Appendix A
TCF7L2  (transcription factor 7-like 2)

The TCF7L2 gene is located on chromosome 10 (10q25.3).  The SNP of interest is rs7903146; a substitution within intron 3 (IVS3C>T).  According to NCBI Gene, “This gene encodes a high mobility group (HMG) box-containing transcription factor that plays a key role in the Wnt signaling pathway.  The protein has been implicated in blood glucose homeostasis. Genetic variants of this gene are associated with increased risk of type 2 diabetes.  Several transcript variants encoding multiple different isoforms have been found for this gene.”

Allele/Genotype frequencies

The risk allele for rs7903146 is T, with the referent allele being C.  In Caucasians, the frequency of the T allele is 29.0% (95% CI: 28.3% to 29.7%).1[]
  Under Hardy-Weinberg, the three genotypes would be approximately CC = 50% (wild), CT = 42% (heterozygotes) and TT = 8% (at risk homozygotes).

Clinical Scenario 1 – Testing for T2D risks in the general population
Literature search

A HuGE Navigator (V2.0) search was conducted (TCF7L2 [Text + MeSH]>> Diabetes mellitus type II[MeSH]>>Diabetes mellitus>>Diabetes mellitus type II[Mesh]) to identify articles relevant to the general population.  A total of 85 articles were identified.  Six of these were meta-analyses, and all three
 ADDIN EN.CITE 
[1-3]
 met inclusion criteria.  Two
 ADDIN EN.CITE 
[1, 2]
 reported data points in six, and one distinct race/ethnic populations, respectively.  One of these articles1[]
 contained data for our target population - Caucasians.
Clinical Validity
A HuGE review by Tong and colleagues1[]
 was chosen as it contained a recent and complete meta-analysis with computed allelic ORs.  Among Caucasians (after the removal of three French studies that had ORs 50% higher than other Caucasians), the summary odds ratio for the allelic model (T vs. C) was 1.39 (95% CI 1.33 to 1.46, p < 0.001).  Heterogeneity was low (I2 = 20%).  A similar effect size were found for a separate subgroup of Northern Europeans (OR 1.38, 95% CI 1.23 to 1.47, I2=0%).   The authors concluded that there was no evidence of small study bias or publication bias for any of the subgroup comparisons.
Credibility of Evidence for the TT genotype
The application of the Venice criteria for evaluating the credibility of genetic association meta-analysis results for TCF7L2 in the general population setting1[]
:
· Size:  A (more than 1,000 cases with a TT genotype)
· Replication:  A (I2 = 20%)
· Bias:  A (small, among 14 studies that included, Northern European Caucasians, after excluding three studies from France). We did not find any evidence of publication bias of the eligible studies. Funnel plots for the comparison of heterozygotes (TC) vs. C homozygotes (CC)  gave a P = 0.426 (corrected z = 0.80).1[]

· Overall credibility:  Strong
Clinical Scenario 2 – Testing for T2D risk in high risk population

Literature search

A separate search was not conducted for clinical scenario 2.  Rather, we searched the results from the HuGE Navigator (V2.0) query for clinical scenario 1(above) to search for articles relevant to the high-risk population.  Two articles were identified
 ADDIN EN.CITE 
[4, 5]
 that met our inclusion criteria, as well as two additional articles
 ADDIN EN.CITE 
[6, 7]
 that provide supporting evidence, but that don’t meet the follow-up time for inclusion in clinical scenario 2 (their follow-up was for longer than the 3-4 years required for inclusion).  We performed a meta-analysis and computed two ORs; one for heterozygotes vs. wild and another for homozygous vs. the wild group.  If similar, these were to be combined into an allelic model.
Clinical Validity
No published meta-analyses were identified that systematically reviewed the literature relating TCF7L2 in a high-risk population with the endpoint of conversion to type 2 diabetes.  For the rs7903146 SNP, two studies (in white, Northern European populations) were included for the TT vs. CC comparison
 ADDIN EN.CITE 
[4, 5]
  Summary measures were calculated using individual studies of TCF7L2 in high-risk populations.  The overall odds ratio was 1.66 (95% CI 1.22 to 2.27, p = 0.001) for TT vs CC.  For CT vs CC, the OR was 1.12 (95% CI 0.85 to1.48), p = 0.4.  There was no evidence of heterogeneity (I2 = 0%) for the former, and moderate heterogeneity for the latter (I2 = 25%).  However, evidence for heterogeneity is limited, as only two studies were pooled.  Neither of the studies reported on more than 500 cases.
Credibility of Evidence for the TT genotype
The application of the Venice criteria for evaluating the credibility of genetic association meta-analysis results for TCF7L2:
· Size: C (fewer than 86 observations with the TT genotype)
· Replication:  - (only 2 studies available)
· Bias: - (2 studies available, not calculated)
· Overall credibility:  Poor
CDKAL1  (CDK5 regulatory subunit associated protein 1-like 1)
The CDKAL1  gene is located on chromosome 6 (6p22.3).  The SNP of interest is rs7756992.  According to NCBI Gene, “The protein encoded by this gene is a member of the methylthiotransferase family. The function of this gene is not known. Genome-wide association studies have linked single nucleotide polymorphisms in an intron of this gene with susceptibility to type 2 diabetes.”
Allele/Genotype frequencies
The risk allele for rs7756992 is G, and the referent allele is A.  In European Caucasians, the frequency of the G allele is 6.0% (derived from data in Dehwah 2010).8[]
  The risk genotype is GG.   Under Hardy-Weinberg, the three genotypes separately would be approximately 88.4% (wild), 11.2% (heterozygotes) and 0.4% (homozygous at risk).
Literature search

A HuGE Navigator (V2.0) search was conducted (CDKAL1 [Text + MeSH]>> Diabetes mellitus type II[MeSH]>>Diabetes mellitus>>Diabetes mellitus type II[Mesh]) to identify articles relevant to the general population.  A total of 59 articles were identified; two were meta-analyses.  Neither met inclusion criteria.  Salanti
 ADDIN EN.CITE 
[9]
 was excluded as it focused on modeling genetic risk of type 2 diabetes, the other focuses exclusively on Japanese individuals.
 ADDIN EN.CITE 
[10]
  An recent search update using the same criteria revealed a new meta-analysis8[]
 that was of sufficient quality.  

Clinical Scenario 1 – Testing for T2D risks in the general population
Clinical Validity
This systematic review relating CDKAL1 to type 2 diabetes included eight individual articles and examined the gene-disease association in European Caucasian populations.  Analytic methods include fixed effects modeling, formal tests for heterogeneity, and identification of possible publication bias.  For the rs7756992 SNP, eight studies were included for the allelic model analysis.  The summary odds ratio (G vs A) was 1.22 (95% CI 1.17 to 1.27, p < 0.0001), and heterogeneity was low (I2 = 8%).  

Credibility of Evidence for the G allele
The application of the Venice criteria for evaluating the credibility of genetic association meta-analysis results for CDKAL1:
· Size: B (approximately 493 cases with the G allele)

· Replication:  A (I2 = 8%)

· Bias: A (8 studies, 13 data sets).  Egger regression analysis indicated no publication bias for the SNPs rs7756992, rs7754840 and rs10946398, which indicated reliability of the pooled results.8[]
  
· Overall credibility:  Moderate
CDKN2A  (cyclin-dependent kinase inhibitor 2A)

The CDKN2A  gene is located on chromosome 9 (9p21).  The SNP of interest is rs10811661.  According to NCBI Gene, “This gene generates several transcript variants. At least three alternatively spliced variants encoding distinct proteins have been reported, two of which encode structurally related isoforms known to function as inhibitors of CDK4 kinase. The remaining transcript includes an alternate first exon located 20 Kb upstream of the remainder of the gene; this transcript contains an alternate open reading frame (ARF) that specifies a protein which is structurally unrelated to the products of the other variants.”  No mention was made of its association with Type 2 diabetes.
Allele/Genotype frequencies
The risk allele is T and the wild allele is C.  In this instance, the risk allele is the most common allele.  It is used because C is actually associated with a reduction in risks.  This conversion allows all ORs to be 1.00 or greater.  In European Caucasians, the frequency of the T allele is 83%.
 ADDIN EN.CITE 
[11]
  For the SNP rs10811661, the risk genotype is TT.   Under Hardy-Weinberg, the three genotypes separately would be approximately 69% (TT, at risk homozygotes), 28% (CT heterozygotes) and 3% (CC considered wild).
Literature search

A HuGE Navigator (V2.0) search was conducted (CDKN2A [Text + MeSH]>> Diabetes mellitus type II[MeSH]>>Diabetes mellitus>>Diabetes mellitus type II[Mesh]) to identify articles relevant to the general population.  A total of 51 articles were identified; none were meta-analyses.  Six articles 
 ADDIN EN.CITE 
[11-16]
 met inclusion criteria.  Three of these 
 ADDIN EN.CITE 
[11-13]
  reported results in four, three and two separate and distinct populations, respectively.  
Clinical Scenario 1 – Testing for T2D risks in the general population
Clinical Validity
No systematic reviews relating CDKN2A  to type 2 diabetes were found in the published literature.  We performed a meta-analysis to compute an allelic OR.  Analytic methods include random effects modeling, formal tests for heterogeneity and potential for publication bias.  For the rs10811661 SNP, six studies containing 12 datasets in Caucasian populations in Europe and the U.S. were included.  The summary odds ratio for the allelic model (T vs C) was 1.22 (95% CI 1.16 to 1.27, p < 0.001) and heterogeneity was low (I2 = 3%).  

Credibility of Evidence for the CC genotype
The application of the Venice criteria for evaluating the credibility of genetic association meta-analysis results for CDKN2A:
· Size: A (Approximately 5,920 cases with the CC genotype)
· Replication:  A (I2 = 3%)

· Bias: A  Using six studies and 12 datasets, the Eggers regression was not significant (p=0.38)  Using ‘trim and fill’, there were two imputed values, but these had little impact on overall estimate (original OR 1.22, revised OR = 1.23). 

· Overall credibility:  Strong
PPARG (peroxisome proliferator-activated receptor gamma)

The PPARG  gene is located on chromosome 3 (3p25).  The SNP of interest is rs1801282.  According to NCBI Gene, “This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Additionally, PPAR-gamma has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis and cancer. Alternatively spliced transcript variants that encode different isoforms have been described.”
Allele/Genotype frequencies
The risk allele is G, and the referent allele is C.  In European Caucasians, the frequency of the G allele is 12.0%.
 ADDIN EN.CITE 
[17]
  The risk genotype is GG.  Under Hardy-Weinberg, the three genotypes would be approximately 42% (wild), 46% (heterozygotes) and 12% (at risk homozygotes).
Literature search

A HuGE Navigator (V2.0) search was conducted (PPARG [Text + MeSH]>> Diabetes mellitus type II[MeSH]>>Diabetes mellitus>>Diabetes mellitus type II[Mesh]) to identify articles relevant to the general population.  A total of 114 articles were identified; three were meta-analyses.  Two of these
 ADDIN EN.CITE 
[17, 18]
 met inclusion criteria and reported on six and three distinct population, respectively.  Both of these articles
 ADDIN EN.CITE 
[17, 18]
 contained information relevant to  Caucasians from the US, UK and other European countries.
Clinical Scenario 1 – Testing for T2D risks in the general population
Clinical Validity
A HuGE review
 ADDIN EN.CITE 
[17]
 containing meta-analysis with computed allelic ORs.  For the rs1801282 SNP, the summary odds ratio for the allelic model (G vs C) was 0.86 (95% CI 0.81 to 0.90), p < 0.001 and had moderate heterogeneity (I2 = 37%; 95% CI 0 to 57; p = 0.019).  
Credibility of Evidence for the CC genotype
The application of the Venice criteria for evaluating the credibility of genetic association meta-analysis
 ADDIN EN.CITE 
[17]
 results for PPARG:
· Size: A (over 1000 cases)
· Replication:  B (I2 = 37%)

· Bias: A (no evidence of publication bias, authors examined study design, selection of controls and BMI and found no significant effects)
· Overall credibility:  Moderate
HHEX  (hematopoietically expressed homeobox)

The HHEX gene is located on chromosome 10 (10q23.33). The SNP of interest is rs1111875.  According to NCBI Gene, “This gene encodes a member of the homeobox family of transcription factors, many of which are involved in developmental processes. Expression in specific hematopoietic lineages suggests that this protein may play a role in hematopoietic differentiation.”
Allele/Genotype frequencies
The risk allele is G, and the referent allele is A. In European Caucasians, the frequency of the A allele (for Europeans/Caucasians, 53%)
 ADDIN EN.CITE 
[11, 13, 19-22]
.  For the SNP rs1111875, the risk genotype is GG.   Under Hardy-Weinberg, the three genotypes separately would be approximately 8% (AA), 39% (AG) and 53% (GG).
Literature search

A HuGE Navigator (V2.0) search was conducted (HHEX [Text + MeSH]D]iabetes mellitus type II[MeSH]>>Diabetes mellitus>>Diabetes mellitus type II [Mesh]) to identify articles relevant to the general population.  57 articles were identified; 6 were meta-analyses, however none of these met inclusion criteria (e.g. not the target population).  9 articles were identified in the 57 articles were identified to contain data points of the target population and were used in our meta-analysis.
 ADDIN EN.CITE 
[7, 12-15, 23-26]
.
Clinical Scenario 1 – Testing for T2D risks in the general population
Clinical Validity
No systematic reviews relating HHEX to type 2 diabetes were found in the published literature.  A simple meta-analysis was performed and an allelic OR was computed; in addition to an OR for heterozygotes vs wild and another for homozygous vs. the wild group.  Analytic methods include random effects modeling, formal tests for heterogeneity, and identification of possible publication bias.
· For the rs1111875 SNP, 9 studies (12 data points in distinct populations in Europe and the U.S.) were included for the allelic model. The summary odds ratio for the allelic model (G vs A) was 1.02 (95% CI 0.95 to 1.09), p < 0.001 and heterogeneity was low (I2 = 82%).   
· Q=62
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Model Study name Statistics for each study A allele / Total Odds ratio and 95% CI
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Credibility of Evidence for the A Allele
The application of the Venice criteria for evaluating the credibility of genetic association 

meta-analysis results for KCNJ11:
· Size: A (Approximately 3025 cases)

· Replication:  C (I2 = 82)

· Bias: - (no evidence of publication bias: Egger’s regression = 0.314, Duval’s and Tweedies point estimates agree with reported OR).
· Overall credibility:  weak
Q=62, p<0.001, I2=82%

SLC30A8  (solute carrier family 30 (zinc transporter), member 8)
The SLC30A8  gene is located on chromosome 8 (8q24.11). The SNP of interest is rs13266634.  According to NCBI Gene, “The protein encoded by this gene is a zinc efflux transporter involved in the accumulation of zinc in intracellular vesicles. This gene is expressed at a high level only in the pancreas, particularly in islets of Langerhans. The encoded protein colocalizes with insulin in the secretory pathway granules of the insulin-secreting INS-1 cells. Allelic variants of this gene exist that confer susceptibility to diabetes mellitus, noninsulin-dependent (NIDDM). Several transcript variants encoding different isoforms have been found for this gene.”
Allele/Genotype frequencies
The risk allele is T, and the referent allele is C.  In European Caucasians, the frequency of the T allele is 14.0%).
 ADDIN EN.CITE 
[3]
  For the SNP rs13266634, the risk genotype is TT.   Under Hardy-Weinberg, the three genotypes separately would be approximately 63% (CC), 46% (TC) and 12% (TT).
Clinical Scenario 1 – general population

Literature search

A HuGE Navigator (V2.0) search was conducted (SLC30A8 [Text + MeSH]>> Diabetes mellitus type II[MeSH]>>Diabetes mellitus>>Diabetes mellitus type II[Mesh]) to identify articles relevant to the general population.  6 articles were identified; 1 was a meta-analysis.  One of these articles
 ADDIN EN.CITE 
[3]
 met inclusion criteria.  This article
 ADDIN EN.CITE 
[3]
 reported data points in 7 distinct populations, which included our target population, Caucasians (i.e. UK, US, European).
Clinical Validity
Cauchi et. al.
 ADDIN EN.CITE 
[3]
 is a HuGE review containing meta-analysis with computed allelic ORs; however, the I2 was not reported for the Caucasian population.  Nine studies from the Cauchi et. al.
 ADDIN EN.CITE 
[3]
 HuGE review were used to calculate the I2 from the Caucasian population. 
For the rs13266634 SNP, the summary odds ratio for the allelic model (C vs T) was 1.14 (95% CI 1.09 to 1.19), p < 0.001 and had moderate heterogeneity (I2 = 65.6% P = 0.019).  
Credibility of Evidence for the T allele
The application of the Venice criteria for evaluating the credibility of genetic association meta-analysis results for SLC30A8:
· Size: A (over 1,000 cases with the T allele)
· Replication: C (I2 = 66%)

· Bias: - (9 studies, not calculated)
· Overall credibility:  Weak
KCNJ11  (potassium inwardly-rectifying channel, subfamily J, member 11)
The KCNJ11 gene is located on chromosome 11 (11p15.1). The SNP of interest is rs5219.  According to NCBI Gene, “The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and is found associated with the sulfonylurea receptor SUR. Mutations in this gene are a cause of familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion. Defects in this gene may also contribute to autosomal dominant non-insulin-dependent diabetes mellitus type II (NIDDM), transient neonatal diabetes mellitus type 3 (TNDM3), and permanent neonatal diabetes mellitus (PNDM). Multiple alternatively spliced transcript variants that encode different protein isoforms have been described for this gene.”
Allele/Genotype frequencies
The risk allele is A, and the referent allele is G. In European Caucasians, the frequency of the A allele (for Europeans/Caucasians, 46.2%) [from pooling controls from our in-house meta-analysis].  For the SNP rs5219, the risk genotype is AA.   Under Hardy-Weinberg, the three genotypes separately would be approximately 28% (GG), 50% (AG) and 22% (AA).
Clinical Scenario 1 – general population

Literature search

A HuGE Navigator (V2.0) search was conducted (KCNJ11 [Text + MeSH]>> KCNJ11[Text+MeSH]>>Diabetes mellitus type II [Mesh]) to identify articles relevant to the general population.  82 articles were identified; 10 were meta-analyses, however none of these met inclusion criteria.  Fourteen of the remaining articles


 ADDIN EN.CITE.DATA 
 ADDIN EN.CITE 
[7, 14, 23, 25, 27-36]
 were used in our meta-analysis.
Clinical Validity
No systematic reviews relating KCNJ11 to type 2 diabetes were found in the published literature.  A simple meta-anlaysis was performed and an allelic OR was computed; in addition to an OR for heterozygotes vs wild and another for homozygous vs. the wild group.  Analytic methods include random effects modeling, formal tests for heterogeneity, and identification of possible publication bias.
· For the rs5219 SNP, 14 studies (in distinct populations in Europe and the U.S.) were included for the allelic model. The summary odds ratio for the allelic model (A vs G) was 1.09 (95% CI 1.01 to 1.18), p < 0.05 and heterogeneity was high (I2 = 81%).  
Credibility of Evidence for the A allele
The application of the Venice criteria for evaluating the credibility of genetic association meta-analysis results for KCNJ11:
· Size: A (12,061 cases for the least common genotype AA)

· Replication:  C (I2 = 81%)

· Bias: - 
· Overall credibility:  Weak
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Model Study name Statistics for each study G allele / Total Odds ratio and 95% CI
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Q=67, p<0.001, I2=81%

WFS1  (Wolfram syndrome 1 (wolframin))
The WFS1  gene is located on chromosome 4 (4p16). The SNPs of interest are rs10010131 and rs752854.  According to NCBI Gene, “This gene encodes a transmembrane protein, which is located primarily in the endoplasmic reticulum and ubiquitously expressed with highest levels in brain, pancreas, heart, and insulinoma beta-cell lines. Mutations in this gene are associated with Wolfram syndrome, also called DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness), an autosomal recessive disorder. The disease affects the brain and central nervous system. Mutations in this gene can also cause autosomal dominant deafness 6 (DFNA6), also known as DFNA14 or DFNA38. Alternatively spliced transcript variants have been found for this gene.”
Allele/Genotype frequencies
The risk allele is A, and the referent allele is G for both SNPs.  In European Caucasians, the frequency of the A allele in rs10010131 (for Europeans/Caucasians, 41.0%) and of the A allele in rs752854 (for European/Caucasians, 35%).
 ADDIN EN.CITE 
[37]
  For the SNP rs10010131 and rs752854, the risk genotype is TT for both.   Under Hardy-Weinberg, the three genotypes separately would be approximately 41% (GG), 46% (GA) and 12% (AA) for rs10010131 and three genotypes separately would be approximately 35% (GG), 48% (GA) and 17% (AA) for rs752854.

Clinical Scenario 1 – general population

Literature search

A HuGE Navigator (V2.0) search was conducted (WFS1 [Text + MeSH]>> Diabetes mellitus type II[MeSH]>>Diabetes mellitus>>Diabetes mellitus type II[Mesh]) to identify articles relevant to the general population.  34 articles were identified; 4 were meta-analyses.  One of these articles
 ADDIN EN.CITE 
[37]
 met inclusion criteria.  This article
 ADDIN EN.CITE 
[37]
 reported data points in a Swedish population and a meta-analyses in 11 other distinct studies, which included our target population, Caucasians (i.e., UK, US, European).
Clinical Validity
Franks et. al.
 ADDIN EN.CITE 
[37]
 is a replication study and meta-analysis review.  However, the data were for Swedish population only.  Therefore, we identified 8 studies from the 34 articles identified above
 ADDIN EN.CITE 
[14, 19, 21, 37-41]
 with the target population and conducted a meta-analysis with computed allelic ORs and I2 for the Caucasian population. 
For the combined rs1001013/rs752854 SNP, the summary odds ratio for the allelic model (G vs A) was 0.99 (95% CI 0.98 to 1.02), p < 0.001 and had high heterogeneity (I2 = 82%; P = 0.019).  
Credibility of Evidence for the CC genotype
The application of the Venice criteria for evaluating the credibility of genetic association meta-analysis results for WFS1:
· Size: A (14120 case in the least common genotype of AA, in 3 of the 8 studies
 ADDIN EN.CITE 
[14, 40, 41]
 
· Replication: C (I2 = 82%)

· Bias: - (9 studies, not calculated)
· Overall credibility:  Weak
APPENDIX TABLE 1. Supplementary data for additional type 2 diabetes genetic markers

	Genes included on test panels for type 2 diabetes
	DeCODE T2
	DeCODE Me
	23and me
	Navigenics
	Baylor Panel
	Other source
	Risk Allele (%)
	Odds ratio

(95% CI) 5
	Source

	
	
	
	
	
	
	
	
	
	

	IGF2BP2
	
	(
	(
	(
	
	
	T (30)
	1.18 (1.08 – 1.28)
	Scott et al. 2007
 ADDIN EN.CITE 
[13]


	SYN2
	
	
	
	
	
	(
	G (93)
	1.15 (1.10 – 1.21)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	THADA
	
	(
	
	
	
	
	T (90)
	1.15 (1.10 – 1.20)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	NOTCH2
	
	(
	
	(
	
	
	T (11)
	1.13 (1.08 – 1.17)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	FLJ39370
	
	
	
	
	
	(
	A (23)
	1.13 (1.06 – 1.19)
	Saxena et al. 2007
 ADDIN EN.CITE 
[11]


	CDC123
	
	
	
	
	
	(
	G (18)
	1.11 (1.07 – 1.14)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	PKN2
	
	
	
	
	
	(
	T (29)
	1.11 (1.05 – 1.16)
	Saxena et al. 2007
 ADDIN EN.CITE 
[11]


	FT0
	
	
	
	(
	
	
	A (38)
	1.11 (1.02 – 1.20)
	Scott et al. 2007
 ADDIN EN.CITE 
[13]


	JAZF1
	
	(
	
	(
	
	
	T (50)
	1.10 (1.07 – 1.13)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	ADAM30
	
	
	
	
	
	(
	G (11)
	1.10 (1.06 – 1.15)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	TCF2 (HNF1B)
	
	(
	
	(
	
	
	C (41)
	1.10 (1.04 – 1.18)
	Gudmundsson et al. 2010
 ADDIN EN.CITE 
[42]


	TSPAN8
	
	
	
	(
	
	
	C (27)
	1.09 (1.06 – 1.12)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	MTNR18
	
	(
	
	
	
	
	G (30)
	1.09 (1.06 – 1.12)
	Dupuis et al. 201043


[ ADDIN EN.CITE ]


	ADAMTS9
	
	
	
	(
	
	
	C (76)
	1.09 (1.06 – 1.12)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	DCD
	
	
	
	
	
	(
	A (73)
	1.08 (1.06 – 1.11)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	KCNQ1
	
	(
	
	(
	
	
	C (52)
	1.08 (1.06 – 1.10)
	Voight et al. 2010
 ADDIN EN.CITE 
[44]


	GCK
	
	(
	
	
	
	
	A (16)
	1.07 (1.05 – 1.10)
	Dupuis et al. 201043


[ ADDIN EN.CITE ]


	PROX1
	
	(
	
	
	
	
	C (52)
	1.07 (1.05 – 1.09)
	Dupuis et al. 201043


[ ADDIN EN.CITE ]


	VEGFA
	
	
	
	
	
	(
	T (28)
	1.06 (1.04 – 1.09)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	GCKR
	
	(
	
	
	
	
	 C (62)
	1.06 (1.04 – 1.08)
	Dupuis et al. 201043


[ ADDIN EN.CITE ]


	DGKB (7p21.1)
	
	(
	
	
	
	
	T (52)
	1.06 (1.04 – 1.08)
	Dupuis et al. 201043


[ ADDIN EN.CITE ]


	BCL11A
	
	
	
	
	
	(
	T (72)
	1.05 (1.03 – 1.08)
	Zeggini et al. 200822


[ ADDIN EN.CITE ]


	HNF1B
	
	
	
	
	
	(
	G (50)
	1.04 (0.88 – 1.22)
	Waters et al. 201020


[ ADDIN EN.CITE ]


	TSPAN9
	
	(
	
	
	
	
	
	Not found
	Not found

	loc441171
	
	
	
	(
	
	
	
	Not found
	Not found

	LGR6
	
	(
	
	
	
	
	
	Not found
	Not found

	Chr11.41871942
	
	
	
	(
	
	
	
	Not found
	Not found

	12q13
	
	
	
	
	(
	
	
	Not found
	Not found


METHODS

The common name for each gene included in a commercially available type 2 diabetes tests was searched using the genopedia option in the HUGE Navigator45[]
 for diabetes, type 2 to identify meta-analysis of published GWAS findings.  If a meta-analysis of GWAS results was not available, the original GWAS reporting the association for that gene with type 2 diabetes among in Caucasian population was used.  Additional genes not included in commercially available test were included when results from GWAS meta-analysis or original GWAS were available.  A table listing all of the identified genes was populated with the risk allele, allele frequency, measure of association (odds ratio), and estimates of  variance (95% confidence intervals) according to results reported in either the GWAS meta-analysis or original GWAS.
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