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Abstract

Studying the genetic diversity and natural polymorphisms of HIV-1 would benefit our 

understanding of HIV drug resistance (HIVDR) development and predict treatment outcomes. In 

this study, we have characterized the HIV-1 genetic diversity and natural polymorphisms at the 5′ 

region of the pol gene encompassing the protease (PR) and reverse transcriptase (RT) from 271 

plasma specimens collected in 2008 from HIV-1-infected patients who were eligible for initiating 

antiretroviral therapy in Abuja (Nigeria). The analysis indicated that the predominant subtype was 

subtype G (31.0%), followed by CRF02-AG (19.2 %), CRF43-02G (18.5%), and A/CRF36-cpx 

(11.4%); the remaining (19.9%) were other subtypes and circulating (CRF) and unique (URF) 

recombinant forms. Recombinant viruses (68.6%) were the major viral strains in the region. 

Eighty-four subtype G sequences were further mainly classified into two major and two minor 

clusters; sequences in the two major clusters were closely related to the HIV-1 strains in two of the 

three major subtype G clusters detected worldwide. Those in the two minor clusters appear to be 

new subtype G strains circulating only in Abuja. The pretreatment DR prevalence was < 3%; 

however, numerous natural polymorphisms were present. Eleven polymorphic mutations (G16E, 

K20I, L23P, E35D, M36I, N37D/S/T, R57K, L63P, and V82I) were detected in the PR that were 

subtype or CRF specific while only three mutations (D123N, I135T, and I135V) were identified in 

the RT. Overall, this study indicates an evolving HIV-1 epidemic in Abuja with recombinant 

viruses becoming the dominant strains and the emergence of new subtype G strains; pretreatment 

HIVDR was low and the occurrence of natural polymorphism in the PR region was subtype or 

CRF dependent.
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Introduction

ONE OF THE MAJOR CHALLENGES in controlling the HIV/AIDS pandemic is the 

genetic variability of HIV and its consequences for the development of antiretroviral (ARV) 

drugs and vaccine. HIV vaccine development has been hindered by its extensive genetic 

heterogeneity.1,2 Currently, the genetic diversity of HIV-1 in the worldwide epidemic is 

characterized by four groups, M, N, O, and P.3 The group M is the leading cause of the 

global epidemics and is composed of nine subtypes (A,B, C, D, F, G, H, J, and K),3 more 

than 49 circulating recombinant forms (CRFs), and 100 unique recombinant forms 

(URFs).4–6 While subtype B is the predominant strain in the developed countries, the non-B 

subtypes as well as CRFs and URFs are the major epidemic strains characterized in the 

African region.7–30 In sub-Saharan Africa, multiple HIV-1 subtypes are found along with 

various CRFs such as CRF01-AE in Central Africa and CRF02-AG in West 

Africa.7,9,15,16,31–37

In Nigeria, studies have shown a diversified HIV-1 epidemic with the viral subtype G, 

CRF06-cpx, CRF02-AG, sub-subtype A3, and other recombinants 

cocirculating.16,18,34,38–40 In a study published in 2000, subtype A was predominant (about 

70%) in the southwest-Lagos state and subtype G was predominant in the northwest-Kano 

state (about 58%), while both subtypes A (49%) and G (47%) were observed to be equally 

distributed in the northeast (Maiduguri).18 In 2006, a study in Oyo state (southeast) showed 

the predominance of CRF02-AG (57%), subtype G (26%), and CRF06-cpx (11%),16 and 

similar results with 39–45% for CRF02-AG and 38% for subtype G were reported in 200941 

and 2012.39

Characterization of the polymorphisms within the protease (PR) and reverse transcriptase 

(RT) genes have been conducted mostly for subtype B viruses; few studies have been 

conducted for non-B subtype viruses, and their impact on highly active antiretroviral therapy 

(HAART) is undetermined.9,29,42–46 Indeed, it has been shown that differences in codon 

sequences at positions associated with drug resistance mutations (DRMs) might predispose 

viral isolates of different subtypes to encode different amino acid substitutions that can 

affect the rate of emergence of resistance, cross-resistance to same-class drugs, and 

potentially drug susceptibility and clinical outcomes.8,47 Data from virological and 

biochemical analysis revealed that natural variations in amino acids can affect the degree of 

drug resistance (DR) conferred by some mutations.48 It has been shown that HIV-2 and 

group O HIV-1 viruses are naturally resistant to nonnucleoside RT inhibitors (NNRTIs) due 

to mutations present in their RT gene.49,50 Moreover, differences in nucleotide and 

mutational motifs (these are transitions and transversions needed to develop DR to different 

antivirals) between subtypes can affect the genetic barrier for resistance.51,52

One good example of this is the V106M polymorphism in the RT of subtype C viruses 

inducing resistance to NNRTIs.53 However, study of the influence of genetic variability and 

polymorphisms on HIV-1 DR development in places where diverse HIV-1 non-B subtypes, 

CRFs, and URFs are co-circulating is limited. We undertook this study in Abuja, Nigeria’s 

capital city, using specimens collected from HIV-1-infected patients who were eligible for 

initiation of ART at two treatment sites. The aims of this analysis were to (1) determine the 
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HIV-1 subtype distribution in the cohort; (2) identify and characterize baseline 

polymorphisms and DRMs at pretreatment and the association of any specific mutational 

pattern with HIV-1 subtypes or CRFs; and (3) evaluate the potential impact of these 

polymorphisms on DR development.

Materials and Methods

Specimens

Patients were recruited for a prospective cohort study to monitor HIVDR development. The 

median age was 34 years [interquartile range (IQR), 28–40 years]; 38% were male, while 

62% were female at the time of ART initiation. The median CD4 count was 149 cells/μl 

(IQR, 73–205 cells/μl) and 72% of participants had a CD4 count of ≤200 cells/μl. Detailed 

demographic and clinical data of this cohort were described previously.54 The specimens 

were collected from HIV-infected patients initiating ART from two sites in Abuja, between 

January and July 2008. Samples were systematically collected from all the patients who 

were eligible for ART to limit the introduction of bias in the nature and quantity of 

polymorphisms and/or DRMs detected.

RT-PCR and DNA sequencing

Sequences were generated from these plasma specimens using the broadly sensitive HIV-1 

genotyping assay that amplifies the 5′ region of the HIV-1 pol gene including DR mutation 

sites in the PR and RT regions.55 Sequences were edited with the ReCall program56 and the 

consensus sequences were made for further analysis.

HIV-1 subtype determination and characterization

HIV-1 subtypes and CRFs for the newly obtained 271 sequences were initially determined 

by phylogenetic analysis using MEGA 557 along with 109 reference sequences including 

subtypes A to K and all available CRFs, downloaded from the Los Alamos HIV sequence 

database (2010 version, www.hiv.lanl.gov/). Neighbor-joining and maximum likelihood 

with algorithms of Tamura-Nei were used for the analysis with 1,000 bootstrap replicates. 

The bootstrap values above 70% were considered significant.58 For the sequences whose 

HIV-1 subtypes or CRFs could not be determined by the initial phylogenetic analysis, 

pairwise genetic distances (MEGA57), similarity, and bootscan analysis (SimPlot, v.3.5159) 

were performed for gene structure (recombination) analysis. If a segment of the query 

sequences with a length of < 200 nucleotides had a similarity of < 95% to the reference 

sequences, a U was assigned to indicate an unclassifiable segment within a sequence; the 

relatedness of these unclassifiable sequences to any sequence in the public database was 

then determined by using a standard GenBank Blast search. If the similarity scores were < 

95%, the sequences were considered not closely related.

The phylogeny of 84 subtype G sequences identified from the initial subtyping was further 

assessed by using the MrBayes tool (Geneious, v.6.1.8, Biomatters Ltd., San Francisco, CA) 

with the references of subtype G (n = 36) and other major HIV-1 subtypes (n = 21) 

downloaded from the Los Alamos HIV sequence database (www.hiv.lanl.gov/). The 

posterior probabilities of trees were estimated using Markov chain Monte Carlo (MCMC) 
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approach with a chain length of 1,100,000 and an HKY85 substitution model.60 Only 

probability values > 70% at the nodes of major clusters were presented in the tree.

Identification of major drug resistance-associated mutations and natural polymorphisms

Major HIVDR mutations of the 271 quality-assured sequences were identified by the 

Calibrated Population Resistance Tool (CPR), version 6.0, deployed at the Stanford HIV 

drug resistance website (http://cpr.stanford.edu/cpr.cgi). Sequences were aligned using 

Clustal W (BioEdit version 7.0.9.1, Carlsbad, CA) and were visually compared across 

subtypes to identify both synonymous and nonsynonymous substitutions at polymorphic 

and/or DR sites in both RT and PR genes, which also allowed us to determine any subtype-

specific mutational pattern or motif. The mutational motif is defined as the number of 

transitions or transversions needed to develop resistance to different classes of ARVs.51,52 

The specific mutational pattern analysis was focused on the sites that are polymorphic 

and/or involved in HIVDR development to any drug class of ARVs.

Results

HIV-1 subtype distribution

Phylogenetic analyses of the 271 newly obtained nucleotide sequences along with 109 

HIV-1 subtype and CRF reference sequences revealed that 93.7% (254/271) of the 

sequences could be subtyped with our sequence analysis procedures while 6.3% (17/271) 

could not be assigned a standard subtype or CRF, which were denoted as unclassifiable 

sequences (Table 1). A total of 16 possible types of HIV-1 strains were identified. The 

predominant strains were subtype G (31.0%), CRF02-AG (19.2%), and CRF43-02G 

(18.5%), accounting for 68.7% of the total sequences analyzed. The remaining strains 

(31.3%) were A/CRF36-cpx (11.4%), CRF06-cpx (5.5%), CRF25-cpx (3.3%), CRF36-cpx 

(2.2%), A/CRF02-AG (1.5%), CRF15-01B/G (0.4%), CRF43-02G/G (0.4%), and 

unclassifiable (6.3%). Overall, the recombinant viral strains, including CRFs and URFs, 

accounted for 68.6%, while pure subtypes (G and C) were only 31.4%.

It is interesting to note that the subtype G sequences identified in this study (n = 84) 

exhibited intrasubtype diversity by segregating into two large distinct clusters in the initial 

phylogenetic analysis (data not shown). To further understand the diversity of these G 

sequences, we analyzed them with all available subtype G reference sequences from the Los 

Alamos database. Results indicated that the G sequences mainly formed three major and two 

minor clusters (Fig. 1). For description purpose, we named them G1-3 and Gm1-2, 

respectively. Most of the G sequences from this study (n = 64) fell into two of the three 

known major subtype G clusters, G1 (n = 19) and G3 (n = 45), and only one clustered in the 

G2 along with reference sequences from other countries. Interestingly, the remaining study 

sequences formed two independent minor clusters of Gm1 and Gm2 without clustering with 

any sequence from other countries with an exception of two sequences that didn’t group into 

clusters.

For those 17 sequences that a subtype/CRF could not be assigned, 13 representatives were 

selected for further analyses. Genetic distance analysis showed that they were not closely 
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related to any subtype reference sequences, but had approximately equal distances to two or 

multiple subtype sequences (Table 2). Sequence similarity analysis indicated that they had 

complicated gene structures with multiple subtypes involved (Fig. 2a). Bootscan analysis 

further revealed that eight of them had strong evidence of recombination between multiple 

subtypes (Fig. 2b). Blast search for closely related sequences in the GenBank database 

showed the highest similarity hits were 93–95% to the GenBank sequences (data not 

shown), indicating they might be new recombinant viruses.

HIV-1 drug resistance-associated mutations

Among the 271 sequences analyzed, 28% (76/271) had polymorphisms and/or primary 

and/or accessory DRMs in the PR and RT region (Table 3). The CPR analysis identified the 

PI mutations M46L, I85V, and F53Y as well as the NRTI mutations M41L and V75M, and 

the NNRTI mutations K101E, K103N, and G190A as Surveillance Drug Resistance 

Mutations (SDRM).61,62 The total number of detected mutations in the PR was 11, 

distributed at 9 sites among 11 samples. In the RT, 81 mutations were identified and 

distributed at 15 sites among 69 samples. Seven specimens had PI mutations but no NRTI or 

NNRTI mutations, while the remaining 69 specimens with resistance-associated mutations 

had no PI mutations.

In the PR region, one sample displayed the K43T mutation; another one had the M46L, 

while a third specimen had K53Y, A71V, and I85V. The T74S mutation was found in the 

PR of six specimens.

We also detected NRTI selected mutations M41L, E44D, T69ANS, V75M, and V118I, and 

NNRTI mutations V90I, A98G, K101EQ, K103NR, V106I, V108I, E138A, V179EI, and 

G190A (Table 3). Due to the M41L mutation detected in one specimen, the virus would 

have reduced susceptibility to zidovudine (AZT) and stavudine (d4T). Five specimens had 

A98G, K101EK, V108IV, K103N, E138A, and G190A occurring alone or in combination 

with each other, which could cause intermediate and/or high-level resistance to delavirdine 

(DLV), efavirenz (EFV), etravirine (ETR), and nevirapine (NVP). The mutation E138A 

associated with a decreased response to ETR, the second generation NNRTI, was found in 

16% (12/76) of the specimens displaying DR mutations. There were only three specimens 

that had DR mutations associated with two combined drug classes (NRTIs plus NNRTIs). 

The overall resistance rate within the cohort was < 3% and the affected drugs were one PI 

[nelfinavir, (NFV)], two NRTIs (AZT and d4T), and five NNRTIs [EFV, DLV, ETR, 

rilpivirine (RPV), and NVP].

Among all the mutations detected, T74S (54.5%) in PR and E138A (17%), V179I (16%), 

followed by V118I and V179E (14% each) in RT were the most prevalent, while T69NS, 

V90I, and V106I were present at only 5% each. Within the cohort, the rate of these 

mutations was 2.2% for T74S, 4% for V118I and V179E each, 4.5% for V179I, and 5% for 

E138A. The prevalence for T69NS, V90I, and V106I was 1.5%, respectively. L89T/I, the 

nonpolymorphic PI-selected mutation of uncertain phenotypic and clinical significance was 

also detected.
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Natural polymorphisms

Of the 271 sequences analyzed, 11 polymorphic mutations (G16E, K20I, L23P, E35D, 

M36I, N37D/S/T, R57K, L63P, and V82I) in the PR and 3 (D123N and I135T/V) in the RT 

were identified. According to the Stanford DR algorithm, these substitutions occurred in the 

wild type (WT) of non-B subtype viruses and have no effect on DR for PIs or RTIs; 

however, when combined with other mutations, they increase the resistance to PIs or RTIs in 

subtype B viruses.

Uncommon mutations

Numerous uncommon mutations with unknown impact and/or function within the PR and 

the RT were identified. In PR, 58 uncommon mutations were detected at 28 positions, while 

in RT the number was 96 at 58 positions. Some of these mutations occurred at a very high 

rate and were subtype specific in the PR gene. For example, the E35Q mutation occurred in 

67% of all subtype G sequences and in only 5% of CRF02-AG sequences, but was absent in 

all other subtypes and CRFs. E35K occurred in 5% of CRF02-AG but was absent in the rest 

of the other subtypes. However, in the RT gene, we did not detect a high prevalence of an 

uncommon mutation or subtype-specific mutational pattern. The random mutation rates 

ranged from 0.5% to 15%.

Synonymy and subtype-specific codon mutational pattern

We next performed a codon-by-codon comparison of the nucleotide sequences of subtype B 

(HXB2) to the sequences in the cohort to detect any subtype-specific mutational patterns 

(Table 4). We found that at position 179 of the RT gene, all sequences of CRF06-cpx (6/6), 

subtype G (2/2), and CRF43-02G (2/2) harbored the V179E mutation, while all sequences of 

CRF36-cpx (1/1), A/CRF02-AG (2/2), CRF36-cpx/B (2/2), A/CRF15-01B (4/4), and 

CRF25-cpx (2/2) had the V179I mutation. The WT CRF06-cpx and subtype G mainly had a 

codon GTG at position 179, while the WT of the other subtypes and CRFs possessed the 

GTT at this position except for CRF36-cpx, which had a codon ATA.

Discussion

We have analyzed the PR and RT regions of the pol gene of 271 sequences generated from 

plasma specimens collected from ART-naive HIV-1-infected patients initiating ART in 

Abuja, Nigeria in 2008. Phylogenetic analysis revealed that recombinant viruses have 

become the dominant strains over pure subtypes. The subtype G viruses have further 

diversified into three major subtype G clusters using worldwide sequences, and most 

Nigerian sequences from this study were closely related to two of the three clusters (Fig. 1, 

G1 and G3), indicating a close epidemiological relationship of HIV epidemics between 

Nigeria and countries in Europe, West Africa, and Asia during the periods of 1992–2004 

(G1) and 2000–2009 (G3), respectively. We also noticed that the HIV-1 strains in the G2 

cluster formed by sequences obtained from countries in Europe, East and West Africa, and 

South America from 1993 to 2009 had a minimal impact to the HIV epidemic in Nigeria, 

and strains in the two minor clusters, Gm1 and Gm2, appear to be indigenous viruses that 

had no relationship to the HIV subtype G strains circulating in other countries.
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The three major subtype G clusters were reported previously as GWA-I, GWA-II, and 

GCA
6,22,63 However, within a G cluster, different strains may be present. For example, in the 

G3 cluster, there are possibly four different strains, denoted as G3A–D (Fig. 1), while strain 

G3C and G3D seem to circulate only in Nigeria. Studies have suggested that subtype G 

emerged in Central Africa in 1968 (1956–1976), and between the middle and late 1970s two 

subtype G strains were probably introduced into Nigeria.63 Since then, they were 

disseminated locally and to neighboring countries, leading to the origin of two major 

western African clades (GWA-I and GWA-II). For the strains in the two minor clusters of 

Gm1 and Gm2, we have not identified any phylogenetic relationship of these strains to those 

from other countries (> 95% similarity) or to those detected in other regions of the country 

(data not shown), indicating that they might be newly emerging and locally circulating only 

in the Abuja area.

We also observed an evolved subtype distribution in the country. Prior to 2000, subtypes A 

(61%) and G (31%) were dominant in the south and north, respectively, and CRF02-AG was 

not detected in the country.18 However, after 2000, studies revealed that the prevalence of 

subtype A was greatly reduced with a slight reduction of subtype G and a remarkable 

increase of CRF02-AG (39–57%).16,34,38–41 In this study, we did not detect pure subtype A 

and had rates for subtype G (31.0%) and CRF02-AG (19.2%) detected in the capital area of 

Abuja similar to those detected in other areas, which is in agreement with the subtype 

distribution patterns reported in the country.16,34,38,39 Our data and other studies suggest 

that among the two previously dominant subtypes, one (subtype A) is disappearing and the 

other (subtype G) is still playing an important role but is circulating at different rates in the 

country. Meanwhile the progeny (CRF02-AG) of subtypes A and G are emerging quickly in 

the HIV epidemic in the country. In addition, CRF43-02G is becoming one of the dominant 

subtypes in Abuja, which was not reported in other areas of the country. Nevertheless, the 

majority of the current circulating HIV strains were derived from the subtypes or 

recombinant forms between subtypes A and G, again indicating localized transmission and 

circulation.

The overall pretreatment HIVDR rate in the cohort was less than 3%, which is expected due 

to the short time of ART implementation in the country at the time of the study. This rate is 

in agreement with the rates reported in Jos, in the Plateau State,40 and the North Central 

region of Nigeria. In the protease region, one sample displayed the K43T mutation, which 

was associated with a decreased virological response to tipranavir boosted with ritonavir 

(TPV/r) in the RESIST trials.64 One sample harbored the M46L mutation, which is a 

primary mutation inducing an intermediate level of resistance to NFV. A rare treatment-

associated mutation K53Y, the polymorphic mutation A71V, as well as the PI-selected 

mutation I85V were also found in one sample each. Six specimens had the T74S mutation 

that induces a potential low level of resistance [classified as sensitive per the World Health 

Organization (WHO) interpretation]65 to PIs.

We also identified subtype/CRF-specific mutation patterns in the PR and RT gene regions. 

For instance, K20I in the PR region was present in all subtypes and CRFs except for eight 

sequences that were all subtype A-containing recombinants.34 The polymorphic mutations 

M36I, L63P, V82I, and M89I were proportionately present in the sequences of CRF02-AG, 
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CRF43-02G, and CRF06-cpx and subtype G. A study has shown that the polymorphic 

mutation M36I in the PR region was associated with a higher rate of PI treatment failure.66 

Furthermore, biochemical studies of this mutation with subtypes A and C recombinant I36 

PR revealed that the PR enzymes of non-subtype B viruses have a higher inhibition constant 

(Ki) and a greater catalytic efficiency than subtype B viruses67 and that introduction of I36 

into subtype B HIV-1 resulted in a higher virus replication capacity in both the absence and 

presence of PIs.7 In addition, we found that mutations E35D, N37DST, R57K, and K70R in 

the PR and D123N and I135TV in the RT were present at high rates in this cohort. These 

mutations have been shown to be associated with increased or decreased DR to some 

ARVs.68–70 Several other mutations observed in this study were not classically associated 

with resistance and their biological functionality remains to be elucidated. Since some of the 

uncommon mutations occurred at a very high frequency in a subtype/CRF-specific manner, 

they may warrant further investigation to determine their biological functions within the 

virus genome.

The analysis of the mutational pattern suggests that the V179I mutation in the RT is not only 

the preferred mutation in subtype B viruses, but also occurs in non-B subtypes and CRFs. 

Subtype G, CRF43-02G, and CRF06-cpx viruses utilized the codon GTG/GTA to encode 

valine and more likely to develop V179E mutations,16,34,38,39,71 whereas other CRF viruses 

are biased toward V179I and V179D. This pattern of amino acid substitution by a single 

nucleotide change is called quasisynonymy; it may explain the high rate of the V179E found 

in subtype G and CRF06-cpx in this cohort and is concordant with published data and 

statistics predicting the occurrence of this mutation at RT position 179 of these 

viruses.16,71,72

In summary, this study has shown an evolving HIV-1 epidemic in Abuja, with recombinant 

viruses becoming the prevailing strains and locally circulating strains emerging. This 

evolving trend in the HIV-1 epidemic deserves closer monitoring since a recent study has 

shown that a recombinant HIV-1 sub-subtype A3 and CRF02-AG virus was more virulent 

than the original viral strains.73 In addition, it has also confirmed that the occurrence of DR 

may be influenced by quasisynonymy and the genetic cost of mutations.
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FIG. 1. 
Phylogenetic analysis of subtype G sequences with HIV-1 reference sequences. The tree was 

constructed with 84 newly characterized Nigerian subtype G sequences and 57 reference 

sequences downloaded from the Los Alamos HIV database (www.hiv.lanl.gov/) 

representing major subtypes (n = 21) of A, B, C, D, F, H, K, and G (n = 36). Only the names 

of reference sequences were given in the tree. The number in the bracket gives the year 

spanning the reference sequences in the cluster or branch; the number in the square bracket 

indicates the number of Nigerian sequences in the cluster or branch. The numbers labeled at 

the nodes were bootstrapping values. Country code: BE (Belgium), CM (Cameroon), CN 

(China), CU (Cuba), ES (Spain), IT (Italy), GH (Ghana), KE (Kenya), NG (Nigeria), PT 

(Portugal), and SE (Sweden).
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FIG. 2. 
Further characterization of phylogenetically unresolved Nigerian sequences. The 13 

representative Nigerian unclassifiable sequences (Table 1) were further analyzed 

individually using SimPlot59 for genetic similarity (200-bp window, 20-bp step, and two-

parameter Kimura algorithm). The selection of HIV-1 reference subtypes for analysis was 

based on the genetic distance analysis (Table 2). Only three to four relevant reference 

subtypes were chosen to generate the graph to show the gene structure of query sequences 

(a). The dashed line was used to determine the relatedness of the query sequence to the 
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selected reference subtypes at the 95% similarity threshold across the gene. The segment of 

the query sequence with a length of less than 200 nucleotides and less than 95% similarity to 

the references was assigned a “U” indicating an unresolved subtyping for the sequence 

portion. The chimeric subtyping of the query sequence was given in each of the SimPlot 

diagrams (a) and populated in Table 2. To explore the recombinant events, 8 among the 13 

unclassifiable (U) sequences were again analyzed using the BootScan59 method, 

demonstrating a clear recombination event (b).
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TABLE 1

HIV-1 SUBTYPE DISTRIBUTION AMONG 271 SEQUENCES OBTAINED FROM NIGERIAN HIV-1-

INFECTED PATIENTS ELIGIBLE FOR INITIATION OF ANTIRETROVIRAL THERAPY IN 2008

Subtype/CRF No. %

C 1 0.4

G 84 31.0

CRF02-AG 52 19.2

CRF06-cpx 15 5.5

CRF25-cpx 9 3.3

CRF36-cpx 6 2.2

CRF43-02G 50 18.5

A/CRF02-AG 4 1.5

A/CRF36-cpx 31 11.4

CRF15-01B/G 1 0.4

CRF43-02G/G 1 0.4

Unclassifiable (U) 17 6.3

Pure subtypes 85 31.4

CRFs 186 68.6

CRF, circulating recombinant form.

The figures in bold are subtype or CRFs having higher prevalence.
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TABLE 2

CHARACTERIZATION OF 13 UNCLASSIFIABLE (U) NIGERIAN HIV-1 SEQUENCES

Sequence ID

Method used for subtypinga

Possible subtypePhylogenetic tree Genetic distance SimPlot

5186 CRF43-02G/G 0.0449/0.0593 CRF43-02G/G CRF43-02G/G

5287 CRF02-AG/CRF36-cpx 0.049/0.049 CRF36/A/CRF36 U/CRF36-cpx

5290 CRF02-AG/CRF36-cpx 0.0605/0.0521 CRF36/CRF06/CRF36 U/CRF36-cpx

5303 CRF02-AG/CRF36-cpx 0.0581/0.0572 A/C/CRF36 U/CRF36-cpx

5298 CRF02-AG/CRF36-cpx 0.0419/0.0431 A/CRF36-cpx A/CRF36-cpx

5261 CRF02-AG/CRF36-cpx 0.0498/0.0554 A/CRF02-cpx A/CRF36-cpx

5102 CRF02-AG/CRF45-cpx 0.0644/0.0675 A/K A/U

5305 CRF15-01B/CRF01-AE 0.0663/0.0764 A/CRF15-01B A/U

5089 CRF23-BG/CRF19-cpx 0.0669/0.0679 CRF36-cpx/B U/B

5343 CRF21-A2D/D/CRF19-cpx 0.0621/0.0525/0.0611 U/D U/D

5202 CRF37-cpx/CRF02-AG/G 0.741/0.0699/0.699 CRF15-01B/G CRF15-01B/G

5078 CRF36-cpx/CRF43-02G/G 0.0552/0.0598/0.0628 CRF43/CRF36/G U

5299 CRF36-cpx/CRF43-02G 0.0687/0.0691 CRF43/CRF36/G U

a
Details of methodology were described in Materials and Methods.
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TABLE 4

CHANGES OF CODON PATTERN AT POSITION 179 OF THE REVERSE TRANSCRIPTASE

Position 179 nucleotides IDs—amino acid Subtypes

GTT HXB2-V B

GTG/GTA G-V G

CRF02-AG-V CRF02-AG

CRF06-cpx-V CRF06-cpx

GAG 5106-E CRF43-02G

GAA 5195-E CRF43-02G

GAG 5242-E G

GAG 5226-E G

GAG 5183-E CRF06-cpx

GAG 5241-E CRF06-cpx

GAG 5250-E CRF06-cpx

GAG 5328-E CRF06-cpx

GAG 5294-E CRF06-cpx

GAG 5279-E CRF06-cpx

ATA 5100-I CRF36-cpx

ATT 5149-I A/CRF02-AG

ATT 5292-I A/CRF02-AG

ATT 5089-I CRF36-cpx/B

ATT 5223-I CRF36-cpx/B

ATT 5152-I A/CRF15-01B

ATT 5165-I A/CRF15-01B

ATT 5313-I A/CRF15-01B

ATT 5123-I A/CRF15-01B

ATT 5248-I CRF25-cpx

ATT 5318-I CRF25-cpx

AIDS Res Hum Retroviruses. Author manuscript; available in PMC 2015 December 30.


