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Abstract

In this article a new nonparametric density estimator based on the sequence of asymmetric kernels 

is proposed. This method is natural when estimating an unknown density function of a positive 

random variable. The rates of Mean Squared Error, Mean Integrated Squared Error, and the L1-

consistency are investigated. Simulation studies are conducted to compare a new estimator and its 

modified version with traditional kernel density construction.

Keywords

Varying kernel density estimator; Mean Squared Error; Mean Integrated Squared Error; δ-
sequence; L1-consistency

1. Introduction

Let us assume that the support of unknown cumulative distribution function (cdf) F is the 

positive half-line ℝ+ = (0,∞). To avoid an edge effect when estimating the density function 

of F it is common to use kernels with the same support as that of the target distribution. 

Recently, the constructions with asymmetric kernels have been studied for estimating a 

probability density function (pdf) defined on ℝ+. Namely, in Chen (2000) and Scaillet 

(2004) the sequences of gamma kernels, and inverse and reciprocal inverse gaussian kernels 

have been used, respectively. See also Mnatsakanov and Ruymgaart (2012), where another 

varying kernel approach is suggested. Their method is based on the sequence of gamma pdfs 

with varying shapes.

We propose to use a sequence of inverse gamma kernels that represent the δ-sequences in 

L2- and L1-norms, see Lemmas 4.1 and 4.2, respectively. The constructions  and f̂α 

considered in (2.3) and (2.4) (called the varying kernel density estimators (vKDEs)) are 

different from the traditional kernel density estimator (KDE) (see, for example, Parzen 

(1962), Silverman (1986), and Scott (1992)). They are also different from the ones proposed 

in Chen (2000) and Scaillet (2004). In the kernel density estimation the convolution is 

considered with respect to addition as the group operation on the entire real line ℝ and with 

a fixed kernel. Our constructions in (2.3) and (2.4) turns out to be of kernel type provided 

that convolution is considered on the space of a positive half-line (ℝ+, dH) equipped with 

multiplication as a group operation, and with the Haar measure dH(t) = dt/t (see, for 
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example, (2.7) below). It is worth mentioning that the estimators proposed by Chen (2000) 

and by Scaillet (2004) cannot be viewed as convolutions as well as the densities on ℝ+.

In this paper we investigated the Mean Squared Error (MSE) and Mean Integrated Squared 

Error (MISE) rates of convergence for proposed estimators  and f̂α. Note that the shape of 

an inverse gamma density varies according to the position of a point x at which the pdf f (x) 

is estimated. This allows automatic changing the “smoothing” degree around the point x. 

Another feature of the constructions (2.3) and (2.4) are that they have no boundary effects 

(see Figs. 1 and 2) and they achieve the optimal rate of convergence for MSE and for MISE 
within the class of non-negative kernel density estimators. Similar results have been derived 

in papers: Chen (2000) and Scaillet (2004). There are differences regarding the constants 

appearing in the first order terms only. It is worth mentioning that in contrast with KDE, the 

asymptotic variances of  and f̂α(x) have the same form , as α = n2/5 

(see (3.6) in Section 3), that becomes smaller as x increases. Finally, note that in the case of 

asymmetric gamma kernels (see Chen (2000)), the corresponding variance has the form 

. In Mnatsakanov and Ruymgaart (2012), the construction similar to 

(2.1) has been used, and, as a result, another, the so-called moment-density estimate has 

been proposed, and its asymptotic properties were studied as well.

The paper is organized as follows. In Section 2 the assumptions and the construction of the 

vKDE are introduced. In Section 3 the MSE of  and f̂α are derived, while in Section 4 the 

MISE and L1-consistency of f̂α are investigated. In Section 5 we conducted the simulation 

study and compared the performances of the estimators f̂α,  and the traditional KDE f̂h.

2. Preliminaries and assumptions

In this section we outline the main idea that yields vKDEs  and f̂α in (2.3) and (2.4), 

respectively. Assume we would like to recover (approximate) the moment-identifiable 

distribution F given only the sequence of its moments. About the conditions necessary and 

sufficient for F to be the moment-identifiable distribution, see, for example, Stoyanov 

(2000) and references therein. Suppose that all negative order moments of F are finite. 

Define the operator ℳ by

and introduce the sequence of operators :

(2.1)

Here μ = {μj, j = 0, 1, …} and α → ∞ at a rate to be specified later.
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In analysis, the transform (ℳF)(1 − z), where z is a complex variable, is known as the 

Mellin transform. There is extensive literature investigating the problem of recovering a 

function from its Mellin transform. See, for instance, Tagliani (2001), Klauder et al. (2001) 

and Sneddon (1974), among others. In Gzyl and Tagliani (2010), and Mnatsakanov 

(2008a,b) the problem of recovering the cdf and corresponding density function given the 

moment sequence of positive orders of underlying distribution has been studied. The 

investigation of the properties of approximation  in (2.1) is beyond the scope of this 

article and will be conducted in a separate investigation.

To construct the density estimate, at first, let us approximate F by means of . A minor 

modification of an argument in Mnatsakanov and Ruymgaart (2003) yields

(2.2)

Here by →w we denote the weak convergence of corresponding cdfs.

Now, suppose we are given a sequence X1, …, Xn of independent and identically distributed 

positive random variables from the absolutely continuous distribution function F (with pdf f 

= F′). To estimate F, let us first estimate its negative j-th order moments μj, j ≥ 1. Namely, 

based on (2.2), let us construct the estimate  of F by replacing the moment μj in (2.1) by 

its empirical counterpart

Here F̂
n is the empirical cdf of the sample X1, …, Xn. After a simple algebra, we derive

To compare  with the empirical cdf F̂
n, note that  as long as α is large. This 

follows from the fact that for a given Xi and large α:

Note also that  is a continuous function of x, hence, to estimate the density f (x) one 

can take the derivative of :

(2.3)
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and choose α = α(n) → ∞ as n → ∞. The problem of optimal choice of parameter α will be 

specified later. Of course  for each x > 0, and since it is easily seen that 

, the estimator is itself a probability density. The statements similar to the 

ones obtained in Sections 3 and 4 are valid for  as well (see for example, Theorem 3.2). 

To simplify the calculations below and to reduce the bias of , let us use the modified 

version of . Namely, let us increase the shape parameter of the inverse gamma kernel 

presented in the right hand side of (2.3) by one. Denote , where Lα(u) = 

(αu)α+1/Γ (α + 1) exp(−αu), u ∈ ℝ+, and consider

(2.4)

Throughout the proposed estimator will be considered at a fixed point x > 0, where f (x) > 0. 

Also, we will assume that F (0) = 0, and the underlying density satisfies

(2.5)

Besides, let us denote by g(·, ak, bk) the inverse gamma density with the shape ak = k(α + 2) 

− 1 and the rate bk = k αx parameters, respectively. Namely

(2.6)

The mean ξk and variance  of g(·; ak, bk) have the following expressions, respectively:

Note also that the mean of f̂α(x) can be written as the convolution operator on (ℝ+, dH):

(2.7)

where dH(t) = dt/t. In Lemmas 4.1 and 4.2, see Section 4, it is proved that the sequence of 

functions {(1/t) Lα(·/t), t ∈ ℝ+, α ∈ ℕ} with Lα(·) defined in (2.4) forms the δ-sequences in 

L1- and L2-norms, as α → ∞.

3. Bias and MSE

Without explicit reference it will be assumed that all the conditions in Section 2 are 

satisfied. Let us study the bias and the second moment of the estimator f̂α. We have
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(3.1)

In particular, for k = 1:

(3.2)

This yields for the bias of f̂α(x):

(3.3)

For the variance we have

(3.4)

Applying (3.1) for k = 2 and , as α → 

∞, yields

(3.5)

Inserting (3.3) and (3.5) in (3.4) we obtain

(3.6)

Finally, combining (3.3) and (3.6) leads to the MSE of f̂α(x):

(3.7)

For optimal rates we may take
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(3.8)

By substitution (3.8) into (3.7) we find

(3.9)

Here we have assumed that the pdf f has a continuous and bounded second derivative f″ 

(condition (2.5)). The following statement is valid.

Theorem 3.1—Under the assumption (2.5) the bias of f̂α(x) satisfies

For the MSE of f̂α(x) we have the expression in (3.9), provided that we choose α = α(n) ~ 

n2/5.

One can check very easily that the variance of vKDE  defined in (2.3) has the same form 

we have in the right-hand side of (3.6), while the bias of  has additional term containing f′. 

Applying the similar argument used in derivations of (3.3), (3.5) and (3.6), we obtain the 

following statement.

Theorem 3.2—Under the assumption (2.5), the bias and MSE of  have the following 

expressions

as α and n → ∞. For the optimal MSE of  we have

provided that we choose α = α(n) ~ n2/5.
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4. MISE and L1-consistency of f̂α
4.1. MISE rate of convergence

Throughout this section again F concentrates mass 1 on (0, ∞) but it is also supposed to 

have a sufficiently smooth density. Let us consider the following conditions:

(4.1)

(4.2)

One can very easily obtain the optimal rate n−4/5 for MISE{f̂α} as α, n → ∞ by integrating 

the terms on the right-hand side of (3.7). Namely, the following statement is true.

Theorem 4.1—Under the assumptions (2.5), (4.1) and (4.2) we have

as α, n → ∞. While for optimal MISE we have

provided that we choose .

One can weaken the conditions on f and show that the corresponding rate is n−2/3 under the 

requirement of integrability of {xf′(x)}2. Indeed, let us denote again by Bα = α−1 2− (2α+3) Γ 

(2α+3) [Γ (α+1)]−2 and consider the following condition (instead of (4.2)):

(4.3)

Consider the L1- and L2-norms of a function ϕ : ℝ+ → ℝ by

respectively.

Lemma 4.1—If f′ is bounded and condition (4.3) is satisfied, then
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Proof of the Lemma 4.1: Let us denote by ηα the r.v. with pdf Lα(t)/t, t ∈ ℝ+. Note also 

that the r.v. x/ηα has pdf Lα(x/t)/t and

(4.4)

Then after simple algebra combined with application of the Cauchy–Schwarz’s inequality 

we obtain

(4.5)

But

(4.6)

Combination of (4.5) and (4.6) gives

(4.7)

Lemma 4.1 is proved.

Theorem 4.2—If f′ is bounded and the conditions (4.1) and (4.3) are satisfied, then

as α, n → ∞. While for optimal MISE we have
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provided that we choose .

Proof: Let us study the variance term. According to the definitions of the inverse gamma 

g(·, ak, bk) in (2.6) and gamma h(·, shape, rate) densities, we have

So that integration of the both sides of the first equation in (3.5) combined with 

, as α → ∞, yields

(4.8)

Hence, it is proved

(4.9)

as n, α → ∞. Finally, from (4.7)–(4.9) we obtain the statements of Theorem 4.2.

4.2. L1-consistency

In this subsection let us consider the condition

(4.10)

Consider the L1-distance ||fα−f||L1 between fα and f (with respect to the Lebesgue measure λ 

on ℝ+). Here fα(x) = Ef̂α(x) = E f(x/ηα) with ηα defined in the proof of Lemma 4.1. One can 

show that the functions {(1/t) Lα(·/t), t > 0} form a δ-sequence in L1-norm as well, as α → 

∞. Namely, the following statement is true.

Lemma 4.2—If f″ is bounded and the condition (4.10) is satisfied, then
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Proof: Combination of (4.4), (4.10) and the following equations

gives

(4.11)

Now in a similar way as we did in (4.5) and (4.6), changing the integrations in (4.11) yields

Lemma 4.2 is proved.

Theorem 4.3—If f″ is bounded and the conditions (4.1) and (4.10) are satisfied, then

(4.12)

Proof: Under the assumptions (4.10) we have from Lemma 4.2 that ||fα−f||L1 → 0, as α → 

∞. Hence, to prove (4.12) it is sufficient to show

for any δ > 0 and α, n → ∞(see, Theorem 1 in Mnatsakanov and Khmaladze (1981)). But F 

is an absolutely continuous distribution with respect to Lebesgue measure λ, so, let us 

establish λ{An(δ)} → 0, for any δ > 0 and α, n → ∞. Indeed, application of (4.8) yields

(4.13)

The proof of Theorem 4.3 follows from (4.1), (4.13), and .

Remark 4.1—Taking α = h−2 one can see that the condition  from Theorem 4.3 

corresponds to the condition nh → ∞in traditional kernel density estimation.
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5. Simulations

In this section we study the performances of  and f̂α; defined in (2.3) and (2.4), 

respectively. In particular, we compare them with KDE f̂h when the kernel function K is 

assumed to be a standard normal density function. Let us consider the case when the optimal 

choice of h, h = hcv, is based on the least-squares cross validation (CV) algorithm that 

minimizes the expression M1(h) defined by Eq. (3.39) in Silverman (1986).

In our simulation studies we plotted the curves of vKDEs f̂α; and , when the optimal α = 

αcv and, respectively, , are chosen via the least-squares CV algorithm as well (cf. with 

Mnatsakanov and Ruymgaart (2012)), and compared them with corresponding curve of 

KDE f̂h, when h = hcv (see Figs. 1 and 2). In particular, we simulated the r.v.’s Xi, i = 1, …, 

n, from two different distributions: Log-normal (0, 1) and Gamma (2, 1) with different 

sample sizes n = 200k, 1 ≤ k ≤ 4. In addition, we repeated these simulations N = 500 times 

and studied the performances of f̂α, , and f̂h using the MISE. Namely, we used the 

estimated MISE:

Here the expectation Ê is calculated with respect to the empirical cdf of N = 500 values of 

ISEs, while f̂(j) denotes the vKDEs or KDE used on the j-th replication. The optimal α = αcv 

minimizes the expression M2(α), i.e.

(5.1)

where α ∈ {1, …, 40} for each n = 200k, 1 ≤ k ≤ 4. In the second term of the right hand side 

of (5.1) let us apply the leave-one-out construction instead of f̂α. This yields the following 

expression of

In the case of vKDE , we choose the optimal CV parameter  that minimizes the 

function

During the simulation study, we found out that  of vKDEs are decreasing functions 

of n when the parameters α = αcv, , and α = n2/5. In Table 1, we recorded the values 
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of αcv, , and hcv and corresponding  for Log-normal (0, 1) and Gamma (2, 1) 

distributions for four different sample sizes. We see that the values of  for  are 

smaller than corresponding values of  for f̂α and f̂h. To illustrate the performances of 

vKDEs graphically, we plotted the graphs of estimators f̂αcv (the dashed curves) with αcv = 

11 and 24 and f̂h (the dotted curve) with h = hcv, in Fig. 1(a) and 2(a) when the sampled 

distributions are Log-normal (0, 1) (with n = 200) and Gamma (2, 1) (with n = 800), 

respectively. For the same samples, in Fig. 1(b) and 2(b) we plotted the graphs of estimators 

 (the dashed curve) and f̂h when  and 18 and h = hcv, respectively. In each model 

the sampled pdf f (the solid curve) is plotted as well. Based on the records in Table 1, we 

conclude that the performances of vKDEs are better compared to the one based on KDE 

f ̂hcv. After conducting many simulations we can say that the asymptotic behavior of  and 

its modified version f̂αcv are similar to each other, and their performances around the origin 

and on the right tail are much better than that of KDE f̂hcv. For the small sample sizes we 

suggest to use f̂αcv instead of f̂hcv and .
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Fig. 1. 
Estimation of Log-normal(0, 1) density function f (solid curve) by f̂hcv with hcv = 0.14 and 

by (a) f̂αcv with αcv = 11; (b)  with  . In both plots n = 200.
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Fig. 2. 
Estimation of Gamma(2, 1) density function f (solid curve) by f̂hcv with hcv = 0.19 and by 

(a) f̂αcv with αcv = 24; (b)  with . In both plots n = 800.
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