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Abstract

Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust 

particles, but are emitted as cerium oxide (CeO2) nanoparticles in the diesel exhaust. In a previous 

study, we have demonstrated a wide range of CeO2-induced lung responses including sustained 

pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, 

we investigated the fibrogenic responses induced by CeO2 in a rat model at various time points up 

to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO2 by a single 

intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage 

(BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-

β1 in the fibrotic process were investigated. The results showed that CeO2 exposure significantly 

increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen 

degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP 

were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after 

exposure, but remained much higher than the controls. CeO2 induced elevated phospholipids in 

BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent 

manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in 

fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a 

single dose of 3.5 mg/kg CeO2 and euthanized at 28 days post-exposure. Collectively, our studies 

show that CeO2 induced fibrotic lung injury in rats, suggesting it may cause potential health 

effects.
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Introduction

Cerium, a member of the lanthanide metals, is very reactive and a strong oxidizing agent 

that is stabilized when associated with an oxygen ligand. Cerium oxide has been used as a 

polishing agent for glass mirrors, plate glass, television tubes, ophthalmic lenses, and 

precision optics. Due to the ability of cerium oxide to donate and store oxygen from their 

crystal lattices, it has been recently used as a diesel fuel borne catalyst in conjunction with a 

particulate filter to reduce the ignition temperature of the carbonaceous diesel exhaust 

particles (DEP), resulting to more efficient burning of DEP and the regeneration of the 

particulate filter (HEI, 2001; Prospect, 2009). Although cerium oxide substantially decreases 

both particle mass (>90%) and number (99%) concentrations in the exhaust, a small amount 

of cerium oxide is emitted in the particulate phase of the exhaust (HEI, 2001). HEI (2001) 

also reported that cerium measured in emissions was found primarily in the oxide form and 

in particles less than 0.5 μm in diameter. The health effects of cerium oxide (CeO2) through 

pulmonary exposure have not been well established, making cerium oxide nanoparticles in 

diesel exhaust a possible occupational and environmental health concern.

Occupational exposure to rare earth (RE) metals, of which cerium is the major component 

(80%), has been shown to induce rare earth pneumoconiosis with pathologic conditions that 

include granulomas and interstitial fibrosis (McDonald et al., 1995; Sabbioni et al., 1982; 

Waring and Watling, 1990). A common feature of rare earth pneumoconiosis is the presence 

of cerium particles in the alveoli and interstitial tissue even in patients whose exposure to 

cerium had stopped for over 20 years (Pairon et al., 1994). These findings demonstrate that 

cerium oxide is potentially a noxious fibrotic agent, and the use of cerium compounds in 

diesel fuel may pose a serious health risk to those exposed to cerium oxide from diesel 

exhaust in either occupational or environmental settings.

Studies have shown that exposure of rats to cerium oxide induces both pulmonary and 

systemic toxicity (EPA, 2009; HEI, 2001), and leads to impaired pulmonary clearance of 

these particles, similar to that observed in rare earth pneumoconiosis in humans exposed to 

cerium compounds. A previous study carried out in our laboratory demonstrated that 

exposure of rats to a single intratracheal instillation of cerium oxide nanoparticles induced a 

sustained pulmonary inflammatory response up to 28 days post-exposure (Ma et al., 2011). 

The cerium oxide-induced pulmonary responses were characterized by a time-dependent 

switching of alveolar macrophage (AM) phenotype from the classic activated, inflammatory 

subset of M1 to the alternatively activated, and fibrogenic subset of M2, as evidenced by 

increased expression of the M2 marker arginase-1 (Arg-1) (Munder et al., 1998). This 

indicates that in addition to acute inflammatory lung injury, cerium oxide has a persistent 

effect in chronic lung injury that may include pulmonary fibrosis.

Pulmonary fibrosis is characterized by an excessive deposition of extracellular matrix in the 

interstitium, where fibroblasts play a major role in the reconstruction of damaged connective 

tissue by producing new extracellular matrix (ECM) components. The production of 

fibrogenic mediators, such as transforming growth factor-beta (TGF-β)-1 and osteopontin 

(OPN) by resident macrophages and fibroblasts induces ECM gene expression and plays a 

key role in fibroblast activation as seen in silica-induced lung fibrosis (Natoli et al., 1998; 
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Nau et al., 1997; Scabilloni et al., 2005). OPN is a matricellular protein and functions as a 

fibrogenic promoter for the migration, adhesion, and proliferation of fibroblasts. The 

expression of OPN mRNA was significantly increased in cerium oxide-exposed lung tissue 

as demonstrated in our previous study (Ma et al., 2011). The balance between ECM 

synthesis and degradation of matrix components is crucial for tissue repair. To preserve such 

a balance, matrix metalloproteinases (MMPs), which represent a family of extracellular and 

cell surface-associated proteinases, and their physiological inhibitors, the tissue inhibitors of 

matrix metalloproteinases (TIMPs), must work together to assure normal lung development 

and proper wound healing. Abnormal activation of proteolytic and/or anti-proteolytic 

functions can lead to lung diseases, including fibrosis (Gueders et al., 2006). Indeed, in 

human idiopathic pulmonary fibrosis (IPF), unregulated fibroblast proliferation and 

extracellular matrix accumulation have been demonstrated to result from excessively 

elevated TIMPs compared to MMPs, which leads to a nondegrading fibrillar collagen 

microenvironment (Selman et al., 2000).

In silica-exposed rat lungs, MMPs were significantly induced (Perez-Ramos et al., 1999; 

Scabilloni et al., 2005). There was a concurrent increase in collagen synthesis, which 

ultimately led to nodule formation and lung fibrosis. Bonniaud et al. (2004) have shown that 

a transient over-expression of the active TGF-β1 in lungs resulted in significantly higher 

levels of TIMP-1, and progressive pulmonary fibrosis developed after a longer exposure 

time. OPN, along with MMP-2 activation, has also been associated with bleomycin-induced 

fibrosis (Berman et al., 2004; Toya et al., 2010). These studies show that when MMPs and 

TIMPs are produced in elevated levels modification of the extracellular matrix and initiation 

of the fibrotic process occur.

Few studies have investigated cerium oxide-induced pulmonary responses (McDonald et al., 

1995; Porru et al., 2001; Vocaturo et al., 1983). Serious lung injuries resulting from cerium 

oxide exposure, such as phospholipidosis (Ma et al., 2011) and alveolar proteinosis (Toya et 

al., 2010), have been identified in animal models. However, the mediators and mechanisms 

involving in pulmonary fibrosis have not been characterized. The objective of the current 

study is to characterize the lung deposition of cerium oxide, the time and dose dependence 

of cerium oxide-induced pulmonary fibrosis, and the involvement of fibrogenic cytokines 

and ECM modulators in the development of fibrosis.

Materials and methods

Animal exposures

Specific pathogen-free male Sprague–Dawley (Hla: SD-CVF) rats (~250 g) were purchased 

from Hilltop Laboratories (Scottdale, PA). Rats were kept in cages individually ventilated 

with HEPA-filtered air, housed in an AAALAC-approved facility and provided food and 

water ad libitum. Animals were used after a 1 week acclimatization period. Cerium oxide 

nanoparticles, 10 wt.% in water with average diameter at ~20 nm, were obtained from 

Sigma-Aldrich (St Louis, MO, USA). Cerium oxide samples diluted in saline were used for 

animal exposures as described previously by Ma et al. (2011). Briefly, rats were 

anesthetized with sodium methohexital (35 mg/kg, i.p.) and placed on an inclined restraint 

board. Rats were exposed to 0.3 ml suspensions of cerium oxide (with final concentrations 
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at 0.15, 0.5, 1.0, 3.5 or 7 mg/kg body weight) via intratracheal instillation. Saline (0.3 ml) 

was administered to control rats. The treated animals were euthanized at 1-, 3-, 10-, 28- or 

84-days post-exposure.

Particle characterization

The primary particle size and size of the particles as instilled in this study have been 

characterized previously. The diameter of primary cerium oxide particle is in the range of 

6.4–14.8 nm with the mean at 9.26±.58 nm when determined by field emission scanning 

electron microscopy (FESEM). The diameter of primary particle was also determined in the 

range of 6.25–17.5 nm with a mean diameter of 10.14±.76 nm using transmission electron 

microscopy (TEM) (Nalabotu et al., 2011). We have also reported previously that dynamic 

light scattering of nanoparticles was diluted in saline for intratracheal instillation. These 

particles agglomerate in saline, with a major particle peak at 2.5 μm and a small subset with 

average size of 0.3 μm (Ma et al., 2011). The surface area of the particle used is in the range 

of 80–100 m2/g using BET (Sigma Chemicals). The purity of the cerium oxide samples used 

in this study has been characterized by Yokel et al. (2009). The sum of the contamination 

from lead, aluminum, copper, titanium, iron, nickel and zinc was <0.2% of the Ce 

concentration according to ICP-MS analysis.

Isolation of alveolar macrophages (AM) by bronchoalveolar lavage and AM cultures

Animals were anesthetized with sodium pentobarbital (0.2 g/kg) and exsanguinated by 

cutting the renal artery. AM were obtained by bronchoalveolar lavage (BAL) with a Ca++, 

Mg++-free phosphate-buffered medium (145 mM NaCl, 5 mM KCl, 1.9 mM NaH2PO4, 9.35 

mM Na2HPO4, and 5.5 mM glucose; pH 7.4) as described previously (Ma et al., 2011). 

Briefly, the lungs were lavaged with 6 ml Ca++, Mg++-free phosphate-buffered medium in 

and out twice for the first lavage, and subsequently lavaged with 8 ml of the same buffer for 

a total of 10 times when a total of 80 ml BAL fluid was collected from each rat. The 

acellular supernate from the first BAL fluid was saved separately from subsequent lavages 

for analysis of phospholipids, metalloproteinases (MMPs) and tissue inhibitor for 

metalloproteinase (TIMP). Cell pellets from each animal were centrifuged and combined, 

washed, and resuspended in a HEPES-buffered medium (145 mM NaCl, 5 mM KCl, 10 mM 

HEPES, 5.5 mM glucose, and 1.0 mM CaCl2; pH 7.4). Cell counts and purity were 

measured using an electronic cell counter equipped with a cell sizing attachment (Coulter 

Multisizer III with a 256C channelizer, Beckman Coulter Electronics, Brea, CA).

AM-enriched cells were obtained by adherence of lavaged cells to the tissue culture plate as 

described previously (Yang et al., 1999). After removal of nonadherent cells, AM were 

cultured in fresh Eagle Minimum Essential Medium (BioWhittaker, Walkersville, MD) for 

an additional 24 h. AM-conditioned media were collected, centrifuged, and the supernates 

were saved in aliquots at −80 °C for further analysis of cytokines.

CytoViva hyperspectral imaging

Sirius red stained tissue was used in the darkfield-based illumination as this aided in 

differentiation between cerium oxide particles and normal tissue. Nanoparticles in lung 

tissue were imaged using a high signal-to-noise, darkfield-based illumination on an 
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Olympus BX-41 microscope (CytoViva, Auburn, AL) at 100× oil immersion. Verification 

of the particles imaged as cerium oxide nanoparticles was based on using the CytoViva 

hyperspectral imaging system to capture the spectrum (400–1000 nm) and compared it with 

spectra from cerium oxide doped standard sections. CytoViva’s patented illumination 

technology, when integrated onto a standard optical microscope, creates a high signal-to-

noise, darkfield-based image. The combination of the CytoViva Hyperspectral Imaging and 

CytoViva Microscope System has been used to quantify the presence of a wide range of 

nanomaterials in cells and tissue or in composites. The system captures the VNIR (400–

1000 nm) spectrum within each pixel of the scanned field of view. Advanced analytical 

software then provides detailed spectral analysis of the scanned materials.

Measurement of soluble mediators, hydroxyproline, and phospholipids. Transforming 
growth factor (TGF)-β1 and osteopontin (OPN)

The activities of TGF-β1 and OPN were assayed in the AM cultured medium using ELISA 

kits from R&D Systems (Minneapolis, MN) and Assay Designs (Ann Arbor, MI), 

respectively. The assays were carried out according to the manufacturer’s instructions.

Matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of metalloproteinase 
(TIMP)-1

The levels of MMP-2, MMP-9 and TIMP-1 were determined in the first BAL fluid, using 

ELISA kits from Insight Genomics (Falls Church, VA), Cusabio Biotech Co., LTD. 

(Wuhan, Hubei, China), and R&D Systems Inc. (Minneapolis, MN), respectively, following 

the manufacturer’s protocols.

Total phospholipids

The amount of total phospholipids in BAL fluid was measured as the phosphorus present in 

the lipid extracts, which was extracted using chloroform-methanol (2:1, v/v) as described 

previously (Bartlett, 1959). Phospholipid content was obtained by multiplying lipid 

phosphorus values by 25 (Oyarzun and Clements, 1978).

Hydroxyproline

The formation of collagen in the lungs was analyzed by measurement of hydroxyproline 

content in the lung tissues. Rat lungs were chopped and hydrolyzed in 6N HCl for 48–72 h 

at 110 °C. Hydroxyproline was determined according to the method of Kivirikko et al. 

(1967).

Microscopic and immunohistochemical methods. Transmission electron microscopy 
(TEM)

For AM ultrastructure analysis by TEM, cell pellets of BAL cells were fixed in Karnovsky’s 

fixative (2.5% glutaraldehyde+3% paraformaldehyde in 0.1 M sodium cacodylate, pH 7.4) 

and postfixed with osmium tetroxide. Cells were dehydrated in graded alcohol solutions and 

propylene oxide and embedded in LX-112 (Ladd, Williston, VT). Ultrathin sections were 

stained with uranyl acetate and lead citrate and examined under TEM.
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Histological examination

Rat lung tissues from different exposure groups were fixed immediately after termination by 

intratracheal instillation of 10% neutral buffered formalin at a pressure of 30 cm H2O (at an 

altitude of 960 ft), embedded in paraffin, and stained with hematoxylin and eosin for light 

microscopic examinations.

Sirius Red staining for collagen detection

Collagen in the lungs was detected with Sirius Red staining (Junqueira et al., 1979), a 

quantitative morphometric method for collagen determination in the lungs (Antonini et al., 

2000; Malkusch et al., 1995). Paraffin sections were deparaffinized and rehydrated with 

xylene-alcohol series to distilled water. The slides were then stained with 0.1% Picrosirius 

solution (100 mg of Sirius Red F3BA in 100 ml of saturated aqueous picric acid, pH 2) for 

1–2 h, washed for 1 min in 0.01 N HCl, counterstained with Mayer’s hematoxylin for 2 min, 

dehydrated, and mounted with a coverslip.

Quantitative morphometric analysis

Quantitative morphometric methods were used to measure the average thickness of the 

fibrillar collagen in the alveolar wall and the extent of collagen formation in the alveolar 

region. Volume and surface density were measured using standard morphometric analyses 

(Underwood, 1970). This consisted of basic point and intercept counting. Volume density 

was determined from counting the number of points over the appropriate structures in a 

section relative to total alveolar region points. Point categories included: alveolar wall tissue 

and Sirius Red positive connective tissues in the alveolar regions and points over Sirius Red 

positive connective tissues. Surface density of the alveolar wall was determined from 

intercepts between a line overlay and the alveolar wall. These point and intercept counts 

were made using a 121-point/11-line overlay graticule (12.5 mm square with 100 divisions) 

at 100× magnification taken at six locations equally spaced across each section (one section 

per animal). This process was repeated twice for each animal. In order to limit the 

measurements to alveolar parenchyma, areas containing airways or blood vessels greater 

than 25 mm in diameter were excluded from the analysis. Average thickness of the fibrillar 

collagen in the alveolar wall was computed from two times the ratio of volume density of 

points over fibrillar collagen to the surface density of the alveolar wall. The collagen content 

of the alveolar walls was computed as the percentage of points over collagen divided by the 

total points over alveolar tissue.

Immunohistochemistry

Paraffin sections were deparaffinized and rehydrated with xylene-alcohol series to distilled 

water. Antigen retrieval was according to the method described by Scabilloni et al. (2005). 

Briefly, slides were placed in 0.01 M citrate buffer solution (pH 6.0), and microwaved at a 

high setting for 105 s to bring the solution to 100 °C and was maintained at that temperature 

for an additional 6 min. Sections were then equilibrated to room temperature and rinsed in 

distilled water. Endogenous peroxidase was blocked by placing the sections in 3% hydrogen 

peroxide-methanol (1:1 v/v) solution at room temperature for 20 min. After being rinsed in 

Tris buffer (0.1 M, pH 7.4), the sections were loaded into a Sequenza staining tray 
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(Shandon-Lipshaw, Pittsburgh, PA), rinsed, and blocked with 1% BSA in PBS for 30 min. 

After addition of the primary antibody solution, the section was incubated for 16 h at 4 °C; 

the sections were washed with buffer and incubated with the secondary antibody that was a 

biotinylated anti-rabbit and anti-mouse immunoglobulin adsorbed to abolish cross-reactivity 

with serum proteins of the rat (Dako, Carpinteria, CA). The sections were then washed in 

buffer, incubated with streptavidin peroxidase for 30 min, and again washed with buffer. 

This antibody complex was detected by incubation with 3,3′-diaminobenzidine 

tetrahydrochloride (DAB; Zymed Laboratories, San Francisco, CA) for 7 min. After 

detection, sections were washed with distilled water, counterstained with Mayer’s 

hematoxylin for 1 min, rinsed, dehydrated, and mounted. Primary antibodies for MMP were 

obtained from NeoMarkers (Fremont, CA) and consisted of antibodies to detect MMP-2 or 

gelatinase A (Ab-1 mouse monoclonal IgG, 1:100), MMP-9 or gelatinase B (Ab-8 mouse 

monoclonal IgG, 1:50), MMP-10 or stromelysin-2 (Ab-2 mouse monoclonal IgG, 1:500).

Statistical analyses

Data are presented as means±standard errors. Comparisons were made using analysis of 

variance (ANOVA) with means testing by Dunnett’s test when compared to the controls. A 

p<.05 was considered to be significant.

The histological data were analyzed using analysis of variance (STATGRAF). Bartlett’s test 

was used to test for homogeneity of variances between groups. Statistical differences were 

determined using one-way analysis of variance (ANOVA) with significance set at p≤0.05. 

When significant F values were obtained, individual means were compared to control using 

Duncan’s multiple comparison procedure (Duncan, 1955) and p<0.05 was considered to be 

significant. Data are given as mean±SE.

Results

Cerium oxide-induced cellular and acellular mediators

In cerium oxide-exposed AM, significant increases in TGF-β1 secretion occurred at dose 

levels of 3.5 and 7 mg/kg equivalent to .875 and 1.75 mg/rat, up to 28 days post-exposure. 

The production peaked at 3 days post exposure, but remained significantly elevated at 10 

days after the cerium oxide exposure (Fig. 1A). At the 1 mg/kg dose, the TGF-β1 production 

by AM at different time periods was higher than but not statistically different from that of 

the controls. The production of the fibrotic cytokine, TGF-β1, in mouse AM cultured 

medium has been reported to follow a similar transient pattern (Bonniaud et al., 2004).

The production of OPN by cerium oxide-exposed AM was significantly elevated at 10 and 

28 days post-exposure (Fig. 1B), but not at 1 day after exposure (data not shown). There is a 

decline of OPN measured in AM cultured medium at 28 days after exposure comparing to 

that obtained at 10 days post-exposure, but OPN was still significantly elevated when 

compared to the controls. These results show that OPN is secreted by cerium oxide-exposed 

AM as long as 28 days post exposure. Thus, it may play a significant role in mediating 

cerium oxide-induced fibrotic lung injury.
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The presence of MMP-2, MMP-9 and TIMP-1 in the first BAL fluid in response to cerium 

oxide exposure is shown in Fig. 2. The results show that there is a dose-dependent induction 

of these proteolytic and anti-proteolytic enzymes related to ECM remodeling after cerium 

oxide exposure. The production of these proteolytic and antiproteolytic enzymes at 1 day 

was higher than at 28 days-post-exposure, however, both enzymes were significantly higher 

than the control at 1- and 28-days after exposure. Both MMP-2 (Fig. 2A) and MMP-9 (Fig. 

2B) are proteolytic enzymes that cause degradation of lung collagen, whereas TIMP-1 (Fig. 

2C) binds to MMP-9 to inactivate the enzyme. These results show that there is a general 

excess of TIMP-1 compared to MMP-9, which may inhibit collagen degradation in ECM.

Phospholipidosis

Pulmonary exposure to cerium oxide resulted in a dose-dependent increase of the PL content 

in the BAL fluid at 28 and 84 days post exposure (Fig. 3A). The results showed a ~10-fold 

increase in PL in the cerium oxide (7 mg/kg or 1.75 mg/rat)-exposed lungs (1.5±0.41 

mg/ml) over that of the controls (0.14±0.02 mg/ml) at 28 days post exposure. The increased 

PL content at 84-day exposure period was lower than the 28-day exposure groups, but 

remained 5 fold higher than the control. Fig. 3C shows a significant increase in the lamellar 

body filled vacuoles in and around AM isolated from a cerium oxide (3.5 mg/kg)-exposed 

lung at 10 days after exposure, as revealed by TEM. The corresponding TEM micrograph 

for the control is given in Fig. 3B. These results demonstrate that exposure of rats to cerium 

oxide induces pulmonary phospholipidosis similar to that observed in silica-exposed lungs 

(Ma et al., 1999; Porter et al., 2001).

Localization of cerium oxide particle, MMPs, and TIMP in lung tissue

Fig. 4 shows enhanced darkfield-based illumination of Sirius Red stained lung sections from 

control and cerium oxide-exposed lungs. Lung tissue appears in various shades of reddish-

brown, red blood cells are green, and cerium oxide particles are white. Fig. 4A shows the 

absence of particles in control lung tissue. At 28 days after exposure of rats to a single 

intratracheal dose of 7 mg/kg of cerium oxide, illuminated white cerium oxide particles were 

clearly detected in AM, the interstitium and in the airspace mixed with lung surfactant (Fig. 

4B). Representative spectra for cerium oxide particles in the tissue section (upper panel C) 

and normal tissue (lower panel C) clearly distinguish the particles. Each color in the spectra 

is from a different point (pixel) of the cerium oxide particles in the tissue section and normal 

tissue, respectively. The presence of particles in lung tissue is consistent with cerium oxide-

induced pulmonary inflammation which showed sustained elevation of PMN infiltration for 

28 days at the same dose (Ma et al., 2011).

Immunolocalization of MMP-2-, MMP-9-, MMP-10 and TIMP-1 were demonstrated as 

brown DAB precipitate in cells in fibrotic regions of the lung at 28 days after a single dose 

of cerium oxide (7 mg/kg) (Figs. 5B, D, F and H, respectively). The corresponding controls 

are shown in panels A, C, E and G. In addition to being located in fibrotic regions, MMP-2, 

MMP-9 and TIMP-1 expressions were as shown in airspace masses of surfactant-cerium 

oxide (arrow head). PMN were also found in the airspaces. In addition to be in the fibrotic 

regions of cerium oxide-exposed lungs, MMP-10 (Fig. 5F) was more diffusely distributed 

throughout the tissue, whereas its expression in saline controls was minimal (Panel E).
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Hydroxyproline content in lung tissues and morphometric analysis of lung fibrosis

The cerium oxide-induced fibrosis was determined via measurement of lung hydroxyproline 

content (Fig. 6A) and quantitative morphometric analysis of lung tissue via Sirius Red 

staining methods (Figs. 6B, C, and D). Exposure of rats to cerium oxide increased lung 

hydroxyproline content, a major component of collagen and a marker for fibrosis, in a dose 

and time-dependent manner (Fig. 6A). Exposure of rats to lower concentrations of cerium 

oxide (≤1 mg/kg) significantly increased the hydroxyproline level in the lung tissues at 84 

days, but not 28 days post exposure. However, rats exposed to cerium oxide at or above 3.5 

mg/kg exhibited significantly increased lung hydroxyproline contents at both 28 and 84 days 

post-exposure. These data demonstrate that exposure of rats to cerium oxide resulted in a 

dose- and time-dependent increase of hydroxyproline in the lungs, indicating that cerium 

oxide exposure induced lung fibrosis.

Morphometric analysis of the lung tissues to detect localized collagen formation via Sirius 

Red staining showed that cerium oxide exposure, at a single 7 mg/kg intratracheal 

instillation, induced lung fibrosis at 28 days after exposure (Fig. 6B). Quantitative 

morphometric analysis of the average thickness of the alveolar wall shows that exposure of 

rats to higher doses of cerium oxide (3.5 and 7 mg/kg) significantly increased alveolar wall 

thickness compared to controls (Fig. 6C). Quantitative analysis of collagen volume density, 

based on the morphometric analysis of Sirius Red stained sections, showed that exposure to 

cerium oxide (7 mg/kg) significantly increased the collagen content in the alveolar wall, i.e. 

the volume density of collagen in the alveolar wall of tissues from rats exposed to 7 mg/kg 

of cerium oxide at 28 days post-exposure was nearly doubled (1.89-fold) of that of the 

control (Fig. 6D).

Discussion

With increasing usage of cerium oxide in various industrial applications, such as in catalytic 

combustion of diesel fuels, studies of cerium oxide as an environmental particulate have 

begun to emerge. Previous studies carried out in our laboratory have shown that exposure of 

rats to cerium oxide nanoparticles by a single intratracheal instillation (up to 7 mg/kg or 1.75 

mg/rat) induced lung inflammation, cytotoxicity, air/capillary damage, and a switch of AM 

population from the classic, proinflammatory subset M1 to the profibrogenic subset M2 

macrophages up to 28 days post exposure. The cerium oxide nanoparticle-induced 

inflammatory response, which showed persistent influx of PMN for 28 days, was without 

the presence of granulomas, and the AM were characterized by increased mRNA expression 

of OPN (Ma et al., 2011). In other studies, cerium oxide nanoparticle exposure has been 

shown to induce pulmonary inflammation and small granulomas at an intratracheal dose of 

34 mg/kg in rats (Toya et al., 2010), and a dose range of 50 to 400 mg/kg in mice (Park et 

al., 2010). In a recent study, Srinivas et al. (2011) reported that exposure of rats to cerium 

oxide nanoparticles through head and nose inhalation, at a dose level of 641 mg/m3 for 4 h, 

induced inflammatory responses in the lung including microgranulomas, impairment of 

clearance, and chronic inflammation. It is apparent that these studies employed much higher 

doses than our studies, which may account for the granuloma response. However, all these 

studies showed that cerium oxide can be toxic to the lungs.
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Cerium oxide is considered a fibrotic agent, which has been implicated in studies of rare 

earth pneumoconiosis (McDonald et al., 1995; Waring and Watling, 1990). However, the 

mechanisms leading to this disease have not been directly demonstrated. The current study 

was carried out to characterize the fibrogenic activity of cerium oxide nanoparticles and 

elucidate mechanism(s) through which cerium oxide induces pulmonary fibrosis. The 

cerium oxide-exposed lungs were characterized by a significant accumulation of 

phospholipids, which, as shown by histological analysis, formed many large clumps of 

acellular material mixed with cerium oxide particles in the alveolar region of the lung. The 

phospholipidosis is also manifested by marked increase in the formation of lipid vesicles and 

lamella bodies in AM as revealed by TEM. Phospholipidosis is also characteristic of silica-

induced pulmonary fibrosis (Ma et al., 1999). However, the relations between 

phospholipidosis and fibrosis are incompletely understood. Persistent inflammation has been 

shown to cause tissue injury and atypical repair, leading to alteration of ECM structure and 

lung fibrosis (Ma et al., 1999; Scabilloni et al., 2005). Cerium oxide-induced 

phospholipidosis probably results from impaired AM function that leads to a retardation of 

phospholipid degradation, since the morphology of type II cells in cerium oxide-exposed 

lungs was not significantly different from that of the control. It is thus quite possible that 

phospholipidosis may promote the development of fibrogenic (M2) AM (Ma et al., 2011). 

Studies have shown that stimulation of pulmonary surfactant synthesis by ambroxol in rats 

resulted in a shift of AM function from an elastase/anti-elastase balance to increased anti-

elastase activity on ECM, suggesting that the internalization of surfactants by AM may 

induce AM functional changes that further affect ECM stability (Pozzi et al., 1987). 

Although inflammatory pathways may be responsible for epithelial injury and promotes 

matrix deposition from matrix synthesizing cells leading to fibrosis, however, recently 

overwhelming evidence of TGF-β playing an important pathogenic role in IPF, suggesting 

this cytokine can drive epithelial–mesenchymal transition (EMT), fibroblast-to-

myofibroblast differentiation, and is most potent inducer of ECM production (Scotton and 

Chambers, 2007). Cerium oxide exposure induced lung fibrosis may involve EMT and/or 

fibroblast proliferation and differentiation, which is under investigation in our laboratory.

Our studies showed that cerium oxide nanoparticle exposure resulted in an increase in lung 

hydroxyproline content, which is a marker for pulmonary fibrosis. The dose- and time-

dependent increase in hydroxyproline further illustrates a fibrotic process resulting from 

progressive toxicity induced by cerium oxide. Exposure of rats to low concentrations of 

cerium oxide nanoparticles (≤1 mg/kg or 0.25 mg/rat) significantly increased the 

hydroxyproline level in lung tissues obtained at 84 days, but not 28 days, after a single 

intratracheal dose. However, exposure of rats to cerium oxide at doses of 3.5 mg/kg (or 

0.875 mg/rat) and above significantly increased lung hydroxyproline contents at both 28 and 

84 days post-exposure. The morphometric analysis of lung tissues for localized collagen 

formation using Sirius Red staining confirmed the formation of fibrosis in tissue samples 

obtained from rats exposed to cerium oxide (7 mg/kg or 1.75 mg/rat) at 28 days post-

exposure. Quantitatively, it was shown that the connective tissue thickness increased with 

increasing cerium oxide doses, and the percentage volume density of collagen in the alveolar 

wall in cerium oxide-exposed lung at 3.5 mg/kg (or 0.875 mg/rat) is nearly doubled over the 
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control. These results demonstrate that exposure of rats to cerium oxide induces pulmonary 

fibrosis.

Pulmonary fibrosis resulting from particulate exposure or other insults has been extensively 

studied, but the detailed mechanisms for initiation and progression remain obscure. In 

general, the process involves signaling by the host defense system for a classical 

inflammatory response against the invaders, and, likely a simultaneous response for injury 

repair. It is known that particle-induced lung inflammation can significantly modify the 

alveolar microenvironment by activating pro- and anti-inflammatory cytokines and growth 

factors, and damaging the epithelial barrier. This is of particular significance to cerium oxide 

exposure because a persistent inflammatory response was demonstrated following a single 

exposure (Ma et al., 2011). The present study demonstrated the presence of cerium oxide 

nanoparticles in lung tissue at 28 days after exposure using a high signal-to-noise, darkfield-

based illumination method. The cerium oxide particles were localized in the acellular 

surfactant clumps, AM and the lung interstitium. The persistent presence of cerium oxide in 

lung tissue may play a central role in lung inflammation, basement membrane damage and 

fibrosis that is similar to findings in workers suffering from rare earth pneumoconiosis with 

pathological features of pulmonary fibrosis (Vocaturo et al., 1983).

The results also show that cerium oxide markedly induced AM production of TGF-β1 and 

OPN, both of which have been shown to elicit a fibrotic response. OPN is a multifunctional 

cytokine produced by activated lung cells including AM, fibroblasts and T lymphocytes 

(Denhardt and Guo, 1993). It promotes fibroblast proliferation, adhesion and chemotaxis in 

the wound healing process (Liaw et al., 1994; Zohar et al., 2004). Studies of bleomycin-

induced lung fibrosis in a mouse model demonstrate that OPN was strongly expressed in 

AM that accumulated in the fibrotic regions of the lung (Takahashi et al., 2001). The 

profound effects of TGF-β on epithelial cells and fibroblasts have been studied extensively, 

including promoting epithelial cell apoptosis (Hagimoto et al., 2002), epithelial-to-

mesenchymal transition (Gharaee-Kermani et al., 2009; Willis and Borok, 2007), fibroblast 

proliferation, and their transformation into myofibroblasts (Scotton and Chambers, 2007).

The TGF-β-mediated fibrogenic responses are also linked to cellular production of MMPs, 

which are proteolytic enzymes involved in the degradation of ECM collagens. It has been 

shown that TGF-β induces the secretion and activation of the proteolytic enzymes MMP-2 

and MMP-9, and conversely TGF-β can also be activated by a number of proteases, 

including MMP-2 and MMP-9 (Derynck et al., 2001; Yu and Stamenkovic, 2000).

Immunohistochemistry shows that the expression of MMP-2, MMP-9, MMP-10 and 

TIMP-1 was localized to fibrotic regions of cerium oxide-exposed lungs. These results 

suggest that the fibrotic development may be partially due to an imbalanced production of 

the MMPs and TIMPs, which may result from the persistent stimulation by particles in 

fibrotic foci (Corbel et al., 2000). Localization of MMP-10 in fibrotic regions of the lung is 

similar to the findings in silica-induced fibrosis (Scabilloni et al., 2005). However, this 

protease also was detected in acellular surfactant clumps in the alveolar space in cerium 

oxide-exposed lungs, but not in the alveolar space of silica-exposed lungs (Scabilloni et al., 

2005), suggesting that a soluble form exists and is secreted into the alveolar space.
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Our studies showed that cerium oxide exposure significantly increased MMP-2, MMP-9, 

and TIMP-1 levels in a dose-dependent manner. This induction declined with increasing 

exposure time, but remained elevated when compared to the control. The much higher level 

of TIMP-1, the tissue inhibitor of MMP-9, relative to MMP-9 after cerium oxide exposure is 

in agreement with the general observations that in vivo activity of MMPs is under tight 

control and is generally expressed in very low amounts, while the concentration of TIMP 

can far exceed MMPs in tissue and extracellular fluids in order to limit their proteolytic 

activity to focal pericellular sites. However, the elevated MMP-2 and MMP-9 production 

may play a role in basement membrane disruption and enhancing fibroblast invasion to the 

alveolar spaces. The TIMP-1/MMP-9 ratio of 113 and 11 determined at 1- and 28-day, 

respectively, after 7 mg/kg cerium oxide exposure, compared to the ratio of 23 and 13 in 

controls, suggests that exposure of rats to cerium oxide altered the normal balance of 

MMP-9 relative to TIMP-1 in the lung. These findings suggest that imbalance of TIMP-1 

and MMP-9 may play an important role in ECM remodeling and development of fibrosis. 

Increased levels of gelatinases MMP-2 and MMP-9 in epithelial lining fluid, which have 

been implicated in the development of fibrosis, were also observed in IPF patients 

(Lemjabbar et al., 1999).

In summary, the present study shows that cerium oxide nanoparticles induce a range of 

mediators involved in lung tissue remodeling, with an imbalanced production of MMPs and 

TIMP-1 that favors fibrosis. Previously, we have shown a persistent pulmonary 

inflammation resulting from cerium oxide exposure, characterized by a sustained infiltration 

of neutrophils into the alveolar region that lasted through the time when fibrosis develops. 

The current study further demonstrates the presence of cerium oxide particles in lung tissue, 

AM and airspace and phospholipidosis that may contribute to the alteration of AM function 

from the proinflammatory M1 to profibrogenic M2 macrophages capable of initiating a 

fibrotic responses through production of OPN and TGF-β1. Collectively, these events 

suggest a mechanism through which the inflammatory cells at the site of injury, in response 

to cerium oxide exposure, undergo tissue repair process that results in an imbalanced 

regulation of ECM collagen formation due to the persistent presence of cerium oxide 

nanoparticles. This study shows that cerium oxide generated in diesel exhaust emission may 

pose serious adverse health effects.

Conclusion

This study shows that cerium oxide nanoparticles induce lung injury with the presence of 

these particles in the lung tissues. Cerium oxide particles activated and converted AM from 

a proinflammatory to profibrotic subset, induced surfactant accumulation, altered the 

balance of mediators involved in tissue repair process leading to excess collagen deposit and 

pulmonary fibrosis. These findings suggest that cerium oxide generated in exhaust emission 

from diesel engine using cerium fuel additive may pose serious adverse health effects. 

Future studies to elucidate the mechanisms leading to these toxicological responses to 

cerium oxide exposure are warranted.
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Abbreviations

AM alveolar macrophages

Arg-1 arginase-1

BAL bronchial alveolar lavage

CeO2 cerium oxide

DEP diesel exhaust particles

ECM extracellular matrix

EMT epithelial–mesenchymal transition

IPF idiopathic pulmonary fibrosis

MMP matrix metalloproteinase

OPN osteopontin

RE rare earth

TGF transform growth factor

TIMP tissue inhibitors of matrix metalloproteinase

TEM transmission electron microscopy
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Fig. 1. 
Cerium oxide exposure induced TGF-β1 and OPN in AM culture medium. AM were 

isolated by bronchoalveolar lavage and cultured at 37 °C for 24 h. TGF-β1 (A) and OPN (B) 

levels were measured in the cultured supernate using ELISA. The values are expressed as 

means±SE, n=6. *Significantly different from saline controls, p<0.05. The dotted line 

indicates control.
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Fig. 2. 
MMP-2, MMP-9 and TIMP-1 levels in the first BAL fluid monitored at 1- and 28-day post 

CeO2 exposure. The first BAL fluid was isolated from saline and CeO2-exposed rats, as 

described in the Materials and methods section. The MMPs and TIMP levels were 

determined using ELISA. The values are expressed as means±SE, n=6. *Significantly 

different from saline control group at p<0.05.
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Fig. 3. 
Effect of CeO2 exposure on phospholipids content in the BAL fluid and micrographs of 

TEM analysis of AM. (A) The phospholipid content in the first BAL fluids obtained from 

saline and various concentrations of CeO2-exposed rats at 28 and 84 days post exposure. 

TEM of AM isolated by bronchoalveolar lavage from (B) control and (C) CeO2 (3.5 mg/kg)-

exposed rats at 10 days post-exposure. (Bar=2 μm). The values are expressed as means± SE, 

n=6. *Significantly different from saline control group at p<0.05. +Significantly different 

from 28-day exposure groups, at p<0.05.
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Fig. 4. 
Cerium oxide particles in lung tissue and pulmonary fibroblasts isolated from CeO2 (a single 

intratracheal dose of 7 mg/kg)-exposed rats, at 28 days post exposure. Control lung tissues 

exhibit no particles under high resolution, dark field illumination (A). Illuminated CeO2 

particles, using darkfield-based illumination, were clearly detected in macrophages (MAC), 

the interstitium (arrow), in acellular surfactant clumps (arrow head), in the airspace as free 

particles (B). Panel C gives representative intensity versus wavelength spectra of points 

(pixels) of CeO2 particles in the cerium oxide-exposed tissue section (upper panel) and 

spectra of control tissue. Each different colored curve represents a different point. Small 

arrow: MAC; big arrow: interstitium; Arrow head: acellular mass of surfactant-cerium oxide 

in the air space.
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Fig. 5. 
Immunohistochemical localization of MMP-2, -9, -10 and TIMP-1 in lung tissues. Exposure 

of rats to cerium oxide at 28 days after a single intratracheal instillation of 7 mg/kg of 

cerium oxide. Lungs were isolated and treated as described in the Materials and methods 

section. Representative immunolocalization for MMP-2, MMP-9, MMP-10 and TIMP-1 

(brown-DAB precipitate) of saline control lung sections is shown in the upper panels (Panels 

A, C, E and G) and corresponding cerium oxide-treated lung sections in the lower panels 

(Panels B, D, F and H). MMP-2, MMP-9, and TIMP-1 (Panels B, D and H) were intensely 

expressed in cells of fibrotic areas in CeO2-exposed lung, respectively. MMP-10 (Panel F) 

was intensely expressed in fibrotic areas of CeO2-exposed lungs and was also expressed 

diffusely throughout the lungs. MMP-10 expression in saline controls was minimal (Panel 

E). Arrow head: acellular mass of surfactant-cerium oxide in the air space, containing PMN 

(small arrows).
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Fig. 6. 
Hydroxyproline content and Sirius red staining for collagen in the lung tissue and 

quantitative morphometric analysis of alveolar wall thickness and collagen fiber volume in 

CeO2 exposed rat lungs. (A) Lung tissues exposed to various levels of CeO2 at 28 and/or 84 

days after exposure. Hydroxyproline content in the lung tissues was monitored as described 

in the Materials and methods section. The values are expressed as means±SE, n=6. (B) Light 

micrograph of Sirius red staining for collagen formation in the lung tissues (arrow) at 28 

days post exposure (cerium dose: 7 mg/kg). (C) Quantitative analysis of dose-dependent 

increase in the thickness of alveolar wall connective tissue. (D) Quantitative analysis of 

collagen volume expressed as a percentage of total tissue volume, based on the 

morphometric analysis of Sirius Red stained sections. *Significantly different from saline 

controls; p<0.05. +Significantly different from 28-day exposure groups, at p<0.05.
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