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Abstract

The efficient design of experiments (i.e., selection of experimental doses and allocation of 

animals) is important to establishing dose–response relationships in toxicology studies. The 

proposed procedure for design of experiments is distinct from those in the literature because it is 

able to adequately accommodate the special features of the dose–response data, which include 

non-normality, variance heterogeneity, possibly nonlinearity of the dose–response curve, and data 

scarcity. The design procedure is built in a sequential two-stage paradigm that allows for a 

learning process. In the first stage, preliminary experiments are performed to gain information 

regarding the underlying dose–response curve and variance structure. In the second stage, the prior 

information obtained from the previous stage is utilized to guide the second-stage experiments. An 

optimization algorithm is developed to search for the design of experiments that will lead to dose–

response models of the highest quality. To evaluate model quality (or uncertainty), which is the 

basis of design optimization, a bootstrapping method is employed; unlike standard statistical 

methods, bootstrapping is not subject to restrictive assumptions such as normality or large sample 

sizes. The design procedure in this paper will help to reduce the experimental cost/time in 

toxicology studies and alleviate the sustainability concerns regarding the tremendous new 

materials and chemicals.
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INTRODUCTION

This work is primarily motivated by the rising need to assess the risks resulting from human 

exposure to various nanomaterials. With the rapid development of nanotechnology, 

nanomaterials find increasing applications in the energy,1,2 environment,3–5 and biomedical 

engineering sectors.6,7 Workers may be directly exposed to nanomaterials during 

manufacturing, handling, and transport of nanomaterials, and end-users may uptake 

nanomaterials due to the release of nanomaterials from consumer products. Therefore, risk 

assessment of a large variety of nanomaterials plays a critical part to ensure the safe and 

sustainable development of nanotechnology.

One of the most fundamental steps in assessing the risk of a nanomaterial (or any other 

substance) is to understand and properly characterize its dose–response relationship.8,9 To 

estimate such relationships, biological experiments need to be performed at different dose 

levels to observe the corresponding bioactivity responses of animals. Because of costs, 

ethics, or other limitations on resources or time, sample sizes are usually restricted and 

efficient use of available resources is critical. Thus, the design of experiments (DOE), i.e., 

the selection of experimental doses and the allocation of animals, plays an important role in 

the success of dose–response modeling.

The DOE for efficient dose–response modeling is challenging due to the following two 

major reasons. First, the dose–response curves may well be nonlinear,10–12 and thus, the 

optimum design of experiments depends on the true underlying curves to be estimated, 

which is unfortunately unknown.13,14 Second, with constrained resources, typically the 

amount of data allowed to be collected are not only relatively scarce and highly variable but 

almost certainly possess different variability across the dose range being investigated.15 

These special features of dose–response data are not adequately addressed in the existing 

DOE methods.

In the current practice of DOE for toxicology studies, designs are mainly selected by 

experimenters based on empirical experiences in a somewhat arbitrary manner.16,17 Such 
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designs, which will be referred to as the traditional design, usually involve equally spaced 

doses on a linear or log scale and equal allocation of animals and may well lead to 

inefficient use of resources. Some researchers8,18–21 recognized the nonlinearity of dose–

response relationships and resorted to standard optimum design techniques13 to approach the 

DOE issues. These works relied on the assumption of constant variance throughout the dose 

range, which typically does not hold in reality. There is also some literature by statisticians 

that investigated the optimum design for statistical modeling in general while taking into 

account the existence of variance heterogeneity. In this stream of work,22–32 the authors 

usually had a particular interest in pursuing analytical solutions under various simplistic 

assumptions. For instance, DasGupta et al.23 derived the optimal designs under normal prior 

conditions for the simple linear model when the error variance is a power function or an 

exponential function of the mean. These results, though theoretically appealing, are often 

impractical for toxicology studies where the required assumptions no longer hold.

The objective of this work is to develop a DOE procedure, which is statistically valid and 

practically useful, to guide the dose selection and animal allocation in biological 

experiments for the efficient generation of dose–response relationships. Through the 

following three major efforts, we intend to provide a new DOE method that adequately 

accommodates the nonlinear nature of dose–response curves and variance heterogeneity of 

toxicity data. (i) The proposed procedure is built in a two-stage paradigm. In the first stage, a 

batch of preliminary experiments are performed to gain information regarding the 

underlying dose–response curve and variance structure. In the second stage, the prior 

information obtained from the previous stage is utilized to guide the second batch of 

experiments. Compared to the traditional once-and-for-all designs, such a sequential design 

is known to lead to improved model estimation when a total sample size is given or to bring 

savings in samples if a certain model quality is desired. (ii) For the design of the second 

batch of experiments, a new algorithm (Algorithm 3) is developed to effectively search for 

the optimum design that will lead to dose–response models of the highest quality. (iii) To 

evaluate the model quality, which is the basis of design optimization in (ii), bootstrapping, 

as opposed to standard statistical methods, is employed. Bootstrapping is a computationally 

intensive resampling method and is not subject to restrictive assumptions such as normality 

or large sample sizes.

The remainder of this paper is organized as follows. The Statistical Modeling and Inference 

section details the modeling/inference issues involved in the estimation of dose–response 

curves and provides the building blocks of the two-stage DOE procedure. The procedure, 

which aims at achieving an efficient experimental design, is described in the Two-Stage 

Procedure section. In the Empirical Evaluation section, a simulation study is performed to 

evaluate the efficiency of the proposed DOE procedure by comparing it with the traditional 

design currently used in toxicology studies. The Summary section summarizes the findings 

of this paper and discusses future work.
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STATISTICAL MODELING AND INFERENCE

In this section, we present the statistical modeling and inference methods for estimating the 

dose–response relationship based on a given set of experimental data. These methods 

provide the necessary basis for the DOE procedure in the Two-Stage Procedure section.

Heteroscedastic Dose–Response Model

Let Y be the continuous random response of a biological experiment. We represent the dose–

response curve by a general model

where x denotes the dose level and θ the p × 1 vector of unknown parameters. The random 

variable Y is related to its mean by the relationship

where ε is the error term. The feasible region of the dose level x is typically specified by

(1)

The lower and upper bounds, xL (xL ≥ 0) and xU (xU > xL), are specified by the 

experimenters based on the substance of interest.

The mean response model f(x, θ) can take any functional forms that are differentiable and 

monotonic. Example models include linear, polynomial, power (EPA Benchmark Dose 

Software33), and the four-parameter logistic model widely used in the literature.34,35 In the 

empirical study of this paper, the following functional form is used for illustration

(2)

The error ε is assumed independent across individual observations, and to be expressed as

(3)

where σ is a scale parameter; e is a random error following the standard normal distribution; 

h describes how the standard deviation of ε depends on the mean response f(x, θ); and γ 

denotes the vector of unknown parameters involved in model h.

The formulation of the error (3) is able to model a wide range of error heterogeneity 

commonly encountered and has been extensively employed in the literature.35–38 In this 

work, a specific functional form as given below is assumed for the variance model 

h(f(x,θ),γ) of the empirical example in the Empirical Evaluation section

(4)
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where γ is the unknown parameter. The form (eq 4) has been popularly used in toxicology 

and pharmacology studies.34–36,38,39

Estimation of Dose–Response Model and Benchmark Dose (BMD)

Given a data set {(xi,yi),i = 1,...,I} with a sample size of I, how do we estimate the dose–

response models in the presence of variance heterogeneity? Preliminary data analysis as that 

suggested by Carroll and Ruppert36 need to first be performed to select specific functional 

forms for f(x,θ) and h(f(x,θ),γ), which may turn out to be eqs 2 and 4, respectively, for 

examples. Then, the iteratively reweighted least-squares (IRLS) framework36 is adopted to 

fit the models. The IRLS algorithm (Algorithm 1) is described using the notations of our 

dose–response modeling.

With the estimated dose–response model , the expected toxicity response can be 

obtained as  at any exposure level x0 ∈ [xL,xU]. The model also allows for the 

estimation of exposures at responses of different severities; such an exposure level is 

referred to as benchmark dose (BMD) and is of particular interest in toxicology because it 

assists in setting the safety standard for the substance being investigated.

The BMD is the dose that corresponds to a specified level of adverse response called the 

benchmark response (BMR). The BMR can be defined as a relative change in the mean 

response from the control mean or as an absolute level.33,40 Either definition can be selected 

based on the knowledge available regarding the substance's adverse effects, and in 

modeling, the BMR defined in one way can be easily converted to that defined in the other 

way. For illustration in this work, we let the BMR be a preselected absolute response. Given 

the fitted dose–response model , the BMD can be estimated as

(5)

where f−1 represents the inverse function of f.

Quantifying Estimation Uncertainty

In this part, we discuss the uncertainty quantification (or statistical inference issues) for the 

dose–response modeling. The following two types of uncertainties/variabilities are of 

primary interest.

•
 the variance of the estimated parameters  in the fitted dose–response 

model .

Clearly,  determines the quality of the estimated dose–response model . With 

the increasing of experimental data (sample size),  will decrease and is directly 

associated with the D-optimum design criterion in the DOE literature.13
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•
, the variance of the estimated BMD.

As shown in eq 5,  is a function of the pre-specified BMR, which is deterministic, and 

the estimated parameter , which is subject to uncertainties. Hence,  is affected 

by both the BMR value and . For certain BMR,  directly relates to the 

safety standard of a substance. With , a confidence interval (CI) can be formed 

for the BMD, and it has a clear and practically meaningful interpretation. In toxicology 

studies, the lower bound of the CI is referred to as BMDL and represents the lower 

confidence limit on the dose that would result in the required response BMR33

In light of the discussions above,  measures the overall quality of the dose–response 

model, whereas  not only depends on the model quality but is also associated 

with a particular BMR. Depending on the purpose of a study, either of these two variabilities 

can serve as the criterion to drive the optimal design of experiments. Either criterion can 

well fit into our two-stage DOE procedure.

As will be seen later in Algorithm 3 (Two-Stage Procedure section), the prerequisite of 

using  or  as a design criterion is the ability to evaluate these 

variabilities for a candidate design. This ability can be derived from the evaluation of 

 or  for a given sample data set, which will be discussed in the 

remainder of this subsection.

Bootstrap Resampling Algorithm—As mentioned in the Introduction section, standard 

statistical inference methods are not able to provide valid variability estimates for dose–

response modeling. Hence, we use a bootstrapping resampling method to evaluate 

and . The bootstrap is a data-based simulation method for statistical 

inference.41 The basic idea of bootstrap is to use resampling (sampling from the sample, 

obtaining what is called bootstrap samples) to quantify the variability of the estimates of 

interest.42

Under the assumptions given in the Heteroscedastic Dose–Response Model subsection, the 

resampling scheme proposed by Zeng and Davidian35 is adapted to quantify the 

uncertainties of the model estimation performed on the given data set {(xi,yi);i = 1,2,...,I}, 

and the resampling algorithm is described in Algorithm 2.

Zeng and Davidian35 recommended setting the resample size to B = 499 based on their 

empirical experience. Note that M, the assumed number of design points in Input (a) of the 

algorithm, is allowed to be different from I, the number of real samples {(xi,yi);i = 1,2,...,I} 

involved in Input (b). If the purpose of executing Algorithm 2 is solely to quantify the model 

uncertainties given a real data set {(xi,yi);i = 1,2,...,I}, then we set M = I. However, in this 

work, Algorithm 2 is meant to be called by Algorithm 3 (the DOE algorithm in the Two-
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Stage Procedure section) to evaluate additional candidate design points, and hence, we 

distinct between M and I with M ≥ I.

Quantifying the Uncertainty of Estimated Model Parameters—Given

 obtained from Algorithm 2, the variance-covariance matrix 

can be estimated as follows36

(6)

where  are the estimates obtained from the original data {(xi,yi);i = 1,2,...,I}.

Quantifying the Uncertainty of Estimated BMD—Recall the expression of BMD (eq 

5). With the B fitted models  from Algorithm 2, B BMD estimates 

can be obtained as follows

(7)

for a pre-specified BMR. On the basis of ,  is 

estimated as

(8)

where  is obtained from , and the dose–response model is estimated from the 

original sample data {(xi,yi);i = 1,2,...,I}.

The variance estimate  can be used to form the one-sided confidence interval 

(CI) for the BMD33 at a selected confidence level α. The BMDL (lower bound of the one-

sided CI) is given as35

(9)

where tα,M–p stands for the 100αth quantile of the student t distribution with M–p degrees of 

freedom, in which p stands for the number of fitted parameters in the dose–response model.

TWO-STAGE PROCEDURE

The major contribution of this work lies in the development of a new two-stage DOE 

procedure for dose–response modeling. Compared to standard once-and-for-all designs, 

sequential (multi-stage) designs typically lead to (i) savings in sample size if model 

estimates of desired quality (measured by the uncertainty/variabilty of model estimates) are 

to be achieved or (ii) model estimates of improved quality given a fixed total sample 
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size.11,43 Because biological studies are typically performed with restricted sample sizes, the 

two-stage design procedure in this work is tailored to achieve models of the highest quality 

with a pre-specified total sample size. It is worth pointing out that the two-stage procedure 

can be easily adapted to a design procedure that is driven by a desired model quality and not 

constrained by a pre-specified total sample size; such a procedure may involve multiple 

(more than two) stages of experiments.

For the two-stage DOE procedure, the inputs are given as

Input 1: N, the total sample size available.

Input 2: [xL,xU], the range of interest for the dose level, as defined in the 

Heteroscedastic Dose-Response Model section.

Input 3: NI, the batch size of the experiments (i.e., the number of samples) performed at 

Stage I, which implies that the sample size is N–NI at Stage II.

Input 4 (optional): BMR, the pre-specified benchmark response level, which is not 

necessary unless the design criterion is .

The outputs of the procedure include the design of experiments for the N samples; the dose–

response model  and the variance model  both of which are 

estimated from the N-sample data set and allow for the BMD estimation; and the 

uncertainties of the estimates of interest including  and  if a pre-

specified BMR is given.

Figure 1 provides an overview of the design procedure. In Stage I, pilot experiments with a 

sample size of NI are carried following the initial design, and initial statistical modeling/

inference are performed. The design augmentation in Stage II is performed utilizing the 

information derived from the experimental data collected in Stage I, and N–NI additional 

experiments are carried out following the augmented design. On the basis of the collected 

data from both stages, the dose–response and variance models are estimated, and related 

uncertainties quantified.

Clearly, the key tasks yet to be addressed in Figure 1 are the initial design in Stage I and the 

design augmentation is Stage II. Both tasks aim at answering the DOE questions in their 

designated stages, such as at what design points (i.e., dose levels) within the design space 

[xL,xU] should the experiments be carried out and how many replications should be assigned 

to each design point?

Two alternative notations are used in this paper to represent a design. One is given as

(10)
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with xd being the dth design point, nd the number of replications at xd and D the number of 

distinct design points. Clearly, the total sample size given by  is . Alternatively, a 

design (10) can be expressed as

(11)

with  being the number of samples. Note that the array  may well include the 

same design points multiple times, which correspond to multiple replications. In the 

remainder of this paper, both eqs 10 and 11 will be used to refer to a design.

Stage I: Initial Design

At Stage I, NI preliminary samples are to be performed. Given N, the total number of 

samples available, we recommend setting NI as 1/4–1/2 of N. Guidelines for specifying NI 

can also be found in Santner et al.11 Having selected a value for NI, how do we allocate 

these NI samples? Following the notation in eq 10, the initial design is represented as

(12)

where D0 is the number of distinct dose levels.

In this work, assuming that no prior information other than the dose range [xL,xU] is 

available at the initial stage, we specify the initial design as follows. First, the design points 

 are evenly spaced on the original or log scale, as in the traditional 

designs, and we set  and , including lower and upper bounds of the dose 

range in the design to avoid potential extrapolation, which is considered dangerous in 

statistical estimation.44 Second, D0, the number of distinct design points, has to be at least 

four, which is the typical number needed to capture the trend of a dose–response curve. 

Third, we have  for any d to allow for the detection of variance heterogeneity and 

for the estimation of the variance model (eq 3). In the absence of any other concerns, we can 

simply set . For instance, in light of the considerations above, the initial 

design for the example in the Empirical Evaluation section is specified as

(13)

given that NI = 20 and [xL,xU] = [0,30].

Note that the initial design is set up to enable a fair estimation of the dose–response and 

variance models. Following the initial design, a total of NI samples are collected at Stage I 

of the procedure (Figure 1) and are denoted as {(xi,yi); i = 1,2,...,NI}. From these NI samples, 

the preliminary models are obtained by applying Algorithm 1: the fitted dose–response 
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model  and the variance model , both of which are used to 

guide the DOE in Stage II.

Stage II: Design Augmentation

The task of the Stage II design augmentation is to find out how to allocate the rest N–NI 

samples in the design space [xL,xU], that is, to determine the values of N–NI design points, 

which are denoted as {xNI+1,xNI+2,...,xN} following the notation (11).

In this work, the dosage range [xL,xU] is divided into a relatively large number of equally 

spaced grid points, and only these grid points are considered as the candidate design points 

for the design optimization (14) for the following reason. The equally spaced grid points can 

be chosen in such a way that any two neighboring points are practically different. By 

restricting the design points to these grid points, the design optimization 14 can avoid 

providing design points that are numerically but not practically different.

As in eq 14, the N–NI design points are selected to minimize the design criterion subject to 

two constraints. First, NI samples have already been collected. Second, these N–NI points 

have to be selected from the predetermined grid points within [xL,xU]. As mentioned earlier, 

depending on the practical need, the design criterion could be , the determinant of 

the variance-covariance matrix of , or , the variance of  for a given 

BMR.

min
xNI+1,xNI+2,…,xN

Design criterion, which could be ∣ Var θ
^
∣ or Var BMD̂ (14)

Subject to NI samples {(xi,yi); i = 1,2,..., NI} have already been collected;

and {xNI+1,xNI+2,...,xN} can only be selected from the candidate design 
points,
i.e., the pre-determined evenly-spaced grid points within [xL,xU].

Solving this optimization problem to obtain the best design is challenging. (i) The design 

criterion in the objective function (eq 14) represents the variability of the model estimates (

or ) obtained from all the experimental data including those collected at first and 

second stages. However, at the current point of solving eq 14 and designing for second-stage 

experiments, only first-stage data are available, and there is no closed-form formulation for 

the objective function. To overcome this difficulty, in Algorithm 3, which aims at solving eq 

14, a bootstrapping-based method is developed to numerically evaluate the design criterion 

and to provide the basis to solve the design optimization. (ii) Determining 

{xNI+1,xNI+2,...,xN} simultaneously is difficult due to the high dimension (which is N–NI) of 

the decision variables and the large size of the decision space. In light of this, we use a 

heuristics that adds one design point at a time until all the N–NI points have been found. The 

algorithm for solving eq 14 is described as follows assuming that  is the design 
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criterion. The algorithm can be straightforwardly adapted to the design optimization with 

 being the criterion, as will be explained later.

Algorithm 3 is initiated with the Stage I design , and the first FOR-LOOP iterates to 

add one design point to the design  at a time until all the N–NI design points have been 

found. At this iteration level, for a given design  that already includes NI+k (k = 0,1,...,N–

NI–1) points, how do we determine the (NI+k+1)th design point? The answer is the second 

FOR-LOOP, which iterates to evaluate every grid point; the best grid point is chosen as the 

(NI+k+1)th design point, and the design D is updated accordingly. Steps (i) and (ii) are the 

bootstrapping-based methods developed to evaluate each grid point in terms of their 

additional contribution to the optimization objective, given a to-be-expanded design .

Note that Algorithm 3, which is driven by the design criterion , can be easily 

modified to solve eq 14 with the criterion being . The only change that needs to be 

made is to replace Step (ii) by evaluating  with eq 6.

Following the additional design {xNI+1,xNI+2,...,xN} found by applying Algorithm 3, Stage II 

experiments will be performed for data collection. Lastly, based on all the data collected at 

both stages with a total sample size of N, statistical modeling and inference will be 

performed to obtain the final estimation for the dose–response model and the BMD and to 

quantify the uncertainties on those estimates of interest.

EMPIRICAL EVALUATION

The proposed two-stage design procedure has been evaluated by a simulation study, which 

is based on sampling through computer experiments whose outputs mimic dose–response 

data from real experiments. Simulation, rather than real experiments, is employed for the 

following reasons. First, only in a simulation-based study are the true dose–response models 

(i.e., the simulation models) available to evaluate the model estimates. Second, the outcome 

of a design procedure is random due to the randomness of responses; hence, a design 

procedure needs to be evaluated in a statistical manner based on the outcomes of applying it 

many times, which is impossible with real experiments. These advantages of simulation will 

become clear in the Comparison with Traditional Design subsection.

Simulation Models

In this case, the simulation data are generated using the following true dose–response and 

variance models

(16)

(17)

At an arbitrary dose level, say x0, a response y0 is simulated as
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(18)

where ε is a random error provided by a standard normal random number generator.45

The simulation models (eqs 16 and 17) are derived from the real experimental data in the 

toxicity study of TiO2 nanowires.46 The dose x represents the TiO2 nanowire dosage in 

terms of μg/mouse, and the response y is the BAL (bronchoalveolar lavage) PMNs measured 

in the units of 103/mouse. C57BL/6J male mice were exposed to selected dosages of TiO2 

nanowires, and at seven days post-exposure, whole lung lavage was conducted to obtain the 

BAL PMN counts.

The true models (eqs 16 and 17) are blind to the two-stage procedure and are only used for 

two purposes in this study: (i) to generate simulation data that mimic real biological data and 

(ii) to serve as the true benchmark to evaluate the model estimates obtained from applying 

the DOE procedure.

Applying the Two-Stage Procedure

For the toxicity study of TiO2 nanowires, suppose that it is of particular interest to establish 

the BMD corresponding to a BMR of 177 ( × 103/mouse) for the BALPMN endpoint. 

(Recall that the BMR can be defined in different ways that do not affect the application of 

our methods, and in this paper, we treat the BMR as an absolute level.) How to specify a 

BMR is beyond the scope of this work, and BMR = 177 is employed for the purpose of 

illustration.

The two-stage DOE procedure (Figure 1) is applied to guide the experiments (that is, the 

simulation experiments in this empirical study) for the efficient collection of dose–response 

data, aiming at obtaining a good BMD estimate corresponding to the target BMR = 177. The 

inputs of the procedure are given as follows:

Input 1: N = 40, the total sample size available.

Input 2: [xL,xU] = [0,30], the dose range of interest.

Input 3: NI = 20: the batch size of the experiments (i.e., the number of samples) 

performed at Stage I, which implies that the sample size is N–NI = 20 at Stage II.

Input 4: BMR = 177: the pre-specified benchmark response.

The criterion in the design optimization (eq 14) is set as  accordingly.

Stage I

The initial design with NI = 20 samples was obtained and is given in Table 1. Five evenly 

spaced distinct design points are selected over the dose range [xL,xU] = [0,30] with four 

replications at each point. At each dose level xi (i = 1,2,...,20), the response subject to 

random errors is generated by plugging the value of xi into eq 18, and the response data are 
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given in Table 2. From the paired data {(xi,yi); I = 1,2,...,20}, the dose–response and 

variance models are estimated as follows by applying Algorithm 1

(19)

(20)

Stage II

The augmented design was determined by applying Algorithm 3 with the following inputs. 

(a) The first-stage design  with values of the design points given 

in Table 1. (b) The estimated dose–response model  and the variance model 

 as given in eqs 19 and 20. (c) The pool of candidate design points 

, which are evenly spaced grid points in [xL,xU] 

= [0,30] with a step size of 0.5. (d) The resampling size B = 499. (e) BMR = 177.

The resulting augmented design turned out to be as given in Table 3.

Following the augmented design (Table 3), simulation was performed to obtain the random 

responses, which are given in Table 4.

Feeding all the data collected in both stages {(xi,yi); I = 1,2,...,40} to Algorithm 1, the dose–

response and variance models were finally estimated as

(21)

(22)

Figure 2 plots the fitted dose–response curve (eq 21), along with the Stage I data depicted by 

dots and Stage II data depicted by squares.

Comparison with Traditional Design

The results presented above in the Applying the Two-Stage Procedure subsection represent 

the outcome of applying the two-stage procedure for one time. Because of the random nature 

of responses, reapplying the procedure will lead to first-stage responses different than those 

given in Table 2 and first-stage fitted models different than those in eqs 19 and 20. 

Consequently, the augmented design in Stage II will turn out differently, the final 40 sample 

data set will be different, and the modeling/inference results will be different.
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Also, because of the randomness in responses, every time the same traditional design is 

applied, a different set of responses will be collected, and hence, different modeling/

inference results will be obtained. The traditional design for this case is given in eq 23 and is 

the one used for the toxicology study in Porter et al.46

(23)

The two approaches, our two-stage procedure and the traditional design, both have random 

outputs. The modeling/inference results are subject to the randomness of responses. Hence, 

these two approaches are compared in a statistical manner as follows.

Each of the two approaches was applied in this case 100 times. As a result, 100 sets of 

results were obtained for each approach. Because the primary goal of this study is to 

estimate BMD for BMR = 177, the two approaches are compared in terms of their delivered 

BMDL (eq 9), the lower bound of the one-sided confidence interval for the BMD.

Specifically, applying the two-stage procedure 100 times leads to 100 data sets; from each 

data set, the methods (Algorithms 1 and 2) in the Statistical Modeling and Inference section 

were performed to obtain the BMDL (eq 9). From the 100 data sets, the 100 BMDLs 

obtained are denoted as

(24)

In the same way, applying the traditional design (eq 23) 100 times also results in 100 data 

sets. Performing the statistical modeling and inference on these data sets leads to 100 

BMDLs, which are denoted as

(25)

The true BMD can be easily calculated from the true dose−response simulation model (eq 

16), and it turns out to be 24, which is represented by the horizontal line in Figure 3. The 

box plots are generated in Figure 3 for the BMDLs (eq 24) obtained from our two-stage 

procedure (left box) and the BMDLs (eq 25) obtained from the traditional design (right box). 

A box plot provides the basic information regarding the distribution of a data set (say, the 

BMDLs in eq 25), with the lower hinge being the 25th percentile, and the upper hinge being 

the 75th percentile of the data. For details of box plots, please refer to McGill et al.47

Comparing the two boxes in Figure 3, it is evident that the BMDLs resulting from our 

procedure are closer to the true BMD and vary over a narrower dose range. In other words, 

with the same sample size, collecting a data set following the traditional design leads to a 

BMDL that may be anywhere between the lower and upper adjacent of the right box plot, 

whereas collecting a data set following the two-stage procedure leads to a BMDL that falls 

within the much narrower and more accurate range of the left box.

Wang et al. Page 14

ACS Sustain Chem Eng. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SUMMARY

This work developed a two-stage experimental design procedure. Compared to the 

commonly used naive designs, our methods lead to dose–response models of higher quality 

given a limited sample size (or equivalently, leads to smaller sample size for a pre-specified 

model quality). The methods developed in this paper are able to reduce the experimental 

cost and time in toxicology studies, alleviate the rising concerns for animal ethics, and 

accelerate the progress toward quantifying the risk, safety, and health effects of 

environmental and occupational exposure to any substances (e.g., nanomaterials).

The two-stage procedure goes on the premise that no significant cross-stage variability 

exists, that is, there is no systematic changes from the first- to the second-stage experiments, 

and dosage is the dominant factor that accounts for the variability in biological responses. 

This assumption may well hold for experiments that are performed in the same lab by the 

same experimenters over a relatively short period and on animals with similar characteristics 

(say, weight, age, etc.). In our immediate future research, we will propose a design 

procedure that is able to accommodate cross-stage variability; such variability may stem 

from different batches of animals, different experimenters, or different research 

environments/laboratories. For instance, a design question to be addressed may be as 

follows: Given a certain substance's toxicology data obtained by some other research 

laboratories, how should we design our experiments so that the integrated data from multi-

sources can provide the most useful information? Answers to such experimental design 

questions will certainly help to accelerate the toxicology assessment of various substances 

and to facilitate the integration of multi-source data.
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Figure 1. 
Overview of the two-stage procedure.
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Figure 2. 
Fitted dose–response model along with the simulation data.
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Figure 3. 
Box plots for the BMDLs resulting from the two-design methods.
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Table 1

Design of Experiments in Stage I

x 1 x 3 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10

0 0 0 0 7.5 7.5 7.5 7.5 15 15

x 11 x 12 x 13 x 14 x 15 x 16 x 17 x 18 x 19 x 20

15 15 22.5 22.5 22.5 22.5 30 30 30 30
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Table 2

Simulation Response Data in Stage I

y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y 10

21.1 19.6 20.2 19.8 41.1 38.5 41.7 39.3 84.3 80.9

y 11 y 12 y 13 y 14 y 15 y 16 y 17 y 18 y 19 y 20

80.8 81.7 152.3 156.6 152.1 156.6 302.5 298.9 312.3 316.7
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Table 3

Design of Experiments in Stage II

x 21 x 22 x 23 x 24 x 25 x 26 x 27 x 28 x 29 x 30

27.5 29.5 30 29.5 28 28 23 26 25 26.5

x 31 x 32 x 33 x 34 x 35 x 36 x 37 x 38 x 39 x 40

28 22.5 25 24.5 22.5 22.5 21 19.5 25.5 18.5
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Table 4

Simulation Response Data in Stage II

y 21 y 22 y 23 y 24 y 25 y 26 y 27 y 28 y 29 y 30

244.0 300.3 306.4 291.4 257.6 252.7 164.0 214.2 190.2 232.6

y 31 y 32 y 33 y 34 y 35 y 36 y 37 y 38 y 39 y 40

259.4 157.5 192.7 181.1 156.2 160.0 131.3 119.9 200.2 105.8
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Algorithm 1

Inputs: Data set {(xi, yi), i = 1, . . ., I}

Process:

    Step 0: Fit the dose-response model by performing regular (unweighted) least squares regression on the data {(xi, yi), i = 1, . . ., I}, and 

denote the fitted model as f (x, θ^ (0)); set r = 1.

    Step 1: Fit the variance model by performing generalized least squares (GLS) regression on the squared residuals 

{(yi − f (xi, θ
^ (r−1)))2; i = 1, 2, …, I } with the weights following h −4( f (x, θ^ (r−1)), γ^ (r−1)), and denote the resulting variance 

model as h ( f (x, θ^ (r−1)), γ^ (r−1))
    Step 2: Fit the dose-response model by performing GLS regression on {(xi, yi), i = 1, . . ., I} with the weights following 

h −2( f (x, θ^ (r−1)), γ^ (r−1)), and denote the fitted model as f (x, θ^ (r))
    Step 3: Set r = r + 1 and repeat Step 1–2 for a fixed number of times or until convergence.

    Step 4: Denote f (x, θ^) and h ( f , (x, θ^), γ^) and h ( f , (x, θ^), γ^) as the final estimated models from the iterations above. Estimate σ̂
by the usual weighted residual mean squares evaluated at those final estimates.

Outputs: The fitted dose-response model f (x, θ^) and the variance model σ̂h ( f (x, θ^), γ^)
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Algorithm 2

Inputs: (a) The design points at which data have been (or are assumed to have been) collected {xi; i = 1, 2, . . ., M}, with the number of design 

points being M; (b) the dose-response model f (x, θ^) and the variance model σ̂h ( f (x, θ^), γ^), both estimated by feeding the real data {(xi, 
yi); i = 1, 2, . . ., I} to Algorithm 1; (c) the resampling size B

Process:

    FOR b = 1 to B

        FOR i = 1 to M

            (i) set xi,b
∗ = xi;

            (ii) randomly sample ei,b
∗

 from the standard normal distribution N(0,1);

            (iii) set yi,b
∗ = f (xi,b

∗ , θ^) + σ̂h ( f (xi,b
∗ , θ^), γ^)ei,b

∗

                END FOR

        Feed {(xi,b
∗ , yi,b

∗ ); i = 1, 2, …, M } to Algorithm 1, and obtain the resulting dose-response model as f (x, θ^ b
∗)

        END FOR

Outputs: B fitted models { f (x, θ^ b
∗); b = 1, 2, …, B}, from which the variabilities Var θ^  and Var BMD̂  can be estimated.
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Algorithm 3

Inputs: (a) D
(I )

= {xi; i = 1, 2, …, NI }, the first stage design; (b) the dose-response model f (x, θ^ (I )) and the variance model 

σ̂(I )
h ( f , (x, θ^ (I )), γ^ (I )), which are estimated from the first-stage samples {(xi, yi); i = 1, 2, . . ., NI} by applying Algorithm 1; (c) 

{xg
(Grid )

; g = 1, 2, …, G}, the evenly spaced grid points in [xL, xU] that serve as the pool of candidate design points; (d) the resampling 

size B; (e) the pre-specified BMR, which is only needed if Var BMD̂  is the design criterion in (14).

Process: Initialization: D = D
(I )

    (1)FOR k = 1 to N – NI

        (2)FOR g = 1 to G

            Evaluate the design criterion in the optimization problem (14), assuming that an experimental data set has been collected at the design

D ∪ {xg
(Grid )}:

            (i) Call Algorithm 2 with the following three inputs: the design points D ∪ {xg
(Grid )}; the dose-response model f (x, θ^ (I )) and 

variance model σ̂h ( f (x, θ^ (I )), γ^ (I )); and the resampling size B.

                Return B fitted models

                                        { f (x, θ^ b
∗(g)); b = 1, 2, …, B}. (15)

            (ii) Based on the bootstrap estimates (15), evaluate the design criterion for the candidate design D ∪ {xg
(Grid )}. Specifically, Formula 

(7)–(8) are used to obtain Var̂ BMD̂
(g)

.

                (2)END FOR

        Set xNI+k as the grid point that gives the minimum value of Var̂ BMD̂
(g)

; g = 1, 2, . . ., G}. Update D = D ∪ {xNI +k}.

        (1)END FOR

Outputs: The design D, which is equal to D
(I ) ∪ {xNI +1, xNI +2, …, xN }, the union of the first-stage design D

(I )
 and the second-

stage design points {xNI+1, xNI+2, . . ., xN}.

ACS Sustain Chem Eng. Author manuscript; available in PMC 2015 December 01.


