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Abstract

A microbe-contaminated toilet will produce bioaerosols when flushed. We assessed toilet plume 

aerosol from high efficiency (HET), pressure-assisted high efficiency (PAT), and flushometer 

(FOM) toilets with similar bowl water and flush volumes. Total and droplet nuclei “bioaerosols” 

were assessed. Monodisperse 0.25–1.9-μm fluorescent microspheres served as microbe surrogates 

in separate trials in a mockup 5 m3 water closet (WC). Bowl water seeding was approximately 

1012 particles/mL. Droplet nuclei were sampled onto 0.2-μm pore size mixed cellulose ester filters 

beginning 15 min after the flush using open-face cassettes mounted on the WC walls. Pre- and 

postflush bowl water concentrations were measured. Filter particle counts were analyzed via 

fluorescent microscopy. Bowl headspace droplet count size distributions were bimodal and similar 

for all toilet types and flush conditions, with 95% of droplets <2 μm diameter and >99% <5 μm. 

Up to 145,000 droplets were produced per flush, with the high-energy flushometer producing over 

three times as many as the lower energy PAT and over 12 times as many as the lowest energy 

HET despite similar flush volumes. The mean numbers of fluorescent droplet nuclei particles 

aerosolized and remaining airborne also increased with flush energy. Fluorescent droplet nuclei 

per flush decreased with increasing particle size. These findings suggest two concurrent 

aerosolization mechanisms—splashing for large droplets and bubble bursting for the fine droplets 

that form droplet nuclei.

INTRODUCTION AND BACKGROUND

The potential for airborne transmission of sewage-related infectious disease was 

experimentally demonstrated over 100 years ago by Horrocks (1907), who found that 

sewage flowing smoothly in pipes as well as bursting bubbles in sewage would produce 

airborne microbes that could be transported substantial distances in the sewer system air 

while remaining viable. More recently, airborne transport of the SARS coronavirus by such 

sewage-related bioaerosols was proposed as the likely disease transmission mode in the 

2003 SARS outbreak at the Amoy Gardens apartment complex in Hong Kong (Yu et al. 
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2004; Hong Kong Special Administrative Unit Department of Health 2011). Production of 

both large droplet and droplet nuclei bioaerosols during toilet flushing has been shown for a 

variety of toilet types and microorganisms (Jessen 1955; Darlow and Bale 1959; Bound and 

Atkinson 1966; Gerba et al. 1975; Scott and Bloomfield 1985; Yahya et al. 1992; Barker and 

Bloomfield 2000; Barker and Jones 2005). As initially defined by Wells (1934), droplet 

nuclei are the residuals of larger droplets whose water content has largely or completely 

evaporated; they are of sufficiently small size that they will not settle on surfaces due to the 

force of gravity but rather will remain airborne and be carried on air currents. Large droplet 

contamination of toilet seats and lids, the surrounding floors, and nearby surfaces (Jessen 

1955; Darlow and Bale 1959; Newsom 1972; Gerba et al. 1975; Yahya et al. 1992; Barker 

and Jones 2005) is a well-recognized contact transmission risk in health care and other 

facilities (Sehulster and Chinn 2003). In contrast, the potential for airborne transmission of 

infectious disease via “toilet plume” droplet nuclei bioaerosols has not been generally 

acknowledged. This is perhaps due to the difficulty in distinguishing epidemio-logically 

between contact transmission that may have occurred via contact with large droplets or 

contaminated surfaces as opposed to airborne transmission that may have occurred via 

inhalation of droplet nuclei.

Experimental work has clearly shown that droplet nuclei toilet plume aerosols are capable of 

entraining microorganisms as large as bacteria (Barker and Jones 2005), can migrate well 

away from the toilet (Jessen 1955; Darlow and Bale 1959; Barker and Jones 2005), and can 

remain viable for extended periods while airborne (Jessen 1955; Gerba et al. 1975; Barker 

and Jones 2005). Furthermore, sequential flushes following an initial toilet contamination 

continue to produce bioaerosols (Barker and Jones 2005; Darlow and Bale 1959; Yahya et 

al. 1992). Viruses may be particularly difficult to clear from the toilet; Yahya et al. (1992) 

found that viral bioaerosols were still being produced even after seven flushes after 

contamination. These studies suggest a possible role of biological films as a reservoir and 

the potential for multiple bioaerosol generation events due to a single contamination.

Both the vomit and feces of some infected persons may contain extremely high pathogen 

loads—concentrations of 105–109 Shigella (Thompson 1955), 104–108 Salmonella 

(Thompson 1955), and 108–109 norovirus (Atmar et al. 2008) per gram of stool and at least 

106 norovirus per milliliter of vomit (Caul 1994) have been reported. Some fraction of the 

aerosol droplets produced when a contaminated toilet is flushed may be expected to contain 

these microbes (Raabe 1968). Whether toilet bioaerosol droplets will deposit on nearby 

surfaces or evaporate to form droplet nuclei that move with air currents depends primarily 

on the initial droplet size and the initial vertical distance from a deposition surface (Wells 

1934; Xie et al. 2007); for a given situation droplets smaller than a “critical size” will 

evaporate to droplet nuclei before reaching the surface, whereas larger droplets will not. The 

critical droplet size is determined by the droplet evaporation rate and the droplet's settling 

velocity, which are complex interrelated functions dependent on environmental conditions 

(Hinds 1999; Xie et al. 2007). To date no studies have reported the initial droplet size 

distribution of toilet plume aerosols or how the size distribution and aerosol concentration 

vary across toilet designs and operating modes. Therefore, it has not been possible to 

estimate the fraction of total aerosol that may produce potentially infectious droplet nuclei 
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bioaerosols, or the concentrations of droplet nuclei that might result, during toilet flushing. 

The purpose of the present work was to characterize the initial droplet size distribution 

immediately after a toilet flush and the droplet nuclei aerosol generation rate for a range of 

toilet types.

MATERIALS AND METHODS

Subject Toilets

Toilets are sold in a wide variety of designs, and the most common types may be 

conveniently classed as gravity-flow, pressure-assisted gravity flow, or pressure-valve 

(commercially termed “flushometer”) systems. Gravity flow is the type typically found in 

residences, consisting of a base containing the toilet bowl and a close-coupled or integral 

water tank (also termed a “cistern”). When the flush lever is activated, a valve in the tank 

bottom opens to allow water to flow under gravity into the toilet bowl, initiating the flush. In 

contrast, the flushometer toilets that are often seen in public restrooms consist of a base but 

no tank, with the building water supply attached directly to a flush valve via a 1-inch 

diameter pipe that delivers a vigorous water flow to the toilet when activated by a manual 

flush lever or automatic flush sensor. A recent innovation that provides the vigorous flush of 

a flushometer system without the requirement for a high flow capacity water connection is 

the pressure-assisted toilet. This toilet has the appearance of a typical gravity-flow toilet in 

that it has a tank attached to the base; however, a compressed air bladder pressure vessel 

inside the tank provides stored energy to drive the water flow and thereby simulate the 

flushometer system.

Prior to the mid-1990s, U.S. toilets typically had flush volumes of approximately 11 to 13 

liters per flush (Lpf) (3 to 3.5 gallons per flush [gpf]), but since the enactment of the Federal 

Energy Policy Act of 1992 (FEPA) the maximum flush volume allowed for toilets sold in 

the United States is 6 Lpf (1.6 gpf) (United States Congress 1992). Furthermore, water 

conservation concerns have prompted greater marketing of high efficiency toilets, or HETs. 

The U.S. Environmental Protection Agency's “WaterSense” specification limits HETs to no 

more than 80% of the 6 Lpf value, or 4.8 Lpf (1.28 gpf) (United States Environmental 

Protection Agency 2011). Another water-saving innovation was the introduction of dual-

flush toilets providing for user selection of a lower or higher flush volume, depending on 

whether liquid only or solids were being flushed. The first dual-flush toilets were invented in 

Australia 30 years ago and have long been in widespread use there and in Europe but have 

only recently been widely marketed in the United States. The lower flush volume on these 

systems is approximately 3.8 Lpf (1 gpf).

Four toilet types were selected for this study: (1) a pre-FEPA gravity flow toilet providing 

13.3 Lpf (3.5 gpf), (2) a dual-flush HET providing either 3.8 or 4.9 Lpf (1.0 or 1.3 gpf), (3) a 

dual-flush pressure-assisted gravity flow toilet (PAT) providing approximately 4.2 or 4.9 

Lpf (1.1 or 1.3 gpf) (Figure 1), and (4) a flushometer (FOM) toilet providing approximately 

5.3 Lpf (1.4 gpf). Previous investigators have noted greater aerosol production with higher 

flush energies (Bound and Atkinson 1966; Jessen 1955), as intuition might suggest, and the 

three post-FEPA toilet types were selected because their different operating modes provide 

different degrees of flush energy and associated bowl water agitation during flushing.
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All four toilets were of the siphonic type, in which flush water enters the bowl bottom as a 

submerged jet directed toward the S-shaped outlet channel or “trapway” entry to induce a 

water flow that fills the trapway and results in a siphon effect, which then empties the bowl 

contents (Figure 2) (Blair 2000). Air entering the trapway when the bowl water level falls 

below the top of the inlet breaks the siphon and some volume of the flushed water drains 

back into the bowl. A secondary flush water flow passes through perforations spaced around 

the underside of the bowl rim and washes down the bowl walls during the flush. The jets 

may be angled to induce a swirling in the bowl water. The three post-FEPA toilet models 

had been evaluated under the Maximum Performance (MaP) Program, a joint US–Canada 

effort to test the clearance performance of toilets using a standard protocol, and achieved the 

highest MaP clearance performance rating (Gauley and Koeller 2009). The pre-FEPA toilet 

was selected solely on its availability in good condition from a recycling center and was 

thoroughly cleaned and fitted with new flush and fill valves before use.

Water Closet Apparatus

The toilets were mounted in a simulated “powder room” size water closet (WC) that was 5 × 

5 × 7 feet (ft) (152 × 152 × 213 centimeters [cm]) in interior dimension, for a volume of 175 

cubic feet (ft3) (5 m3) (Figure 3). The WC was constructed on stilts so that the toilet flush 

outfall could be captured for volume measurement. The walls and ceiling were of painted 

gypsum board, and the floor was covered with sheet linoleum. Seals and clamps around a 3 

× 6 ft (91 × 183 cm) clear plastic access door provided an airtight enclosure. A high-

frequency particulate air (HEPA)-filtered air supply, HEPA-filtered exhaust, and blast gate 

flow damper allowed the WC to be purged under slight positive differential pressure at an 

effective ventilation rate of approximately 18 air changes per hour (ACH) with particle-free 

air prior to toilet flushing. Complete clearance of background particles at least as small as 

0.3 micrometers (μm) was verified using a Grimm Model 1.108 aerosol spectrometer 

(Grimm Aerosol Technik GmbH, Ainring, Germany). The spectrometer was placed inside 

the WC with the digital concentration readout visible through the clear WC door and 

operated continuously during the purging period. The logged concentration data were 

subsequently downloaded and analyzed to determine the effective ventilation rate. Air 

sampling ports were installed at heights of 22.5 and 64 inches (57 and 163 cm) on the two 

side walls (Figure 3). These ports were connected to air sampling pumps located outside the 

WC for monitoring and adjustment during air sampling. Pump flows were calibrated at 1.5 

liters per minute (Lpm) using a bubble tube primary standard. A glove port in the rear wall 

allowed the toilet to be flushed from outside the WC.

Potential interferences by naturally occurring fluorescent particles that might be present in 

the mains water supply were avoided by filtering the water used for toilet flushing. For the 

HET and PAT toilets, it was sufficient to simply insert the particle filter into the 1/2-inch 

mains supply line. The FOM cannot operate from a 1/2-inch supply line and required a 

custom built two-tank water supply system as shown schematically in Figure 4. The first 

tank (Well-X-Trol WX-202, Amtrol, West Warwick, RI, USA) received mains water from a 

booster pump (Model MQ, Grundfos, Olathe, KS, USA) that maintained the tank water 

pressure between 55 and 70 psi. The water passed from the first tank through a high-

efficiency particle filter (Model GE GXULQ, General Electric Co., Fairfield, CT, USA) to 
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the second tank, which provided particle-free water to the FOM toilet via a 1-inch supply 

line. FOM type toilets require a 1-inch supply line to satisfy their high flush water flow rate. 

Samples of the filtered water supplies verified that they were particle free.

Droplet Size Distribution and Generation Rate Measurements

Accurate measurement of the initial droplet size distribution of toilet flush aerosol is 

challenging due to rapid droplet evaporation under typical humidity conditions. However, 

the rate of evaporation may be slowed by providing a high relative humidity environment, 

and this was achieved by covering the toilet bowl with a plastic plate as shown in Figure 5. 

The sample inlet probe of a Grimm aerosol spectrometer was inserted through the plate and 

positioned several inches above the bowl water surface. The probe of a digital hygrometer 

(Traceable®, Control Company, Friendswood, TX, USA) was also inserted through the 

plastic plate. The air in the enclosed bowl quickly reached saturation. After starting the 

aerosol spectrometer, the WC door was replaced and the WC was purged for at least 45 

minutes at 18 ACH effective ventilation rate to ensure removal of all background particles. 

The purge air was then turned off and the toilet flushed. After a 15-min postflush sampling 

period, the HEPA was restarted to prepare for another measurement. The spectrometer 

operated continuously, providing particle concentration measurements in 15 particle size 

ranges spanning 0.3 to 20 μm. After each trial, the spectrometer was removed from the WC 

for data download and analysis.

Droplet Nuclei Bioaerosol Generation

Microbial bioaerosol generation by the three post-FEPA toilets was simulated using 

monodisperse suspensions of 0.25- or 0.30-μm-diameter green (0.25 μm) or red (0.30 μm) 

fluorescent polymer microspheres (Cat. No. G250 or R300, Thermo Scientific Inc., Fremont, 

CA, USA) after the method of Johnson and Lynch (2008).

A 1-mL aliquot of the 1% by volume source suspension was mixed with the toilet bowl 

water and a water sample collected. Delrin® acetal resin open-face 25-mm air sampling 

cassettes (Cat. No. 225-1107, SKC, Eighty Four, PA, USA) containing 0.2-μm pore size 

mixed cellulose ester (MCE) filters (Advantec Cat. No. A020A025A, Toyo Roshi Kaisha 

Ltd., Japan) were attached at each of the four sampling ports. The cassettes and o-rings were 

rinsed in acetone and air dried before assembly to dissolve away any polymer microsphere 

contamination. The Viton o-rings provided with the cassettes were replaced with 

perfluoroacetate (PFA or Teflon®) coated silicon core o-rings (PSP Inc., Denver, CO, USA) 

due to Viton's incompatibility with acetone and because the Viton o-rings tended to deform 

when the cassette cap was tightened, wrinkling the filter. Purging for 45 minutes was 

followed by a 5-min pause to allow damping of WC air currents before flushing the toilet. 

Because only the simulated droplet nuclei bioaerosols were of interest, another 5-min pause 

after the flush allowed time for large droplets to settle out on the floor, on toilet surfaces, or 

back into the bowl water. The WC air was then mixed with a small fan for 5 min to disperse 

the remaining droplet nuclei aerosols more evenly throughout the WC volume before 

starting the air sampling pumps. Pump flow rates were closely monitored and adjusted as 

necessary to maintain constant 1.5 Lpm flow during a 30-min sampling period, providing a 

45-L air sample volume. The 0.25-μm minimum particle size was chosen because this was 
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the smallest fluorescent particle that could be accurately counted; larger particles are easier 

to count, but there was concern that they would be less likely to be aerosolized as described 

by Raabe (1968) and would also be less representative of microbes of virus size. The 

volume of captured flush water was measured, and a postflush bowl water sample was 

collected after the air sampling was completed.

After sampling cassettes were collected and the filters removed and mounted on oversized 

75 × 38 mm microscope slides for top-illumination viewing and particle counting using a 

Nikon Model Eclipse 80i fluorescence microscope fitted with a Prior Optiscan 3-axis 

motorized stage, 20x planapochromat objective, Hamamatsu ORCA-Flash 2.89 camera, and 

NIS Elements software (AR 2.10, Build 215) (all from Nikon Instruments, Melville, NY, 

USA). Air samples were imaged automatically through the use of the Elements software. A 

1.16 × 1.16 cm section of the filter (centered roughly on the filter centroid) was processed 

into 1200 individual images. Each of these images was scanned automatically for the 

presence of spheres employing user-selected criteria (area, circularity, mean intensity). 

Particles selected by the software as spheres were individually confirmed by reviewing 

selected images. The sum of the four filters’ particle counts divided by the air volume 

sampled through that area of the filter (approximately 25% of the total air flow) provided an 

estimate of the mean WC air concentration (in particles per cubic meter). This was 

multiplied by the WC volume to provide an estimate of the number of simulated droplet 

nuclei “bioaerosols” generated during the flush. Because this was a counting method 

spanning the entire surface of the area selected for counting, the limit of detection of the 

method was 1 particle in 47.9 L of air (26.6% of the total sampled air) filtered through an 

area of 4.41 cm2 (26.6% of the total filter area, i.e., 1.1025 cm2 on each of 4 filters of 4.15 

cm2 filtration area), or 20.9 particles per cubic meter.

Control trials for the aerosolization experiments were conducted in the same manner as the 

data trials except that the toilet was not flushed. That is, all aspects of the experimental 

procedure were followed except the toilet was not actually flushed. These trials assessed the 

potential for air filter contamination during any step in the procedure from mounting the 

filters in the cassettes to analyzing the filters under the microscope.

An aliquot of each water sample, diluted as necessary, was filtered through the same type of 

0.2-μm MCE filter used for the air sampling, and the filter was then mounted on a slide for 

counting. Aliquots of filtered toilet supply water and dilution water control samples were 

also filtered for counting. Water samples were generally processed by manual counts using a 

random field technique rather than automated counts due to their high areal density (Johnson 

and Lynch, 2008). For most samples (those less densely populated), 50 fields were counted 

at 200× total magnification using an optical grid while for the densest samples (i.e., the 

preflush samples) ten fields were counted at 400× magnification. Very low density water 

samples were counted automatically as described above using a 0.503 × 0.503 cm field 

divided into 275 images. The particle count divided by the aliquot volume and multiplied by 

the dilution factor provided an estimate of the suspension concentration in each water 

sample. The ratio of pre- to postflush concentrations was a measure of toilet clearance. The 

product of the difference in pre- and postflush concentrations and the bowl water volume or 

the preflush concentration and the bowl water volume provided essentially the same 
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estimate of the number of fluorescent particles flushed, because clearances were usually on 

the order of 3 logs or 99.9%. The ratio of the number of fluorescent droplet nuclei to the 

number of fluorescent particles present preflush was used as the measure of droplet nuclei 

aerosol generation rate, G. This was scaled up via a 108 multiplier to give particles generated 

per 100 million particles present preflush.

Toilet bowl clearance and droplet nuclei generation rates were assessed for each of five 

flush conditions: low- and high-volume HET, low- and high-volume PAT, and FOM. Each 

of the assessments was conducted at least three times.

The influence of suspension particle size on droplet nuclei aerosol production was assessed 

in the FOM toilet using 0.25, 0.50, 1.0, and 1.9-μm-diameter fluorescent microspheres 

(Thermo Scientific Inc., Fremont, CA, USA). For each of six trials with each size, the toilet 

was seeded with a 1-mL aliquot of 1% by volume source suspension, so that the preflush 

bowl water concentrations were the same in terms of volume percent but different in terms 

of particles per milliliter due to the differences in microsphere volumes.

Statistical Data Analysis

The postflush fluorescent droplet nuclei concentration for each trial was calculated as the 

mean of the four air sample results for the trial. The mean and standard deviation of the 

mean (SEM) for each condition (toilet type and flush volume) were calculated from the 

individual trial means for the condition. Condition means were compared via analysis of 

variance (ANOVA) followed by a simultaneous pairwise comparisons test to identify 

statistically significant aerosol droplet count or fluorescent droplet nuclei concentration 

differences between toilet types and flush conditions. Parametric one-way ANOVA with 

Tukey's test was used for the droplet count comparisons, but unequal variances as identified 

by the F-test required a nonparametric Kruskall–Wallis ANOVA with Nemenyi's test for the 

fluorescent droplet nuclei concentration comparisons. A Type I error rate of α = 0.05 was 

used in all tests.

RESULTS

Droplet Size Distributions and Generation Rates

No droplet spatter was noted on the underside of the plastic cover plate. The aerosol 

spectrometer recorded particle count concentrations in each of 15 particle size bins ranging 

from 0.3 to >20 μm every 6 s. The measurement data revealed zero concentrations across 

size bins after HEPA purging and immediately before the toilet flush. After a flush the 

instrument usually measured particle counts in nearly all size bins during the first 15 

seconds postflush except for the >20 μm counts, which were typically at or very near zero. 

The counts for particles larger than approximately 5-μm-diameter reached a maximum in the 

15–30 s period and declined after the first minute, suggesting removal by gravitational 

settling or shrinkage to smaller sizes by evaporation. Such shrinkage will occur even under 

saturation humidity conditions, though more slowly than under drier conditions. In contrast, 

counts across all of the smaller size bins increased to a peak between 1 and 2 min postflush, 

then also declined. The increases in the smaller sizes were in far greater numbers than the 
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reductions in counts for the larger particle sizes and occurred across all size bins, suggesting 

droplet growth by condensation in the high-humidity bowl environment rather than simply 

contributions to the smaller size bins by evaporation of larger droplets. As discussed by 

Hinds (1999) (pp. 288–292), heterogeneous nucleation around soluble condensation nuclei 

can occur even under unsaturated atmospheric conditions, and the droplets will grow to a 

maximum size that is determined by the mass of solute in the condensation nucleus and the 

relative humidity. The filtered flush water used in these experiments was from the building 

mains supply and had a total dissolved solids concentration of approximately 120 ppm. 

These naturally occurring dissolved minerals would be expected to act as condensation 

nuclei, along with those naturally present in the air in spite of HEPA filtration.

Given this dynamic situation, it is possible only to estimate the droplet count size 

distribution in the bowl airspace immediately after the flush. As a common reference, the 

particle counts measured approximately 15 s after the flush were used. This allowed time for 

the spectrometer to detect the larger droplets without allowing extended time for 

gravitational settling or increases in the smaller droplet counts. A plot of mean droplet size 

distributions for the four toilet types at 15 s postflush is shown in Figure 6. The droplet size 

distribution plots were somewhat bimodal and similar across toilet types and across flush 

conditions within toilet type for the dual-flush toilets. The aerosols appeared to be composed 

of two particle populations but with over 95% of the particles being less than 2-μm diameter.

The total droplet counts in the air space above the bowl water and below the top of the rim, 

shown in Table 1, were calculated from the sum of particle concentrations across size bins 

as measured 15 s postflush and the volume of the air space between the bowl water level and 

the cover plate placed over the bowl during measurement (10.0, 12.0, 13.0, and 10.8 L for 

the pre-FEPA, HET, PAT, and FOM, respectively). The calculations assumed a uniform 

concentration throughout the bowl air space, and though this could not be verified the 

estimate provides a basis for comparison across toilet types. After verifying homogeneity of 

variance using an F-test, a one-way ANOVA of the droplet generation rates indicated a 

statistically significant difference between toilets/flush conditions (p < 0.0001), and a 

Tukey's test (overall a = 0.05) further indicated significant differences between the toilets 

but not between the low and high volume flush conditions for either the HET or PAT. As 

Table 1 shows, the mean droplet generation rate per liter flushed was highest for the FOM 

toilet (~25,600) and lowest for the HET (~2100–2200). The mean total number of droplets 

produced per flush was also greatest for the FOM toilet (~145,000 droplets) and lowest for 

the HET (~8000–10,000). Notably, the FOM toilet produced 2.7 times as many droplets as 

the pre-FEPA toilet even though it had less than half (40%) of the pre-FEPA's flushed water 

volume. It also produced 3.5 times as many droplets as the next highest post-FEPA toilet. 

This appears to support an association between flush energy and aerosol production.

Droplet Nuclei Bioaerosol Generation Across Toilet Types

All control blank samples were negative for the fluorescent microspheres, demonstrating the 

absence of background counts in both the air samples and the water samples. Pre- and 

postflush bowl water samples indicated 3+ log concentration reductions from approximately 

108 to 105 particles/mL, consistent with the findings reported by others for microbes at 
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similar seeded concentrations (Darlow and Bale 1959; Gerba et al. 1975; Barker and Jones 

2005). Droplet nuclei aerosol generation rates for the highest flush volumes of each toilet, as 

number of “bioaerosol” fluorescent particles produced per 100 million particles present 

preflush, are presented in Table 2. The means suggested an increasing droplet nuclei 

aerosolization with increasing flush energy from HET to PAT to FOM, consistent with the 

differences in flush droplet production shown in Table 1; however, there was considerable 

flush-to-flush variation in the number of fluorescent droplet nuclei particles aerosolized. 

Furthermore, an F-test indicated nonhomogeneous variance across conditions. The 

nonparametric Kruskall–Wallis ANOVA was, therefore, used to compare conditions and 

failed to yield a significance result. The mean generation rates as particles aerosolized per 

100 million particles present in the bowl water preflush were, therefore, also not 

significantly different due to the similar seed concentrations and bowl water capacities.

Droplet Nuclei Aerosol Production for Larger Particle Sizes

Airborne particle production and generation rates for the 0.25, 0.50, 1.0, and 1.9 μm 

microspheres in the FOM toilet are summarized in Table 3. In testing for differences in the 

means, unequal variances as shown by the F-test required that nonparametric Kruskall–

Wallis ANOVA be employed rather than parametric ANOVA. The nonparametric ANOVA 

yielded a significant result (p < 0.015), and a Nemenyi's multiple simultaneous pairwise 

comparisons test (overall α = 0.05) indicated the 0.25-μm airborne concentration to be 

significantly different from the 1.0- and 1.9-μm concentration but not statistically 

significantly different from the 0.50-μm concentration. The 0.50-, 1.0-, and 1.9-μm 

concentrations were also not statistically significantly different from one another. It should 

be noted that the airborne particle concentrations measured in individual trials of the larger 

particles, particularly the 1.0 and 1.9 μm particles, were often at the limit of detection of the 

counting method, i.e., no particles or only 1 particle detected.

DISCUSSION

The three modern (post-FEPA) toilets studied were seen to vary greatly in initial flush 

droplet production for nearly identical flush volumes. Droplet generation rates per liter of 

water flushed appeared consistent across lower and higher volume flush options in the two 

dual-flush toilets (HET and PAT), and mean droplet generation rates increased with 

perceived higher flush energy (an admittedly qualitative judgment by the investigators based 

on sound level and apparent agitation) from HET to PAT to FOM. These results support the 

conclusion by Jessen and subsequent investigators that flush droplet production increases 

with increasing flush energy. Flush energy cannot be directly measured, and at any rate is a 

surrogate descriptor for the degree of agitation the water undergoes during the flush. The 

effects of agitation on aerosol production from biological suspensions have been studied 

with regard to aerated activated sludge sewage treatment systems and aerated fermenters. 

Brandi et al. (2000) and Sanchez-Monedero et al. (2008) noted that mechanical agitation 

increased bioaerosol production from aerated sewage treatment plants, and Pilacinski et al. 

(1990) observed an increase in both the number and size of aerosol droplets produced from 

aerated fermentor broths as the degree of mechanical agitation increased. It seems plausible 
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that the effects of flush agitation on bioaerosol production from contaminated toilets would 

be similar, but this is an area requiring further research.

Results for comparisons of fluorescent droplet nuclei particle generation across particle sizes 

should be viewed with some caution. The very low concentrations observed for the larger 

particles, particularly the 1.0 and 1.9 μm particles, would be expected to induce volatility in 

the estimated means and also inflate the variance estimates, reducing the power of statistical 

tests to detect real differences. Although longer air sampling times or higher air sampling 

rates would have increased the number of filter counts, this would have been at the risk of 

oversampling the 175 ft3 (5 m3) WC air volume. Future studies might be designed to 

constrain the air volume into which the droplet nuclei disperse to provide a more 

concentrated atmosphere and thereby increase the counts, though it is recognized that this 

would introduce an additional dimension of artificiality.

Aerosol generation rates expressed as airborne particles produced per 100 million particles 

present in the bowl preflush were widely different and had no clear pattern except that the 

generation rate value for the 1.9 μm particles was an order of magnitude larger than the other 

generation rates. However, in other experiments not reported here involving a much wider 

range of preflush particle loadings (5–6 logs), we found that aerosol generation is not 

proportional to the preflush bowl loading. This observation was in agreement with the 

findings of others in sequential flush experiments showing that airborne particle 

concentrations do not vary in proportion to the bowl water particle concentration (Darlow 

and Bale 1959; Newsom 1972; Gerba et al. 1975; Barker and Jones 2005). The measure, 

though we present it for completeness, appears to have little utility in characterizing flush 

aerosol generation.

The observation that flush aerosol generation is not proportional to the preflush bowl water 

particle loading seems contrary to logic if one assumes that the aerosolization mechanism is 

related to simple splashing. Such an assumption appears to be supported by observations 

that aerosol production seems to increase with increasing flush energy. Nevertheless, the 

data show the splash generation model does not hold up, at least for droplet nuclei aerosol 

production, and we therefore propose a different mechanism be considered. The somewhat 

bimodal droplet size distributions of the flush droplets were consistent with an aerosol 

generation mechanism that includes bubble bursting. Bubbles bursting at the liquid surface 

will produce two populations of droplets: fine “film droplets” and larger “jet droplets” 

(Tomaides and Whitby 1976). Film droplets are produced by the breakup of the bubble film 

layer as the bubble rises through the liquid surface and range from submicrometer size to 

approximately 20 μm (Garner et al. 1954; Blanchard 1963; Cipriano and Blanchard 1981), 

whereas jet droplets are produced at the tip of a jet of liquid projected upward from the 

center of the bubble depression in the liquid surface (MacIntyre 1972). Jet droplets are 

typically an order of magnitude larger than film droplets (Newitt et al. 1954) and may be 

projected tens of centimeters above the water surface at initial ejection velocities of up to 

several meters per second (Gunther et al. 2003). The absence of visible spatter on the toilet 

cover plate and particle counts in the >20-μm Grimm spectrometer data from size 

distribution measurements suggest that jet drops were not a substantial constituent of the 

toilet flush aerosols. The number of film droplets decreases with decreasing bubble size 
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(Blanchard 1963; Day 1964), from as many as 1000 film droplets for a 6-mm-diameter 

bubble (Blanchard and Syzdek 1982) to very few film droplets for bubbles less than 

approximately 1 mm (Gunther et al. 2003). In contrast, the number of jet droplets increases 

with decreasing bubble size, with bubbles less the 0.3-mm-diameter producing five or more 

jet droplets (Blanchard and Syzdek 1982). Bubbles in the flush water may be produced when 

air is entrained in agitated water, as by a submerged jet or during a turbulent flush, in a 

manner similar to air entrainment in seawater by wave action and whitecaps (see, e.g., the 

discussion by Kerman 1986). The resulting bubble burst aerosol would thus be expected to 

be somewhat bimodal, as was seen by Baron and Willeke (1986) when they measured 

droplet aerosols above heated whirlpools agitated with jets. Bubble-burst production of 

aerosols, including bioaerosols, has been studied above bodies of sea water and fresh water 

(Blanchard and Syzdek 1970, 1972; Baylor et al. 1977; Blanchard and Syzdek 1978; 

Blanchard et al. 2011), and to some extent in whirlpool baths (Baron and Willeke 1986), but 

to date has not been explored as a mechanism for toilet aerosol production. Since bioaerosol 

of respirable size produced by bubble bursting in a whirlpool contaminated with Legionella 

pneumophila has been associated with an outbreak of Pontiac Fever (Mangione et al. 1985), 

and a number of studies have demonstrated the potential for toilets to produce bioaerosols 

during flushing (reviewed briefly above and in detail by Johnson et al. 2013). We propose 

bubble bursting as a likely mechanism for droplet nuclei bioaerosol production from 

pathogen-contaminated toilets and believe this to be a logical area for further research.

Our results and those of previous investigators present a consistent body of data that 

demonstrates the potential for generation of infectious droplet nuclei bioaerosols when a 

contaminated toilet is flushed. Pathogens including Shigella, E. coli, Clostridium difficile, 

SARS coronavirus, and norovirus (Thomson 1955; Caul 1994; Atmar et al. 2008) can be 

present in vomit or stools of infected persons and can survive on surfaces for weeks or even 

months (Kramer et al. 2006). As has been shown, hundreds to thousands of potentially 

infectious bioaerosol particles, capable of remaining airborne for extended periods and 

migrating with air currents, may be generated in a single flush of a toilet contaminated with 

these organisms. Whether a subsequent bioaerosol exposure results in disease would of 

course depend on the organism's viability under existing environmental conditions, the 

number of organisms inhaled and their virulence, and the exposed person's immune status 

among other factors (Cox 1987), but it is difficult to imagine that such transmission is not 

occurring. Separating the incidence of disease transmission by contact and droplet routes 

from that by the airborne route is a challenge that remains to be met.

A limitation of this study was the small number of replicate trials per experimental condition 

(3 to 6), which likely provided inadequate statistical power in some data analyses due to the 

sometimes substantial within-condition variability in aerosol production. Future work should 

allow for larger sample sizes as determined by power calculations using these observed 

variances. A second limitation was the data volatility inherent in measurements of very low 

airborne particle concentrations, as seen with larger particle sizes, which limited the 

interpretability of these data. A third limitation, from the risk assessment perspective, was 

the use of monodisperse fluorescent polymer particles rather than actual microbes. However, 

the purpose of this work was to characterize the initial droplet size distribution immediately 
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after a toilet flush and the potential for droplet nuclei aerosol generation for a range of toilet 

types, with an eye toward elucidating the toilet design factors governing aerosol production, 

rather than to provide data directly applicable in risk assessment. Further work using 

specific microbes of interest is required to better estimate airborne infectious disease 

transmission risk.

SUMMARY AND CONCLUSIONS

The WC research platform and analytical method were effective in assessing toilet flush 

droplet nuclei generation. For all toilet types examined, toilet flush aerosols were highly 

concentrated and the initial droplet size distributions were somewhat bimodal. The number 

of droplets appeared to increase with increasing flush energy, with statistically significant 

differences in droplet production across toilets. The FOM type toilet, which is ubiquitous in 

business, health care, and other public environments, produced far more droplets than the 

other toilets, both as total droplets and droplets per liter flushed.

All three modern toilets produced hundreds to thousands of droplet nuclei “bioaerosol” 

particles with each flush, though there were differences across toilets in droplet nuclei 

aerosol production as measured by mean airborne concentration produced. Aerosol 

production appeared to increase with increasing flush energy, in agreement with the droplet 

aerosol measurements immediately postflush. However, aerosol production was not 

proportional to preflush bowl water particle loading as would be expected for an assumed 

splash aerosolization model. An alternative bubble burst aerosolization mechanism is 

proposed that may be responsible for these results and similar results by other investigators.

There were also statistically significant differences in droplet nuclei production for different 

suspension particle sizes, with mean airborne concentrations decreasing as particle size 

increased. The mean air concentrations (or number of nuclei produced per flush) decreased 

with microsphere particle size.

These results provide additional support for concerns that flush toilets could play a role in 

airborne transmission of infectious disease via droplet nuclei bioaerosols. Further research is 

needed to separate the incidence of toilet flush aerosol-related airborne infectious disease 

transmission, if it exists as seems likely, from transmission by other routes.
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FIG. 1. 
In-tank flush mechanisms of the pre-FEPA, dual-flush high efficiency, and dual-flush 

pressure-assisted gravity flow toilets used in this work. (Color figure available online.)
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FIG. 2. 
Typical water flow in the base of a siphonic toilet. (Color figure available online.)
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FIG. 3. 
Elevated, controlled-environment water closet (WC) with airtight door, balanced HEPA-

filtered flush air and exhaust, air sampling ports on side walls, and externally-mounted air 

sampling pumps. (Color figure available online.)
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FIG. 4. 
Schematic of the flushometer flush water supply system incorporating a fine particle filter 

and pressure boost.
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FIG. 5. 
Droplet size distribution measurement. A Grimm aerosol spectrometer sampled the droplet 

aerosol from the enclosed volume immediately above the bowl water surface at relative 

humidity exceeding 99%. (Color figure available online.)
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FIG. 6. 
Normalized frequency plot of the droplet particle size distributions measured in the toilet 

bowl at 15 s postflush for the toilet types and flush conditions studied: pre-FEPA gravity 

flow, dual-flush volume high efficiency (HET), dual-flush volume pressure-assisted (PAT), 

and flushometer (FOM). Each curve represents the mean of three trials. (Color figure 

available online.)
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TABLE 1

Flush droplet generation

Toilet type and flush condition Total droplets produced
*

Droplet generation rate
*
 (droplets/L flushed)

Pre-FEPA gravity flow (13.3 Lpf) 54,363 (6764) 4,165 (570)

HET, low-volume flush (3.8 Lpf) 8220 (616) 2,237 (158)

HET, high-volume flush (4.9 Lpf) 10,620 (1060) 2,100 (189)

PAT, low-volume flush (4.2 Lpf) 25,762 (1855) 6,546 (545)

PAT, high-volume flush (4.9 Lpf) 40,521 (1955) 8,001 (308)

FOM (5.3 Lpf) 145,214 (8325) 25,663 (1525)

Each toilet type was statistically significantly different from the others, but there was no statistically significant difference between flush conditions 
for a given dual-flush toilet (HET or PAT).

*
Mean (standard error), n = 3 trials per condition.
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TABLE 2

Fluorescent droplet nuclei (DN) generation by toilets with similar flush volumes and seed concentrations, 

simulated with 0.25- or 0.30-μm diameter polymer microspheres

Toilet type and 
flush

Size (μm) DN particles Mean 

(SEM
*
) DN 

particles

Mean 

(SEM
*
) air 

conc. 
(DN/m3)

Number of 
particles 
present 
preflush

DN generation 
rate (DN 

produced per 
100 million 

present 
preflush)

Mean (SEM
*
) 

DN generation 
rate (DN 

produced per 
100 million 

present preflush)

HET (4.9 Lpf) 0.30 1512 1164 (229) 235 (46) 1.52 × 1011 0.995 0.256 (0.151)

0.30 1096 1.23 × 1012 0.089

0.30 1282 6.68 × 1011 0.186

0.25 1893 9.92 × 1011 0.191

0.25 230 1 . 44 × 1012 0.016

0.25 973 1.74 × 1012 0.056

PAT (4.9 Lpf) 0.25 148 1253 (734) 253 (148) 1.13 × 1012 0.013 0.072 (0.037)

0.25 2643 1.89 × 1012 0.140

0.25 968 1.54 × 1012 0.063

FOM (5.3 Lpf) 0.25 3432 2539 (218) 513 (44) 1.33 × 1012 0.259 0.233 (0.028)

0.25 2252 1.20 × 1012 0.188

0.25 2808 1.79 × 1012 0.157

0.25 1900 7.75 × 1011 0.245

0.25 2285 6.47 × 1011 0.353

0.25 2560 1.29 × 1012 0.198

*
SEM = standard error of the mean.
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TABLE 3

Droplet nuclei concentrations for various particle sizes flushed using the flushometer toilet (n = 6 trials per 

condition)

Particle size (μm) Mean (SEM
*
) bowl water preflush 

concentration (particles/mL)
Mean (SEM

*
) airborne 

particle concentration 
produced (particles/m3)

Mean (SEM
*
) airborne particle 

generation rate (airborne particles 
produced per 100 million particles 

present in the bowl preflush)

0.25 5.073 × 108 (7.427 × 107) 512.6 (44.0) 0.235 (0.029)

0.50 1.679 × 108 (2.028 × 107) 65.8 (18.4) 0.092 (0.034)

1.0 2.035 × 107 (1.968 × 106) 10.3 (4.6) 0.113 (0.052)

1.9 1.660 × 106 (7.009 × 105) 20.1 (9.9) 8.27 (6.86)

The 0.25-μm concentration was significantly different from the 1.0- and 1.9-μm concentration but not different from the 0.50-μm concentration, 
and the 1.0- and 1.9-μm concentrations were not significantly different from one another. Nemenyi's test with overall α = 0.05.

*
SEM = standard error of the mean.
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