients for behavioral predictors of complex 

spikes, with 95% confidence intervals. Complex spikes are not significantly modulated by 

speed, acceleration, head posture, or EMG amplitude for any cells. These results suggest that 

the parallel and climbing fiber systems convey distinct types of information during 

locomotion.
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Figure 7. Purkinje cell properties differ across cerebellar lobules V and VI
(A) Left: sagittal view of the cerebellum, highlighting lobules V (magenta) and VI (green). 

Right: percentage of cells in each lobule with more than one activity peak in the step cycle. 

91% of lobule V Purkinje cells have multiple peaks in the step cycle, in comparison with 

only 55% in lobule VI. (B) Distribution of mean firing rates, step tuning (Kuiper’s statistic), 

and the norms of the head posture coefficients (√(βroll
2 + βpitch

2)), speed coefficients (|

βspeed|), acceleration coefficients (|βacc|), and EMG coefficients (|βEMG|), for Purkinje cells 

in lobules V and VI. Cells in lobule VI have higher firing rates, are more modulated by head 

posture, and are less modulated by acceleration than lobule V cells. (C) Joint distribution of 

firing rates, the norm of the acceleration coefficients, and the norm of the posture 

coefficients. These differences are consistent with a larger role for lobule V in limb control 

during locomotion, and for lobule VI in the control of the neck and head.
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Figure 8. A dynamic view of neuronal activity during locomotion
(A) A schematic Purkinje cell with a step-locked pattern controlled by a single parameter, 

speed. Note the systematic transition in the firing rate curve as speed increases; c.f. 

experimental data in Figure 4B, C. (B) A view of the activity of the schematic neuron in (A) 
after averaging within steps. A relationship between speed and firing rate is apparent, but the 

dependence of activity on step phase within each cycle is obscured. (C) A view of the same 

neuron’s activity after averaging across steps. While this view reveals the dependence of 

firing rate on step phase, it obscures step-to-step variability and its dependence on speed. 

(D) A dynamic view of the cell’s step-locked firing pattern. Each step produces one full 

rotation around the speed axis, and as the animal’s speed increases, the firing rate follows 

the trajectory from (A), shown in gray. Under this view, the step-locked firing pattern is 
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itself shaped by behavioral factors during locomotion, allowing flexible control of 

movement under dynamic conditions.
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