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Abstract

Human body motion for load-tossing activity was partitioned into three phases using four critical 

events based on the load position viz. lift-off, closest to body, peak and release. For each phase, 

three objective functions values, viz. mobilization, stabilization and muscular torque utilization, 

used to control the motion patterns, were then calculated. We hypothesize that the relationships 

between different objective functions can be extracted using information theory. The kinematic 

data obtained with 36 treatment combinations (2 tossing distances, 2 tossing heights, 3 weights, 

and 3 target clearances) was used to estimate the mutual information between each pair of 

objective functions and construct Chow-Liu trees. Results from this research indicate that there 

was no dominant concern in the first two phases of the activity; however, torque utilization and 

mobilization were found to be important factors in the third phase of the load tossing activity.
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1. Introduction

Manual material handling (MMH) tasks often involve various forms of body motion 

including lifting, carrying, pushing and pulling. One work physical activity that was often 

overlooked is tossing which constitutes 26% of all the MMH activities in industry (Delisle 

& Gagnon, 1995), possibly owing to its similarity with lifting. Tossing is especially a 

concern in garbage collection, construction, and baggage handling operations at airports, 

though little research is available in the literature for addressing the effects of tossing on 

body biomechanics and related injuries.
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For prevention of musculoskeletal disorders, researchers have been employing various 

biomechanical modeling approaches to estimate joint loads and moments, particularly on the 

lumbar-sacrum region. The traditional biomechanical modeling approach, however, is 

limited to many uncertain properties of the human biological system. Many assumptions 

must be made to satisfy the biomechanical equilibrium such as kinematic redundancy (Ivaldi 

et al., 1988). Optimization is a common technique to satisfy this equilibrium. For example, 

Muth et al (1978) derived an optimization model for assessing sagittal lifting. Chang et al 

(2001) used a spacetime optimization approach to simulate lifting motion patterns. These 

techniques, however, face many obstacles such as presence of large uncertainties and search 

space leaving the system optimizer with a very large number of parameter combinations that 

are often infeasible to enumerate or simulate. Furthermore, because of the inherent 

complexity, non-linearity and over-redundancy in biological systems (Winter, 1985), it 

becomes difficult to capture the inter-relationships between different constraints over space 

and time using optimization techniques (Shan et al., 2004).

In this study, we used a different research approach to analyze the biomechanics of tossing. 

An optimal toss is characterized by a series of decisions so that the objective functions are 

optimized (e.g., minimized spinal loading and maximized accuracy of tossing). This is 

accomplished by a series of postural sequences over time. The sequence can only be 

understood in the context of other strategies that come before or after each strategy (carry-on 

effect) (Brehmer, 1992). Payne et al. (1988) showed that individuals use a variety of choice 

strategies for the same physical behavior. The selection of a strategy involves a trade-off 

between accuracy (good performance) and informativeness (reduction in uncertainty) (Yaniv 

& Foster, 1995). This research approach raises the challenge of humans’ ability to utilize 

relevant information so as to be able to choose strategies for optimal body biomechanics. 

One solution to this challenge is the use of a structured relationship (Cooper & Herskovits, 

1992) between different objective functions.

The amount of uncertainty about any behavior, including tossing, can be explained by a tree 

structure (Nielsen et al., 2008). That is, the relationship among multiple objective functions 

when accounted for can lead to a great explanation/control over the tossing behavior. The 

aim of this study is to show the logical relationship between different objective functions, 

using mutual information (Cover et al., 1994), and to provide an overview of how those 

relationships change as the tossing task comes to a termination under different experimental 

conditions. Using information theory, it is possible to develop a series of trees/networks that 

capture uncertainty (and aid in the decision making/strategy selection process) during the 

various phases of tossing. The differences between these networks could be explained by 

changes in body biomechanics from phase to phase. When viewed in this manner, 

differences between networks/tree structures become interesting as they are a reflection how 

the information is flowing from phase to phase and this information flow helps us identify 

optimal tossing behavior.
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2. Methods

2.1. Participants

Ten healthy college students (6 males and 4 females) free of injuries or history of 

musculoskeletal disorders and naive with actual MMH work participated in the study. The 

male and female subjects’ mean (SD) ages were 29.0 (1.1) years and 23.8 (2.4) years; their 

statures were: 169.0 (10.0) cm and 163.0 (2.0) cm; and their body weights were 75.0 (16.7) 

kg and 48.1 (4.0) kg, respectively. The study was carried out in the Ergonomics Laboratory 

of the Texas Tech University and the protocol was approved by the Institutional Review 

Board.

2.2. Experimental Protocol

A 2×2×3×3 (Distance- 1m, 1.5m, Height- floor, table (set to 53% of the subject's stature 

(waist height)), Weight- 1kg, 5kg, 7kg, and Target clearance- 110%, 150%, 200% 

respectively) factorial design was used in this study. Distance is defined as the distance 

between the subject and the target. Height is defined as the height at which the target is 

located. Weight is the weight of different loads used and target clearance is defined as the 

area of the target whose dimensions are x% times the dimensions of the load. Each subject 

was required to perform 10 trials for each condition. The subjects were required to take a 

mandatory rest for at least five minutes between changes in the treatment combinations, and 

allowed to rest between trials when they felt a need. To avoid fatigue during testing, nine 

test conditions were tested each day in a random order.

2.3. Experimental Procedure

Test conditions were selected to mimic some typical MMH tossing tasks often observed in a 

warehouse. Prior to each trial, participants were instructed to stand at a prescribed start 

location. Participants picked a cardboard box (30×30×20 cm in size) of varying weights (of 

foam or bubble bag) from the ground and tossed it to the target location (on the ground or on 

to a table right in front of them) in one smooth motion. A landing plate was used to represent 

the target area.

2.4. Instrumentation

A six-camera Motion Analysis Falcon optical motion tracking system (Motion Analysis, 

USA) was used to capture subjects’ motion during each trial. The kinematic data were 

collected at 60 Hz. Twelve 25-mm diameter retro-reflective markers on the main joints 

(wrist, elbow, shoulder, hip, knee, and ankle) were affixed to each participant to track whole 

body motion. A combination of bony landmarks, measured anthropometry and marker 

positions was used to calculate each segment position. The center of mass (COM) position 

of each segment was calculated as a percentage of segment length from the proximal/distal 

end of the segment (Dempster, 1955). In addition, two markers were attached to the side of 

load which represented the shape and orientation of the load during the tossing task. An 

additional marker was attached to the side of the table which represented the center of the 

target location. Figure 1 shows all marker positions.
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2.5. Performance objectives

Hsiang & Mcgorry (1997) indexed and synthesized motion patterns of the external load by 

three biomechanically unique objective functions (concerns) viz., mobilization (M), 

stabilization (S) and strength utilization (T) and hence we use the same three objective 

functions in this study too. Mobilization is defined as a minimum jerk movement strategy 

(Flash & Hogan, 1985) and its mathematical expression is

(1)

Where X and Y are horizontal and vertical position of the hand:

(Li is the length of segment i and θi is the angle made by joint i with the horizontal).

Stabilization minimizes any sudden or jerky change of the center of gravity of the body-load 

system and is given by

(2)

Where XCG(t) and YCG(t) are the linear displacements of the center of gravity in the 

horizontal and the vertical directions of the body-load system, respectively.

The objective function of optimal strength utilization involves performance of the lift with 

the least possible effort from the five joints comprising the kinetic chain (Gagnon & Smyth, 

1991). The mathematical expression is:

(3)

Where Sj the moment strength of joint j and Mj is the reactive moment at joint j.

In all the above equations the limits of integration ti and tf are the times at which the tossing 

activity starts and finishes respectively.

2.6. Phases in tossing and their identification

Since human physical and motor system hasn't developed to a stage where it can adapt to the 

changes in the task and environment instantly, human decision making process seldom arise 

instantly, rather they arise phase-wise (Meyer et al., 1988). To account for the delay in 

feedback, it makes it easier to think that the decision making happens in phases. A good 

coding system will capture the motion patterns and related postural control using the fewest 

necessary bits of information. Based on Occam's razor, Hsiang et.al (1998) demonstrated 
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that the improvement of the resolution diminishes after the use of three phases separated by 

four events.

In the present study, each tossing task is divided into three phases marked by four events 

based on a coding system proposed by Hsiang et al (1998). These four events were the initial 

position (lift off), the load closest-to-body-position, the highest position (peak), and the final 

position (release). Figure 2 shows the body postures and load positions for the four events of 

a tossing task. Phase 1 is the period from lift-off to the load closest to body position. Phase 2 

starts from the load closest-to-body position to the load being at the highest position. Phase 

3 starts from this load at the highest position and to the release of the load.

All the tossing tasks were performed in the sagittal plane (XY in this case). Hence, the 

marker motion data from the right wrist (assuming symmetry) and the box was used to 

identify the four events described below.

1) Lift Off: During lift off the wrist marker is at the lowest position (Y-direction).

2) Closest-to-body: This event is determined by identifying the point where the X 

position of the box marker or the wrist marker is at its lowest after Lift Off.

3) Peak: The highest point is identified as the peak position of the wrist marker 

before release.

4) Release: Release is identified as the time instance when the difference in wrist to 

box distance at time t and (t−1) is less than 0.5 cm.

To illustrate the events and phases of the tossing tasks, a sample trial is used in Figure 3. 

Figure 3(a) shows the identification of the four events. Figure 3(b) shows the schematic 

body position at each event.

2.7. Discretization

Once the phases in the tossing activity were delineated, we calculated the three objective 

function values for each phase as discussed in Hsiang & Mcgorry (1997). These three 

performance measures calculated for each subject across all trials lie on a continuous scale. 

To calculate mutual information we discretized the performance measures so as to build a 

conditional probability table (Figure 4). The problem of variable discretization was 

essentially that of finding for each continuous variable X, a set of threshold values that 

partition the real line into a finite number of intervals. These intervals were the values of the 

discretized counterpart of X. We discretized each of the performance measures into three 

categories based on where they fell on the 33.33 (Lo-Low), 66.66 (Med-Medium) and 100 

(Hi-High) percentiles scale to guarantee capturing the interaction with adjacent variables in 

the network. This discretization was performed separately for all phases.

2.8. Information theory and mutual information

Mutual information (MI) is a quantitative measurement of how much one random variable 

tells us about another random variable (Cover et al., 1994).
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In this study, information was thought of as a reduction in the uncertainty of a variable. 

Thus, the more mutual information between S and M (I), the less uncertainty there is in S 

knowing M or M knowing S. In other words, MI is a measure of dependence of one 

objective function on another. The formula to calculate the MI between two random 

variables S and M is given as follows (Cover et al., 1994)

p(s,m) is the joint probability distribution function of S and M, and p(s) and p(m) are the 

marginal probability distributions of S and M respectively, all obtained from the conditional 

probability table.

2.9. Chow-Liu tree and its generation

Presumably, we have some idea about a feasible tossing trajectory (an output) that can be 

predicted by a certain set of inputs (e.g., joint angles). However, we don't understand how 

subjects’ choice of inputs determines the output. Chow-Liu tree (Chow & Liu, 1968), a type 

of graphical probabilistic model, is the representing agency with the ability to decipher this 

underlying mechanism. The framework is graphical in that a graph composed of nodes and 

links represents the causal structure of a system, with nodes corresponding to variables in 

the causal system, and undirected links between nodes. It allows us to reason about events 

when we are unsure about what has happened, what will or would happen, and even about 

how events lead to one another. In other words, it is a greedy approach for uncertainty 

reduction. A Chow-Liu tree requires data to be discretized to form conditional probability 

tables which has been discussed earlier. The following algorithm (Chow & Liu, 1968) lists 

out the steps involved in building a Chow-Liu Tree using the MI of every pair of values.

1) Compute the MI of each possible pair of objective functions

2) Find a maximum weight spanning tree

a. Sort the MI values of every pair in decreasing order.

b. Pick the pair with the highest MI value.

c. Make it the first two nodes with an edge added in between.

d. Now pick the next best pair and repeat step (c).

e. Greedily add edges; just make sure it's a tree at every step.

f. We now, have a Chow-Liu tree.

Based on the algorithm described above, we first calculated the values of the three 

performance measures to develop such structural relationships between the performance 

measures under each experimental condition for each subject. Each structure was classified 

as 12/13/21/23/31/32 in (Figure 5) on the basis of the pairs that have the first highest (solid 

edge) and second highest (broken edge) MI values. We built six different configurations of 

Chow-Liu trees.
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3. Results and Discussion

Results of the study are presented as the primary concerns (pair of objective functions with 

the highest MI value) among the previously considered objective functions in each phase of 

the tossing activity under different experimental conditions. Figure 6 shows the percentage 

of subjects who exhibited each of the possible tree structures in each phase of the tossing 

task under different conditions. It can be seen that 70% of the subjects exhibited the tree 

structure 13 while tossing the loads on floor in Phase 3. While tossing the loads on table, 

40% and 30% of the subjects exhibited the tree structures 12 and 13 in Phase 3, respectively. 

While tossing the loads to a distance of 1m, 60% of the subjects exhibited the tree 

relationship 12 and 40% exhibited 13 in Phase 3. While tossing the loads in a distance of 

1.5m, 50% of the subjects exhibited the tree 13 in Phase 3. No dominant tree relationship 

was observed for Phases 1 and 2.

When tossing a 1kg load in Phase 3, 60% of the subjects demonstrated the tree relationship 

13, while 30% exhibited the tree relationship 12. However, when tossing a 5kg load, the 

opposite was observed. While tossing a 7 kg load, 30% of the subjects exhibited the tree 

relationships 12 and 13. The results for tossing a 7kg load were based on a subset of the data 

excluding 2 subjects that didn't toss the 7 kg load owing to some technical problems.

When tossing the loads in each of the three clearance levels (110%, 150% and 200%), at 

least 50% of the subjects exhibited a tree structural relationship indicated by either 12 or 13. 

No clear patterns were found for Phases 1 and 2 for different load and clearance conditions. 

Loads are thought to have a significant impact on subjects’ body kinematics when 

performing a tossing task.

In short, during Phase 3 of tossing, most subjects resorted to a type of tossing pattern that 

showed ‘Mobilization’ as the most important concern under almost all the experimental 

conditions. These findings suggest that mobilization is an important concern at the moment 

the load is released from the hand.

Figure 7 shows the percentage of time for each of the tree structures exhibited by each 

subject under all the experimental conditions. A 50% of time was used as the criterion for 

selecting a major tree structure. In Phase 1, Subject 1 exhibited the major tree structure 12 

(89% of the time), Subjects 2 and 6 had the major tree structure 13 (60% and 70% of the 

time, respectively). Subjects 3 and 7 had the tree 21 (60% and 50% of the time, 

respectively). Subjects 5 and 9 exhibited the major tree structures 23 and 31 (50% of the 

time). Subjects 4 and 8 did not have a clear time percentage pattern for the tree structures.

In Phase 2, none except Subjects 2, 3 and 6 had a clear major tree structure. It should be 

noted that almost all the subjects, except Subjects 8 and 9, exhibited the tree structures 12 

and 13 for the majority of the times. Specifically, Subjects 3 and 5 exhibited the tree 

structure 12 for 70% and 50% of the time, respectively. Subjects 1, 2, 6, 7 and 10 exhibited 

the tree structure 13 for 55.55%, 80%, 70%, 60% and 66.6% of the time, respectively.

Generally, the subjects showed a motion pattern for the tossing tasks in Phases 1 and 3 but 

not in Phase 2. The tree structural relationships 12 and 13 exhibited by the majority of the 
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subjects in Phase 3 of the tossing tasks were found in most test conditions. This common 

tree structure (12/13) may explain the importance of the torque and mobilization factors in 

determining the success of the tossing activity. This finding supports our prior observation 

that in the third phase of the tossing activity, motion behavior is dictated by ‘mobilization’ 

in addition to ‘torque utilization’.

Once a database of the structural relationships between the objective functions, in each 

phase for different experimental conditions, has been established (based on data collected 

from a large population), it can be used as a decision-support tool. Two sample trees (01) 

and (02) shown in Figure 8 will be used to explain how diagnosis can be done using such a 

tool. Let's assume that under similar conditions, two subjects 1 and 2 are observed to follow 

the behavior as described by tree 01 and tree 02 respectively. And, if we also know that 

under those conditions, tree 01 is the optimal behavior for best performance. By observation, 

we know that, subject 02 has a risk of injury potential in phase 1 and the ergonomist can 

recommend suitable changes to his task design or provide necessary intervention. However, 

identifying the influence of various constraints on the progress of the concerns and 

subsequent outcome of the activity is beyond the scope of this current work and we leave it 

for future study.

Some other limitations in the study are worthy of mentioning. The current work presents a 

methodology to identify the primary/secondary concerns (objective function pairs with the 

highest and second highest MI values) in each phase of a tossing activity and if these 

concerns remain the same throughout the activity or change as the activity progresses. 

Hence, ten subjects used in the present study may limit the interpretations of the study 

results. Additionally, results based on the limited test conditions cannot be generalized for 

other different tossing conditions, for example, underarm precision throwing (A. Dupuy et 

al., 2000) and overarm throwing (Stodden et al., 2006). The goal of this paper, however, is 

to demonstrate the usefulness of combining information theory and Chow-Liu probabilistic 

graphical model for identifying motion behavior patterns for tossing tasks. Most previous 

research on MMH focused on the peak or average values of the kinematic data over the 

course of a MMH task without considering the sequence of the phases of the kinematic data. 

Understanding the relationship between body kinematic characteristics between phases of a 

MMH task is of importance because motion is executed by a series of decisions to 

accomplish a motor task (Gahery & Massion, 1981). Although the study findings are based 

on a simpler 2D biomechanical model, it can be expanded to higher dimensions too. In 

addition, although only three objective functions have been used in this study, many more 

objective functions can be added without loss of generality.

The key is to identify information regarding systematic relations that hold between objective 

functions that concern behavior and use such information in determining the right input 

needed to lead to a desired outcome. We hypothesize that knowing the systematic relations 

between actions and their outcomes in terms of the major concerns, the right action can be 

chosen at the right time for an effective control (Sloman, 2009).
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4. Conclusion

In this paper, we introduced a novel uncertainty reduction approach for the identification of 

body kinematic patterns and their logical organization based on different objective functions 

at different phases of a tossing task. The proposed research concept based on mutual 

information provides users with a useful diagnosis of the relevance of different objective 

functions and of the mutual dependencies in designing the task (Battiti, 1994). The broader 

impact of this work lies in the fact that this type of biomechanical data-mining approach 

possesses an important advantage over biomechanical optimization, where accurate physics-

based dynamical/optimization models may be prohibitively complex. Future work includes 

extending the above work to three dimensional models and also to tossing activities where 

there are obstacles to the activity and where the activity is performed in the frontal plane (to 

the side). In addition this work is not just limited to tossing and can be extended to any 

manual material handling activity.
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Figure 1. 
Schematic diagram showing marker positions (1-Wrist, 2-Elbow, 3-Shoulder, 4-Hip, 5-

Knee, 6-Ankle, 7-Box Left, 8-Box Right, 9-Target)
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Figure 2. 
Position of body and load during each event of a tossing task
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Figure 3. 
(a) Plot showing identification of different phases of tossing and (b) Combined graphic 

showing the body posture at each critical event from a sample motion capture data
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Figure 4. 
Flow chart showing steps involved in developing a condition probability table
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Figure 5. 
Description of different Chow-Liu trees generated using three variables (T→M =1; M→S 

=2; S→T=3)
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Figure 6. 
Percentage of subjects exhibiting each tree structure in each phase (in each condition)
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Figure 7. 
Percentage of times a tree structure was exhibited in each phase (for each subject)
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Figure 8. 
Two example trees showing the objective functions relationships in each phase
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