
Acute high-level exposure to WTC particles alters expression of 
genes associated with oxidative stress and immune function in 
the lung

Mitchell D. Cohen1, Joshua M. Vaughan1, Brittany Garrett1, Colette Prophete1, Lori 
Horton1, Maureen Sisco1, Urmila P. Kodavanti2, William O. Ward3, Richard E. Peltier4, 
Judith Zelikoff1, and Lung-chi Chen1

1Department of Environmental Medicine, New York University School of Medicine, NY, USA

2Environmental Public Health Division, National Health and Environmental Effects Research 
Laboratory, Office of Research and Development, US Environmental Protection Agency, 
Research Triangle Park, NC, USA

3Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of 
Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 
USA

4School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA

Abstract

First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) 

collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies 

performed to date evaluated effects from just fine (<2.5 µm) WTC dusts; none examined health 

effects/toxicities from atmospheres bearing larger particle sizes, despite the fact the majority 

(496%) of dusts were >10µm and most FR likely entrained dusts by mouth breathing. Using a 

system that generated/delivered supercoarse (10–53 µm) WTC dusts to F344 rats (in a manner that 

mimicked FR exposures), this study sought to examine potential toxicities in the lungs. In this 

exploratory study, rats were exposed for 2 h to 100 mg WTC dust/m3 (while under isoflurane 

[ISO] anesthesia) or an air/ISO mixture; this dose conservatively modeled likely exposures by 

mouth-breathing FR facing ≈750–1000 mg WTC dust/m3. Lungs were harvested 2 h post-

exposure and total RNA extracted for subsequent global gene expression analysis. Among the > 

1000 genes affected by WTC dust (under ISO) or ISO alone, 166 were unique to the dust 

exposure. In many instances, genes maximally-induced by the WTC dust exposure (relative to in 

naïve rats) were unchanged/inhibited by ISO only; similarly, several genes maximally inhibited in 

WTC dust rats were largely induced/unchanged in rats that received ISO only. These outcomes 
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reflect likely contrasting effects of ISO and the WTC dust on lung gene expression. Overall, the 

data show that lungs of rats exposed to WTC dust (under ISO) – after accounting for any impact 

from ISO alone – displayed increased expression of genes related to lung inflammation, oxidative 

stress, and cell cycle control, while several involved in anti-oxidant function were inhibited. These 

changes suggested acute inflammogenic effects and oxidative stress in the lungs of WTC dust-

exposed rats. This study, thus, concludes that a single very high exposure to WTC dusts could 

potentially have adversely affected the respiratory system – in terms of early inflammatory and 

oxidative stress processes. As these changes were not compared with other types of dusts, the 

uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be 

determined if these effects might have any relevance to chronic lung pathologies that became 

evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days 

thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will 

help to determine if effects seen here on genes were acute, reversible, or persistent, and associated 

with corresponding histopathologic/ biochemical changes in situ.
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Introduction

The World Trade Center (WTC) collapse on September 11, 2001 not only resulted in an 

immediate devastating loss of life, but gave rise to health effects that took years to manifest. 

The collapse resulted in discharge of an expansive dust-laden plume bearing tons of 

pulverized building materials. ~Although no explicit measures of air quality immediately 

after the collapse were taken, extrapolations from airborne PM levels allowed for estimates 

ranging from >5000 µg/m3 initially (in collapse cloud) at Ground Zero to <1500 µg/m3 

thereafter (with intermittent spikes or declines dependent on site activity) to be generated 

(Landrigan et al., 2004; Lorber et al., 2007). Thus, a huge number of people were potentially 

exposed to aerosolized WTC dusts, particularly First Responders (FR) (e.g. firefighters, 

police, rescuers, iron/ construction workers).

Of the many people likely to have inhaled WTC dusts at the time of the collapse and during 

the first 72 h after, FR would seem most at risk to manifest adverse health effects. Based on 

the Fire Department of New York, 16% of members were present at the collapse and 69% 

arrived in the next 48 h; exposure status of these FR was deemed moderate-to-high. A 

majority of those FR at Ground Zero rarely/never wore respiratory protection; Prezant et al. 

(2002) noted 76–93% non-usage rates and Feldman et al. (2004) rates of 35–74%. A survey 

of non-firefighter FR noted only ≈20% (in a cohort of 1150) had access to/used respirators 

9/11–9/13 (Antao et al., 2011; CDC, 2004). Thus, FR and others were likely exposed to 

unprecedented levels of WTC dusts without adequate protection. This, along with 

continuous re-suspension of settled dusts and increased mouth breathing due to intense 

physical activity increased the risk that WTC dust particles – particularly those of large 

aerodynamic diameter (i.e. > 2.5 µm) – could have been entrained in the lungs of FR. It is, 

thus, not surprising that, in the past decade, upper and lower respiratory diseases/
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dysfunctions in a large percentage of exposed FR have emerged and continue to increase. 

Significant associations have been established between the time of arrival at Ground Zero 

and reductions in pulmonary function and in increased incidence/severity of persistent 

airway hyperactivity and asthma, sarcoid-like granulomatous pulmonary disease (SLGPD), 

and cancers (albeit not in lungs) (see Supplemental References).

The airborne WTC dusts were a mix of varying sizes, shapes, densities, and composition 

derived from an amalgamation of sources from/within the buildings. While 1.5% of the 

dusts (by mass) collected at/around Ground Zero during 9/11-9/13 were fine (aerodynamic 

diameter ≤2.5 µm), and ≈0.5% were coarse, the majority (>96%) were supercoarse (≥10µm) 

(see Vaughan et al., 2014). Several WTC dust constituents were believed to pose adverse 

health effects, including metals, polychlorinated biphenyls, dioxins, asbestos, volatile 

organics, polycyclic aromatic hydrocarbons, and synthetic vitreous fibers (SVF) 

(Supplemental References). Despite the fact that the majority of the initial WTC dusts were 

mostly supercoarse particles, no in vivo studies have been performed to evaluate health 

effects/mechanisms of toxicity by such particles. The few in vivo studies done to date 

utilized only the fine fraction (i.e. Gavett et al., 2003). As such, attempts to broadly assess 

WTC dust-related health effects have been limited in scope. We contend that inclusion of 

the larger diameter particles is essential to accurately assess effects of the entrained WTC 

dust particles.

To best simulate Ground Zero exposures (in regard to particle size distributions and mode of 

exposure), we built a system to deliver supercoarse-bearing (i.e. unfractionated part after 

initial sieving to remove supersize [>53 µm] debris) WTC dusts to a rat model at 

representative levels and in a manner to mimic FR mouth breathing (Vaughan et al., 2014). 

Via this system, rats were exposed to a single dose of WTC dust (from 9/11–13/01 period) 

that approximated a level that FR would have faced in the 24–72 h period after the buildings 

collapsed. All exposures were based on a referent period of exposure (i.e. 4-h for average 

FR at Ground Zero) (Mayor’s WTC Medical Working Group et al., 2011). The rats’ lungs 

were then isolated ≈2 h after exposure and subjected to global gene expression analyses to 

obtain initial indications of which, if any, genes might have been impacted (up-/down-

regulated) by the acute exposure. Of particular interest were genes related to inflammation, 

oxidative stress, immune function, and cell cycle control, as these could potentially be 

pertinent to mechanisms underlying various pulmonary pathologies increasingly reported in 

dust-exposed firefighters and other FR.

As the uniqueness of any WTC-induced changes will still need to be fully established (i.e. 

by comparing outcomes here to those from other dust types) and because the impact from 

the WTC dusts were measured here only at 2 h after the exposure, further studies (including 

use of longer-range post-exposure analyses [i.e. up to 1 year or more] and other coarse/

supercoarse ambient dusts) will be needed to firmly establish the relevance of any observed 

changes in gene expressions to WTC-related long-term diseases in the FR.
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Materials and methods

WTC dusts

WTC dusts were collected at representative sites on/around the Main Pile at Ground Zero 

during September 12–13, 2001. All samples were kept in their original airtight containers in 

the dark at room temperature to minimize potential light, heat, or ambient gas-induced 

changes in physicochemical properties that would then affect sample integrity. As large 

debris (glass/metal shards, stones, carpet fragments) that would never be drawn into the 

lungs was also present in the samples, parent WTC dusts were sieved to yield all particles of 

diameters ≤53 µm (i.e. WTC53-) for use in all exposures herein (WTC53-; referred to 

hereafter as ‘WTC dust’). Details about preparation of these first-sieve WTC53- materials, as 

well as inherent chemical/physical properties of this and other WTC size fractions were 

previously reported (Gavett et al., 2003; Maciejczyk et al., 2006; McGee et al., 2003).

WTC dust atmosphere generator

Dust atmospheres were generated via a custom-built Fishing Line system to generate 

nanoparticle/precious material atmospheres for inhalation studies (Ledbetter et al., 1998; 

Vaughan et al., 2014). All dilution air required for dust generation was composed of a 

mixture of filtered air and Isoflurane (ISO; IsoFlo, Abbott Laboratories, North Chicago, IL) 

in O2 carrier gas (2.5% final concentration after mixing with house air). ISO was selected 

for use in these exposures in that, unlike other commonly used inhalable (halothane, 

enthrane, penthrane, etc.) or injectable (pentobarbital, etc.) anesthetics, ISO was not 

expected to cause changes in body temperature or breathing patterns, or induce generalized 

inflammation, in rats in the 2-h period (proprietary data; EZ Systems Corp., Palmer, PA). 

Further confirming the utility of ISO, our data from ongoing studies have shown that ISO 

had no effect on lung/blood immune cell differentials within the first 7 days post-exposure 

(Horton and Sisco, Personal Communication).

Temperature/relative humidity (RH) of dilution air was continuously measured by digital 

probe and maintained to avoid conditions for excessive particle agglomeration. All dilution 

air was passed through an air-cleansing system prior to combination with ISO or dust. Total 

flow rates of ≈10 LPM (using air/ISO carrier) were used for all particle generations. All 

generated dust atmospheres were assessed gravimetrically on Teflon filters (0.2-mm pore 

Type FG; Millipore, Bedford, MA) and a microbalance (Mettler-Toledo, Hightown, NJ) in 

an environmentally controlled facility (20–23 °C and 38–42% RH). All samples were 

obtained by flow-pass collection for fixed periods of time before and after the exposures.

Experimental design—Male F344 rats (8-weeks-old) were purchased from Harlan Labs 

(Frederick, MD). On arrival, the rats were placed in polycarbonate cages with corncob 

bedding in a facility maintained at 23 °C with a 30–50% relative humidity and 12-h interval 

light/dark cycle. Food (Purina lab chow) and tap water were provided ad libitum. All rats 

were acclimated 1 week prior to use. All animal procedures were conducted under an animal 

protocol approved by New York University Institutional Animal Care and Use Committee 

(IACUC).
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In this study, sets of rats were exposed once (2-h period) to WTC53- dusts under ISO 

anesthesia; two controls were also used, i.e. rats exposed to ISO only (2.5% in carrier O2 

gas) or naïve hosts. An atmosphere of ≈100 mg WTC dust/m3 was used; this dose was 

chosen as a conservative estimate to model the rat exposure to correspond to one likely to 

have occurred in mouth-breathing FR exposed to Ground Zero levels of ≈750–1000 mg 

WTC dust/m3 (Asgharian, Personal Communication). All rats were exposed to the WTC53- 

dusts or ISO alone in an intratracheal inhalation (ITIH) integrated system (Vaughan et al., 

2014) that allowed the WTC particles, including those with da > 2.5 µm, to circumvent the 

rat nasal region so that they were introduced (and deposited) in the lungs in a manner to 

mimic mouth-breathing FR.

For the exposure, each rat was anesthetized using 5% ISO (for 3–5 min) generated by an 

EZ-150C system (EZ Systems). Each rat was then quickly intubated by direct insertion of an 

18-G Insyte catheter (Becton Dickinson, Sandy, UT) fitted with a plastic collar (200 µl 

pipette tip, to assure particles did not escape up trachea) and the catheter was then 

immediately attached to a system port. Mechanical ventilation was thereafter sustained at 60 

breaths/min (0.5 s inhale: 0.5 s exhale). The dust/ISO (ISO now 2.0–2.5% due to dilution) 

mixture was then delivered at a pressure of 15–20 cm H2O; excess air was vented off via a 

water column. To maintain body temperature (monitored via rectal probe), each rat was kept 

on a covered heating pad for the entire exposure. Blood O2 levels were also constantly 

checked using a Pulse Oximeter (Nonin Medical Inc., Minneapolis, MN).

At 2-h post-exposure, each rat (dust, ISO, or naïve) was euthanized by injection with 

Sleepaway® (500 mg/kg; Fort Dodge Animal Health, Fort Dodge, IA). The lungs were 

removed en bloc, separated from the trachea and major bronchi, blot dried, and weighed. 

The right lung cardiac lobe was removed, frozen, and stored at −80 °C until used for 

expression analyses. All other lung tissues were processed for histology or for dust/metal 

burden analyses.

RNA isolation and expression array: Total lung RNA was isolated using the Qiagen 

RNeasy mini Kit (Valencia, CA). Total RNA integrity was assessed by an RNA 6000 

LabChip® kit using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Global gene 

expression changes were evaluated with a bead array gene expression platform (Illumina 

Inc., San Diego, CA). Representative rat lung tissues were screened for gene expression 

changes after exposure to air (naïve; n = 3), ISO (n = 3), or ISO plus WTC dust (n = 5). 

Since a chip contained 12 arrays, and the total number of samples was 11, one RNA sample 

from naïve rats was run in duplicate. We anticipated that the high-level exposure to WTC 

dust would induce marked changes in the expression of genes and, therefore, 3–5 replicates/

group would provide adequate power for statistical comparison between groups.

Biotin-labeled cRNA was produced from 200 ng total RNA using the Illumina TotalPrep 

RNA Amplification kit (cat# AMIL1791). Total cRNA was then quantified using an 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) and evaluated for 

quality. Amplified RNA size distributions were assessed by an RNA 6000 LabChip® kit 

using a 2100 Bioanalyzer (Agilent). Samples were hybridized onto Sentrix Rat Ref-12 

Expression BeadChips with a multi-sample format allowing 12 samples/chip. After 
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overnight hybridization at 58 °C in an oven (SE-901–1001), bead arrays were washed and 

stained as recommended by the manufacturer (cat# BD-901–1003). Arrays were then 

scanned on the iScan module and raw data (.idat files) obtained using illumina iScan control 

Operating Software (version v3.3.28). All.idat files were analyzed by Illumina 

GenomeStudio® Data Analysis Software to assess data quality.

Statistics: Lung weight data were analyzed by one-way analysis of variance (ANOVA), 

with exposure group (naïve, ISO only, or WTC dust/ISO) as the main factor. Prior to 

performing ANOVA, all data were tested to assure assumptions of normality and 

homogeneity of variance were met. Data were also screened for outliers via Dixon and 

Grubbs analyses (Taylor, 1990). Statistical significance in all cases was considered at p < 

0.05. Statistical analyses of body weight data were performed using Graphpad Prism 

software (V5.0, Graphpad Software Inc., San Diego, CA) and R-statistical software package 

(version 2.15.1; R Development Core Team).

Analysis of microarray data

Normalization and determination of differentially-expressed genes: Illumina bead array 

data for each sample was normalized using Illumina GenomeStudio, using quantile 

normalization with no background subtraction. The resulting bead array expression table 

was downloaded from GenomeStudio into a text file. Statistical contrasts were calculated for 

‘naïve’ (untreated) vs ISO only control, ‘naïve’ vs WTC dust (in ISO), and ISO only control 

vs WTC dust (in ISO). Each contrast was computed on a text file containing all assayed 

genes as rows and only the contrast samples as columns by a Bayes t-test using R (Baldi & 

Long, 2001). Subsequently, a multiple test correction using the Benjamini-Hochberg method 

was applied to the Bayes t-test output in Excel with an α of 0.05. To support subsequent 

analysis, differentially-expressed genes (DEG) from the three contrasts were consolidated 

into a master DEG expression table.

Functional gene list preparation and hierarchical clustering: Three functional gene lists 

were generated by NetAffx queries at the Affymetrix website (www.affymetrix.com). The 

query terms were ‘oxidative stress’, ‘inflammation’, ‘cell cycle’, and ‘cancer’; the latter two 

term’s lists were combined for analysis. The three lists were exported separately from 

NetAffx as text files. For each list, gene symbols from each list were used to select the 

corresponding gene, if present, from the master DEG Illumina expression table to build an 

expression table that only contains the genes for a given function that were also DEG. These 

expression tables were then subjected to hierarchical clustering as subsequently described. 

Hierarchical clustering was computed using Cluster 3.0 (de Hoon et al., 2004) and was 

displayed using Java Tree view (Alok, 2004). The input file was adjusted by median 

centering of genes and clustering was done on genes with average linkage.

Results

WTC dust generation

Based on filter measurements taken before and immediately after the 2h exposure (i.e. no 

concurrent measures due to impact on flow delivery to rats), the rats were exposed to the 
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WTC dusts at an average level of 111.2mg/m3 (±13.8; SD). The mass median aerodynamic 

diameter (MMAD) of the WTC dust for this study was confirmed (via horizontal elutriation 

prior to animal exposures) to be 23 µm (σg = 1.45). This 111.2 mg dust/m3 level here would 

approximate an ≈ 850 mg dust/m exposure, likely to have been experienced by FR/others at 

Ground Zero over a period of 4 h during the 72 h period after the buildings’ collapse.

General effects of WTC dust exposure on lungs

F344 rats were exposed to ≈100mg WTC dust/m3 (dust + 2.5% ISO in O2 carrier gas) for 2 

h. Within 2 h of exposure, lung weights of WTC rats had increased ≈ 0.06 g; compared to 

those of ISO and naïve rats (net 11% increase). The increase in weight was more than 

predicted as a result of the dust being deposited during exposure (≈3 mg; Vaughan et al., 

2014). We have attributed this to, in part, rapid induction of edema/changes in post-exposure 

physiology.

Lung gene expression changes

Overall patterns—As shown in a Venn diagram, the single acute 2-h exposure of rats to 

WTC dust (always under ISO anesthesia) resulted in ≈1000 [628+140+33+199] genes that 

were significantly changed compared to levels in the naïve controls (Figure 1); of these, 232 

[33+199] were also noted in samples from rats in the ISO only [vs naïve] group. The use of 

the ISO anesthetic itself resulted in changes in 1151 [894+25+33+199] genes compared to 

levels in the naïve rats. When the data for the WTC (+ISO) dust rats was compared with that 

of ISO alone rats, 224 [140+25+33+26] genes were still found to significantly differ. Of 

these 224 genes, 58 [33+ 25] were ‘in common’ with the ISO only [vs naïve] hosts, leaving 

166 [140+ 26] to be unique due to the WTC (+ISO) dust itself (Figure 1). Interestingly, 

because the anesthesia itself actually affected more genes than the WTC dust (1151 vs 1000, 

respectively), further scrutiny of all gene changes was undertaken (see below).

To determine the nature of the gene changes, master DEG lists (significant differentially-

expressed genes) that included significant genes from all possible contrasts were sorted to 

derive the 30 maximally-amplified and 30 maximally-inhibited genes (relative to expression 

in naïve hosts) in rats exposed to WTC dust (under ISO) and those that received ISO only 

(Tables 1–4). In doing this, rather than including a column for fold-change for just one 

contrast, fold-changes from all contrasts were included. This allowed for determination of 

relative fold-change and direction of change that might occur in all groups and a 

determination of how changes induced by WTC dust differed from that by ISO alone.

From this analysis, one picture clearly emerged; genes induced (relative to in naive rats) by 

WTC dust (under ISO) were largely inhibited in rats exposed to just the anesthetic alone, 

and vice-versa. This suggested that the types of changes induced by WTC dust contrasted 

with those induced by ISO alone. The genes maximally-induced by WTC dust exposure – 

relative to that by ISO alone – included several involved in an inflammatory response and 

maintenance of the proteinase:anti-proteinase balance in the lungs (Table 1). Most of these 

genes remained increased when the WTC group was compared to naïve controls. In contrast, 

many of these same genes were either unchanged or inhibited in the ISO only group (vs 

naïve), again emphasizing the likely contrasting effects of ISO and the WTC dust. This 
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remained true as well for genes that were maximally inhibited in the WTC dust rats relative 

to those in the ISO only regimen, i.e. genes inhibited by the WTC dust were largely induced 

or unchanged in rats that received ISO only (Table 2). Genes inhibited maximally in WTC 

dust rats – relative to in ISO only rats, included some involved in anti-oxidant function, 

fibroproliferative responses, and inhibition of energy-generating processes.

The 30 genes maximally-induced by ISO alone (relative to naïve rat levels) were generally 

inhibited in the WTC dust-exposed rats. When fold-changes (vs naïve hosts) in ISO only-

induced genes were compared to those due to the WTC dust regimen, these genes remained 

induced; this suggested that effects on these genes were specific to ISO and that, in the WTC 

dust rats, these genes might have been inhibited or unchanged (Table 3). Genes induced by 

ISO alone (vs naïve) included some involved in tissue regeneration and repair processes, 

including protease inhibitors. In general, those genes inhibited in ISO only rats (vs naïve) 

generally were also inhibited in the WTC rats (vs naïve); however, as noted above, in direct 

comparison to in the ISO only hosts, there were many cases wherein the levels of these 

genes were greater as a result of the WTC dust itself (Table 4), once again illustrating likely 

contrasting effects of ISO and the WTC dust. These included several involved in 

inflammation and cell signaling.

Genes related to inflammation—The Master DEGs list was further screened for genes 

involved in inflammation, oxidative stress, and cell cycle control (Figures 2–4) based on 

known associations of each gene in respective processes. Figure 2 presents a heat-map of 

selected hierarchical clusters of genes within this DEG list that are involved in 

inflammation. A large cluster of genes that was selectively induced in rats exposed to WTC 

dust under ISO anesthesia (relative to naïve rat expression), but not changed by ISO alone. 

These included numerous chemokines and cytokines, as well as genes involved in cell 

signaling, protease:anti-protease responses, cell adhesion, calcium homeostasis, and cell-

mediated immunity (Figure 2). Interestingly, a cluster of genes that was induced in the ISO 

only group – but not in WTC dust rats – included suppressors of cytokine signaling and 

inhibitors of metallopeptidase; this indicated that, in contrast to the WTC dust itself, the 

anesthetic was likely to produce anti-inflammatory and -proteolytic changes in the lung. 

Genes inhibited (relative to expression in naïve rats) in WTC dust rats, but not in ISO-only 

rats, included epoxide hydrolase 2, cytochrome P450 isoform, ICAM2, and mucin 1 (Figure 

2).

Genes related to oxidative stress—Genes implicated in oxidative stress responses 

were also variably affected by ISO alone and by the WTC dust. A cluster of genes was 

induced (relative to naïve rats) by ISO alone, but was not changed in the WTC dust rats, 

suggesting that the presence of WTC dust in the lung inhibited some ISO-induced genes. 

Those included several genes involved in the processes associated with glutathione 

metabolism, as well as peroxiredoxin, oxidative stress responsive-1, and glutathione S-

transferase. Several other genes involved in tissue repair-related cell signaling, such as 

mitogen-activated protein kinase (MAPK)-3 and -12, vascular endothelial growth factor 

(VEGF) A, Bcl2-like-1, transforming growth facto (TGF)-β1, cyclin dependent kinase 

inhibitor, and Kruppel-like factor-2 were induced in the ISO only rats, but not apparent in 
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the WTC dust rats (Figure 3). Numerous genes involved in oxidative stress response were 

induced in the WTC dust exposed rats, but unchanged by the anesthetic alone. These 

included dual oxidase 2, iNOS, eNOS, glutamate cysteine ligase-C, lipocalin-2, glutathione 

peroxidase 2, mitochondrial superoxide dismutase, NADPH dehydrogenase, and 

thioredoxine reductase (Figure 3).

Genes implicated in cell cycle control—A cluster of genes relevant to cell cycle 

control that was up-regulated (relative to naïve rats) in WTC dust rats but not changed by 

ISO alone is shown in the (Figure 4a) heat-map. Genes induced only by the anesthetic are 

not shown in this cluster. It should be emphasized that many genes involved in inflammation 

and oxidative stress have also been implicated in cell cycle control and, therefore, they can 

be seen in multiple clusters. Those include several Kruppel-like factors, cAMP responsive 

element modulators, cyclin-dependent kinase inhibitors, jun B protooncogene, Ras 

associated-RalGDS/AF-6, RAN-Ras oncogene family members, growth arrest and DNA-

damage-inducible gene, cyclin H, and several involved in apoptosis (Figure 4a). A cluster of 

genes that appeared to be inhibited by the ISO itself or by WTC dust is shown in (Figure 

4b). This cluster included several genes associated with diverse signaling processes involved 

in pathologies, including E2F transcription factor-1, insulin-like growth factor receptor-1, 

bone morphogenic protein-7, ADAM metalloproteases, caspase-2, hydroxyl-prostaglandin 

dehydrogenase isoforms, RAB11a, and adenosine receptor-A2a (Figure 4b).

Discussion

The few in vivo studies performed to date to examine WTC dust-related health effects did 

not utilize exposures that accurately reflected conditions in the early days post-9/11. Those 

studies used fine dust fractions/exposure methods either non-representative (instillation, 

aspiration) or optimal (nose-only inhalation) for use with large particles. A study doing 

exposures to total WTC dust in a manner comparable to that experienced at Ground Zero 

would have to account for significant mouth-breathing that occurred among FR. Further, in 

any study that used rat models, a nose-only approach would be limited as filtration/

entrapment of the >95% supercoarse WTC particles in nasal passages would be certain. To 

avoid these problems, we developed a system to generate\administer supercoarse WTC 

particles in a manner reflecting Ground Zero scenarios (Vaughan et al., 2014). The system 

allowed the larger diameter particles to circumvent nasal regions in rats for introduction 

directly into the lungs and let us expose rats to high levels of dusts collected on-site in the 

first 48–72 h post-collapse. In the study here, rats were exposed to a single WTC dust dose – 

one reflecting a very high exposure level (750–1000 mg dust/m3) likely faced by FR over 

the first 72 h at Ground Zero. The main findings were that acute exposure (under ISO) to 

WTC dusts recovered from Ground Zero modulated expression of many genes related to 

lung inflammation, oxidative stress, as well as some related to cell cycle control. 

Nevertheless, as these very acute changes may likely occur with a single large bolus dose 

exposure to other types of air pollution particles, the uniqueness of the WTC effects still 

needs to be verified by comparative analysis with other coarse/supercoarse particles.

Previous in vitro studies have provided findings that portended potential in situ implications 

from WTC dust exposure. Earlier in vitro studies performed in our laboratory with 
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supercoarse WTC dust showed there was acute toxicity to cultured human BEAS-2B airway 

epithelial cells after a single 2- or 24-h dust exposure (Xu et al., 2011). This outcome was 

characterized by lack of cleavage of the DNA repair enzyme PARP after exposure, a finding 

consistent with necrosis (not apoptosis) as a mode of dust-induced damage to/death among 

local lung cells. In vitro studies by others showed that primary alveolar macrophages (AM) 

and Type II epithelial cells exposed to WTC10–53 showed time-/dose-related increases in 

pro-inflammatory cytokine and chemokine (IL-6, IL-8, TNFα; Payne et al., 2004) 

production. An interesting side note to those studies was that fine (WTC2.5) particles 

induced greater responses than WTC10–53. Wang et al. (2010), examining the role of MAPK 

signaling pathways in WTC dust-induced cytokine release, showed that BEAS-2B exposure 

to WTC2.5 (for 5 h) led to increased IL-6 mRNA expression/protein release, IL-8 and −10 

production, and ERK and p38 (but not JNK) pathway activity.

As noted, some in vitro findings associated with a likely induction of inflammatory states in 

situ were corroborated here. For example, WTC dust exposure (under ISO anesthesia) led to 

significant increases in IL-6 (≈3.6–4.0-fold) and in IL-1 (2.0– 4.0-fold) expression relative 

to levels in naïve or ISO-only-exposed rats. Based on Hinson et al. (1996), we surmise that 

increases in IL-6 might be related to changes in prostaglandin (PG) metabolism. Indeed, 

results showed that PGE synthase expression was also up-regulated above median levels. As 

changes in PG presence are closely related to cyclo-oxygenase and lipoxygenase activities 

(Murphy & Gijon, 2007; Ricciotti & Fitzgerald, 2011), it was not unexpected that lungs of 

dust-exposed rats also had elevated arachidonate 5-lipoxygenase (5-LO) expression. This 

finding is important in that: (1) 5-LO, most likely via leukotriene generation, plays an 

important role in the pathogenesis of acute lung injury and hemorrhagic shock (Eun et al., 

2012); (2) the 5-LO pathway has a key role in IL-13-induced chronic inflammation and lung 

remodeling (Shim et al., 2006); and (3) arachidonate metabolites mediate inflammation in 

general and asthma in particular (Wenzel, 1997). Together, the findings from the cited in 

vitro studies and our in vivo study demonstrate that exposure of lung cells to fine/

supercoarse WTC dust could lead to release of factors that contribute to inflammation and 

airway remodeling processes in the lung. While this is important to understanding potential 

mechanisms underlying documented pathologies (like asthma) in FR exposed to high dust 

levels in the 9/11–13/01 period, it will still be critical to examine if these gene expression 

changes result in lung inflammation, injury, or pathology over time following an acute WTC 

dust exposure. A current follow-up study is examining the timecourse of inflammatory and 

pathological responses (including inflammatory cell influx) in the lungs of rats that 

underwent acute WTC dust exposure.

The Wang et al. (2010) study tried to ascertain if there was a predominant mechanism of 

cytotoxicity (necrotic vs apoptotic) in WTC dust-exposed lung epithelial cells and the role 

ERK, JNK, and/or p38-initiated signaling may have played. Studies had suggested that JNK 

had a pro-apoptotic role, while ERK-and p38-initiated signaling had anti-apoptotic roles in 

cell fate-responses to oxidants (Buckley et al., 1999; Carvalho et al., 2004). In contrast, lung 

macrophages with inhibited ERK exhibited cytotoxicity characterized by markers of both 

apop-tosis (caspase activation) and necrosis (ATP loss) (Monick et al., 2008); JNK 

activation/p38 deactivation resulted in apoptosis (Kim & Sharma, 2004; Seimon et al., 
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2009). At this time, it remains unclear what role JNK, ERK, or p38 may have had in the in 

situ lung cell responses to WTC dusts here; further analyses are warranted.

Our study showed that a single high-dose WTC dust exposure caused a down-regulation 

among several MAPK forms, i.e. ERK1 (MAPK3) and ERK2 (MAPK1/2). Interestingly, it 

seems that the presence of ISO during the inhalation was stimulatory with regard to 

MAPKs; thus, the down-regulating effects of the WTC dust were likely even stronger than 

implied by the data. In the context of the reported increase in asthma among FR exposed the 

first days post-9/11, these findings (reductions in ERK availability) would seem 

counterintuitive: (A) an increased presence/activation of the enzymes is important to overall 

pathology (including shift to T-helper [TH]-2 status (Pelaia et al., 2005); and (B) reduced 

apoptosis of local cells (including effector T-cells) in small/large airways may serve as pro-

inflammatory triggers to contribute to persistent airway inflammation (Lamb et al., 2005). 

Because of key limitations of our study, i.e., only a single post-exposure timepoint was 

examined, exposure occurred under anesthesia, and comparative effects from exposure to 

other urban coarse/super-coarse particles are not yet known, it is clear that further 

characterizations of the various MAPKs in the rat lung tissues are needed to clarify any 

WTC dust-specific changes in this signaling pathway. JAK isoforms also have roles in 

asthma development; JAK can regulate effects of TH2 IL-4, −5, and −13, and affect mast 

cell homeostasis (Inoue et al., 2007; Malaviya et al., 2010; Morales et al., 2010). Ip et al. 

(2006) showed JAK2 up-regulation in BEAS-2B cells in response to asthma-associated IL-4 

and IL-13, each of which are critical to the eventual release of monocyte chemo-attractant 

protein-1 (MCP-1) involved in bronchial hyper-reactivity/lung remodeling. Unlike the 

apparent disconnect regarding MAPKs in scenarios likely to result in asthma, there was a 

clear trend to increased JAK2 expression in dust-exposed rat lungs. Apart from MCP-1 

(CCL2) induction, an increase in JAK presence/activation is also critical to increased nitric 

oxide synthase (NOS) expression (Gebru et al., 2011; Ji et al., 2011) that contributes to lung 

inflammation during asthma/other pathologies. Thus, it was not surprising that increased 

iNOS and eNOS expression was seen in the lungs of dust-exposed rats. As eNOS and iNOS 

also impact on MCP-1 status (Speyer et al., 2003), it was in keeping that there was strong 

(>4.5-fold) induction MCP-1 in the WTC dust-exposed rats’ lungs. In summary, our 

findings suggest many key enzymes/proteins required for potential induction of 

inflammatory changes in WTC dust-exposed rats were up-regulated by the single high dose 

(while under ISO anesthesia). Because MCP-1 can be an important regulator of neutrophil/

macrophage recruitment to the lungs and since MCP-1 expression is also induced by 

sandstorm dust (He et al., 2013), the specificity of this response to WTC dust (and its 

significance in long-term lung pathologies in the lung) needs to be further examined.

Apart from potential tissue damage/induction of altered immune responses and associated 

pathologies, many pro-inflammatory cytokines shown either in vitro or in this animal study 

to have been induced by the WTC dusts are likely to also stimulate adenylate cyclase 

activity in airway smooth muscle cells (Osawa et al., 2007). It is, thus, possible that 

mediators released by dust-exposed cells could activate cAMP synthesis, resulting in 

increases in cAMP that underlie the airway-remodeling central to asthma (Munakata, 2006) 

and chronic obstructive pulmonary disease (COPD) (Puchelle et al., 2006). As a second 
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messenger, cAMP leads to activation of protein kinase that phosphorylates/ activates CREB 

and CREMα transcripttion factors that bind cAMP response elements (CRE) in promoter 

regions of several genes (Sassone-Corsi, 1998). While the arrays here did not assess cAMP, 

they indicated increased expression of cAMP responsive element modulator protein 

(CREM). We postulate that this increase in CREM expression, if persistent, could contribute 

to a shift in the TH1/TH2 balance in the lungs (toward TH2) and promote allergic asthma-

type responses. However, since only one timepoint was evaluated here, the expression 

changes will need to be examined over longer post-exposure periods. A recent paper noted 

that CREMα over-expression led to an aggravated inflammatory phenotype related to higher 

IL-17A levels and persistent lung inflammation (Lippe et al., 2012; Verjans et al., 2013). As 

IL-17A is also associated with increased recruitment of neutrophils/phagocytes in lung 

infection responses (Kimizuka et al., 2012), it is not implausible that a CREM-related 

enhanced recruitment may also have had a role in SLGPD in some exposed FR. This too 

remains to be verified in tissues from the WTC dust-exposed rats over a longer post-

exposure period.

Like other pollutants (Ghio et al., 2012), WTC dusts might oxidize lung lipid and protein 

macromolecules, resulting in acute activation of anti-oxidant homeostasis. In this process, 

nuclear factor erythroid 2-related factor (Nrf2) transcription factor levels are elevated. Via 

subsequent interactions with DNA anti-oxidant response element (ARE) sites, Nrf2 

transcriptionally activates compensatory response genes, including some involved in 

antioxidant, anti-inflammatory, and repair processes (Lee et al., 2005). As increased 

inflammatory cytokine gene expression in WTC-exposed rats was also associated with 

increased transcription of Nrf2 and activation of anti-oxidant response genes (thioredoxin 

reductase-1, HO-1, NAD(P)H dehydrogenase [quinine 1], glutamate cysteine ligase), this 

suggested that an alteration in anti-oxidant homeostasis was induced. As with the ERKs, 

such outcomes seem counterintuitive with regard to asthma development. There are at least 

two means by which the dusts could induce changes in the lung that in fact short-circuit any 

beneficial role from Nrf2: (A) continuous presence of ROS/oxidants could inhibit Nrf2 

activation and target gene expression (Goven et al., 2009); and (B) presence of TGFβ could 

mitigate Nrf2 effects (Michaeloudes et al., 2011). We addressed earlier how genes induced 

by WTC dust could impact pro-inflammatory events (like ROS formation) in the lung. With 

regard to a potential for (B), our results show variable levels of TGFβ induction in the dust-

exposed rats. While this could imply TGFβ has no role at this one particular time post-

exposure, it cannot preclude potential changes in expression (or effects on Nrf2) as time 

increases. The data also show TGFα expression was elevated. Alone, TGFα has no known 

impact on Nrf2 – it can potentiate effects of TFGβ (Vinals & Pouyssegur, 2001). If this is 

the case after WTC dust exposure, the initial purported protective effects of Nrf2 might be 

short-lived. Further longitudinal (post-exposure) studies are needed to confirm if TFGβ 

levels rise (and Nrf2 abate) in WTC dust rats’ lungs.

We recognize that the ISO anesthetic used here was not without its own impact on genes in 

the lungs. A number of studies have shown that lung injuries induced by endotoxin, 

zymosan, or sepsis, and in some cases associated gene expressions, were reduced by host 

(rats and mice) exposure to ISO (Bedirli et al., 2012; Li et al., 2009, 2013; Reutershan et al., 
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2006; Wang et al., 2013). Further, ISO alone was shown to reduce lung gene expression for 

elements of the NF-κB pathway involved in inflammation (Kadar et al., 2011). Our study 

also showed that ISO alone was able to change expression of several genes, especially some 

associated with NF-κB activation. A study by Edmands et al. (2013) indicated that, based on 

the genes impacted by exposure of rats to 2% ISO for 1–2 h, a number of ontologies were 

represented, including some relevant to our own observations, i.e. cell apoptosis, survival 

signaling, energy pathway regulation, redox control and ion gradient maintenance, as well as 

overall regulation of inflammatory responses. However, the extent (fold) of change induced 

by the ISO rarely exceeded ±2-times background in any of the sites evaluated, i.e. heart, 

liver, and kidney; and the study did not examine effects in the lungs.

These cited studies notwithstanding, it is clear that, even though ISO itself had an impact on 

gene expression in our study: (A) 166 changes were unique to the WTC dust (exposure); (B) 

in many instances, genes maximally-induced by WTC dust exposure (relative to in naïve rat 

lungs) were unchanged/inhibited by the ISO only; and (C) several genes maximally 

inhibited in WTC dust rat lungs were largely induced/unchanged in lungs of rats that 

received ISO only. These three points reflect the contrasting effects of ISO and WTC dust 

on lung gene expression and suggest that ISO could have actually protected the lungs from 

WTC dust-induced injury. As such, the WTC dust-induced effects here on genes involved in 

lung injury, inflammation, and oxidative stress processes may have been under-estimated 

due to the opposing effects of ISO in the lungs of the rats.

It remains to be determined if these initial events from a single high-level exposure could 

account, in part, for the long-term chronic lung effects that have become associated with 

WTC dust exposure among FR and others. Ongoing studies with multiple exposures to the 

WTC dusts – and employing longer-range post-exposure analyses (i.e. up to 1 y or more) – 

will allow comparison of single vs repeated exposure as well as to determine whether effects 

seen here on the affected genes were acute, reversible, or progressive. Similarly, to see if the 

changes seen here in gene expression within 2 h ultimately manifest as alterations in the 

structure/function of WTC dust-exposed rats’ lungs, lung tissues harvested in the ongoing 

studies will also be examined for histopathologic/biochemical changes. Finally, as it is likely 

other respirable coarse or supercoarse particles could also induce inflammatory responses 

and associated gene changes, future comparative analyses of effects from an acute large 

bolus exposure to other bioactive and ‘inert’ dusts, e.g. silica, Mount St. Helen’s ash, will be 

critical to verifying WTC dust-specific changes in gene expression patterns. Those results 

will be reported in upcoming manuscripts.

Conclusion

In summary, in vitro studies had previously shown that WTC dust (at least the supercoarse 

particles) had a direct toxic effect on airway epithelial cells and altered cell signaling 

properties. Results from this in vivo study of a single acute high-dose exposure to the dusts – 

comprised primarily of supercoarse particles – indicated evidence of up-/down-regulation of 

genes related to several mediators of processes that corroborate with the in vitro outcomes. 

We also noted that ISO anesthetic required for the exposures had significant effects on gene 

expression; however, in many instances, genes maximally-induced by WTC dust exposure 
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were unchanged or inhibited by the ISO only and in other instances, genes maximally 

inhibited in WTC dust rats were largely induced/unchanged in rats that received ISO only. 

These opposing responses suggest there were WTC dust-induced effects on expression of 

genes in the lungs of rats and that some may have been under-estimated due to a relative 

‘protective’ effect from the ISO.

Overall, the findings here illustrated that a single acute high-level exposure of rats to WTC 

dusts modulated their pulmonary expression of many genes related to inflammation, 

oxidative stress, anti-oxidant function, as well as some related to cell cycle control. 

Although these changes suggested induction of acute inflammogenic effects and oxidative 

stress in the lungs of these rats, to ultimately relate our findings to changes in pulmonary 

health of FR and others who were exposed to WTC dusts within the critical first 72 h after 

the building collapses, a few key issues still need to be evaluated/clarified/addressed. These 

include: (1) contributions to these outcomes from fine (WTC2.5) and coarse (WTC2.5–10) 

particles that were present in the dusts used here (albeit at comparatively very low levels); 

(2) whether the noted expression changes are acute, reversible, or progressive, and if they 

manifest as alterations in WTC dust-exposed rat lung structure/function; and (3) the 

uniqueness of these responses to the WTC dusts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Venn diagram illustrating number of genes significantly changed by isoflurane (ISO) alone 

(vs naïve) and by WTC dust exposure (under ISO anesthesia) in rat lungs. ISO by itself 

changed 1151 genes; when dust was combined with ISO, 1000 genes were changed – of 

which 232 were in common with ISO, but 166 were due to WTC dust exposure.
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Figure 2. 
Heat-map for relative expression of genes involved in inflammatory response in naïve rats 

and those exposed to only ISO anesthesia or WTC dust (under ISO anesthesia). Genes were 

clustered using Eisen’s Cluster Analysis with median centering and average linkage. 

Resulting clusters were visualized with Treeview. Red = genes with higher expression 

values than median; green = genes with lower expression values than median; black = 

median expression. Gene list was truncated to fit in the figure and for clarity.
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Figure 3. 
Heat-map for relative expression of genes involved in oxidative stress response in naïve rats 

and those exposed to only ISO anesthesia or WTC dust (under ISO anesthesia). Genes were 

clustered using Eisen’s Cluster Analysis with median centering and average linkage. 

Resulting clusters were visualized with Treeview. Red = genes with higher expression 

values than median; green = genes with lower expression values than median; black = 

median expression. Gene list was truncated to fit in the figure and for clarity.
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Figure 4. 
Heat-map for relative expression of genes involved in cell cycle-related processes in naïve 

rats and those exposed to only ISO anesthesia or WTC dust (under ISO anesthesia). (a) One 

hierarchical cluster of genes that were induced in rats exposed to WTC dust (+ISO) but not 

changed in rats exposed to ISO alone (relative to naïve controls). (b) A different hierarchical 

cluster of genes showing down-regulation in rats exposed to WTC dust (+ISO) and ISO 

alone (relative to naïve controls). Genes were clustered using Eisen’s Cluster Analysis with 

median centering and average linkage. Resulting clusters were visualized with Treeview. 

Red = genes with higher expression values than median; green = genes with lower 

expression values than median; black = median expression. Gene list was truncated to fit in 

the figure and for clarity.
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