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Abstract

Populations of Aedes aegypti (L.) can be managed through reductions in adult mosquito survival, 

number of offspring produced, or both. Direct adult mortality can be caused by the use of space 

sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticide-

impregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, 

bednets, and ovitraps. The fertility of Ae. aegypti populations can be reduced by the use of 

autocidal oviposition cups that prevent the development of mosquitoes inside the trap by 

mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic 

mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. 

aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease 

Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations of 

Ae. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in 

southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. 

aegypti (53–70%) in the intervention area. The presence of three to four AGO control traps per 

home in 81% of the houses prevented outbreaks of Ae. aegypti, which would be expected after 

rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively 

correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The 

use of AGO traps to manage Ae. aegypti populations is compatible with other control means such 

as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic 

incompatibility, and dominant lethal gene systems.
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Aedes aegypti (L.) control is mainly directed against immature stages (education, source 

reduction, and larviciding) to reduce the production of new adult mosquitoes, with some 

efforts devoted to controlling adult mosquitoes using spatial sprays of adulticides during 

dengue outbreaks (Pilger et al. 2010). In addition to the problem of insecticide resistance in 

Ae. aegypti (Ranson et al. 2010), there are several drawbacks that preclude achieving 

effective vector control: 1) Coverage of control measures is limited because only a fraction 
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of the human dwellings is ever treated (residents are absent or deny access to control 

personnel), which means that only a smaller fraction of the Ae. aegypti population can be 

reduced, leading to recolonization of the area; 2) The effects of larvicides and adulticides are 

short-lived (days), thus requiring reapplication at a frequency that is impractical for most 

programs because of a shortage of personnel and resources; and 3) There has been a lack of 

entomological indicators that can be used to independently evaluate the impact of the control 

measures directed at the immature stages, such as measuring the resulting number of adult 

female Ae. aegypti (Barrera et al. 2008). Residual insecticides that target adult Ae. aegypti 

were used during the eradication era, but they are no longer the main approach of dengue 

vector control programs (World Health Organization [WHO] 2009). Therefore, newer tools 

are needed for the surveillance of adult Ae. aegypti and for controlling this vector using 

integrated means.

Ae. aegypti populations can be managed by increasing adult mortality or by reducing 

population fertility. An example of the latter approach is the release of genetically altered 

(McDonald et al. 1977), transgenic (Harris et al. 2011), or para-transgenic (O'Connor et al. 

2012) males to mate with wild females that eliminate or interfere with offspring production. 

The other method of reducing fertility is by means of autocidal ovitraps. These devices 

collect eggs of Ae. aegypti and prevent hatching larvae from ever completing their 

development and emergence as adults, through either mechanical means (Chan et al. 1977, 

Cheng et al. 1982) or chemical control (Regis et al. 2008). Direct adult mortality can be 

caused by a number of insecticide-impregnated tools that are currently undergoing field 

testing, such as curtains and covers for water-storage vessels (Kroeger et al. 2006), bednets 

(Lenhart et al. 2008), and “lethal” ovitraps (Zeichner and Perich 1999, Perich et al. 2003, 

Sithiprasasna et al. 2003, Kittayapong et al. 2006, Williams et al. 2007b, Ritchie et al. 2008, 

Rapley et al. 2009). Another class of novel devices that kills female adults of Ae. aegypti are 

the various models of sticky gravid traps that are being used for surveillance purposes 

(Ordoñez-Gonzalez et al. 2001, Ritchie et al. 2004, Fávaro et al. 2006, Facchinelli et al. 

2007, Gomes et al. 2007, Chadee and Ritchie 2010, de Santos et al. 2012, Lee et al. 2013, 

Wu et al. 2013, current study).

The objectives of this study were to test the effectiveness of a novel sticky trap: the Centers 

for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap; patent 

pending; Mackay et al. 2013) for controlling natural populations of Ae. aegypti in two urban 

areas in southern Puerto Rico and to compare the AGO traps with BG-Sentinel traps to 

determine whether they are useful vector surveillance devices. AGO traps capture gravid 

female Ae. aegypti causing direct adult mosquito mortality, lowering the biting rate, and 

reducing population fertility. Because gravid females have fed on blood at least once to 

produce eggs and could have acquired dengue viruses from an infected person during any of 

the previous bloodmeals, controlling gravid females is also important to reduce dengue virus 

transmission. To be a practical tool for managing dengue vectors, a trap must be specific, 

effective, inexpensive, simple to construct and operate, and it should not require frequent 

maintenance. Traps that do not use toxic pesticides are more likely to be acceptable to 

homeowners concerned with potential health and environmental hazards of using these 

chemicals in and around their home and will not contribute to the development of resistance 
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to insecticides in the vector population. The AGO trap was designed to: 1) improve the 

potential of the basic ovitrap to compete with other container habitats by increasing the 

intensity of visual and olfactory cues emitted by an individual trap, and 2) incorporate 

simple low-cost mechanisms for eliminating gravid Ae. aegypti and their progeny that do not 

rely on insecticides, and that can remain efficacious for an extended period of time without 

servicing (>2 mo; Mackay et al. 2013).

Materials and Methods

Study Areas

This study was conducted in two relatively isolated neighborhoods located 20 km apart in 

southern Puerto Rico: La Margarita (17° 58′18″ N, 66° 18′10″ W; 3 m elevation; 327 

buildings; 18 ha) and Villodas (17° 58′13″ N, 66° 10′48″ W; 20 m elevation; 241 buildings; 

11 ha). La Margarita and Villodas were 200 and 500 m from other urbanized areas, 

respectively. Both communities have reliable access to sanitary services such as piped water, 

domestic garbage pickup, and sewerage. Average temperature and accumulated rainfall (26 

October 2011 to 23 October 2012) were 27.0°C and 570 mm in La Margarita and 26.6°C 

and 727 mm in Villodas, respectively. There was a cooler and drier season from December 

to March and a warmer and wetter season the rest of the year in both study areas (Fig. 1). 

Preliminary pupal surveys (July–August 2011) showed similar pupal density per house in La 

Margarita (7.7 ± 1.6; mean ± SE) and Villodas (6.6 ± 1.6; mean ± SE; CDC, unpublished). 

We chose La Margarita as the intervention area because it was larger than Villodas and 

closer to our field laboratory in downtown Salinas.

Experimental Design

The effectiveness of the AGO trap to reduce the adult population of Ae. aegypti was 

investigated by comparing temporal changes in relative mosquito population density 

(individuals per trap per time) between two urbanized areas—one with AGO control traps 

(AGO; three or four traps per house; intervention area, La Margarita) and another one 

without AGO traps (reference area, Villodas). The number of control traps used per home 

was investigated in a previous study where we found that the number of mosquitoes 

captured per trap per home decreased when using three or four traps per home (CDC, 

unpublished). The study was conducted from October 2011 to October 2012 and consisted 

of the following activities: 1) A preintervention or baseline study (9 wk from October to 

December 2011) to compare Ae. aegypti densities between areas and to a allow comparisons 

within areas before and after interventions; 2) source reduction, larviciding, and egg removal 

of both study areas, and installation of AGO traps in the intervention community (December 

2011); and 3) postintervention follow-up assessment of Ae. aegypti density in both study 

areas (weekly from December 2011 to October 2012).

Traps: CDC Autocidal Gravid Ovitrap

The AGO trap (Mackay et al. 2013; Fig. 2) consists of nine basic components: 1) 3/4″ black 

polypropylene netting (Industrial Netting, Minneapolis, MN) covering the entrance of the 

trap to exclude the entry of larger debris or organisms; 2) 3.8-liter black polyethylene 

cylinder that serves as the trap entrance (12.8 cm in diameter) and capture chamber; 3) 
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sticky surface covering the interior of the capture chamber that is made of a black styrene 

cylinder (16 cm in diameter); the inner surface is coated with 155 g/m2 of a nonsetting 

polybutylene adhesive (Ritchie et al. 2004; 32UVR, Atlantic Paste & Glue Co. Inc., 

Brooklyn, NY); 4) screen barrier at the bottom of the capture chamber to prevent adult 

mosquitoes from moving between the capture chamber and the infusion reservoir. It also 

prevents any mosquito emerging from the infusion to escape from the trap (occasionally, 

eggs from captured females may be washed by rain into the infusion reservoir and develop 

into adult mosquitoes); 5) black pail lid; 6) black polyethylene pail (19 liters of volume); 7) 

Drainage holes to allow excess infusion to drain from the trap (maximum infusion capacity 

10 liters); 8) 10 liters of water, and 9) 30 g hay packet. Traps were serviced every 2 mo to 

replace the water lost to evaporation, hay packet, and sticky surface. The cost of materials 

was calculated at US$12.5 per trap without labor, and we hope to reduce its cost once the 

trap can be mass-produced.

Three AGO traps were placed outdoors in the garden, patio, or porch of houses in the 

intervention community for the first 2 mo of the postintervention study (812 traps; 

December 2011–February 2012). Because we noted that some lizards were being caught on 

the sticky surface of the traps, we increased the number of AGO traps to four per house 

(1,004—1,050 traps; March–October 2012) to compensate for possible loss of attraction as a 

result of the odor of decaying lizards. The average percentage of houses with control traps in 

La Margarita was 81% during the study. We did not monitor mosquito captures in the AGO 

traps, which were left undisturbed for periods of 2 mo at a time before servicing.

In addition to the traps that we used for control purposes (AGO), we deployed 44 (2.4 

traps/ha) and 27 (2.5 traps/ha) sentinel AGO (SAGO) traps in the intervention and reference 

areas, respectively, to monitor the weekly abundance of female Ae. aegypti. Sentinel AGO 

traps were checked every week, and the trapped specimens were removed from the sticky 

trap surface using forceps, placed on white paper napkins, sexed, visually identified to 

species, and enumerated directly in the field. Sentinel AGO traps were also serviced every 2 

mo to replace water, hay pack, and sticky surfaces. Results of SAGO trap collections are 

presented as number of female Ae. aegypti per trap per week (7-d captures). Few males were 

captured in AGO traps.

BG-Sentinel Traps

Modified BG-Sentinel traps without lure (Biogents, Regensburg, Germany) were also used 

to monitor the density of adult Ae. aegypti and to compare mosquito captures with SAGO 

traps. We did not use the BG trap's chemical lure because we have observed that this trap 

efficiently captures Ae. aegypti without it and to reduce the cost of operating the traps. The 

modified trap had a black outer cover instead of the original white one. Black BG traps 

captured 38% more Ae. aegypti, 79% more Aedes mediovittatus (Coquillett), and 15% more 

Culex quinquefasciatus Say than the original model in studies conducted in Puerto Rico 

(CDC, unpublished). We used 44 (2.4 traps/ha) and 28 (2.5 traps/ha) BG-sentinel traps in 

the intervention and reference areas, respectively, to monitor the weekly abundance of Ae. 

aegypti. Black BG traps were operated for three consecutive days every week. Collecting 

bags were changed every day and batteries changed after the second day of operation. 
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Collected specimens were stored at −80°C. We used stereoscopes to identify and enumerate 

the specimens collected. Results of BG trap collections were presented and analyzed as 

numbers of adult male or female Ae. aegypti collected per BG trap for 3 d of collections per 

week.

We used a map of buildings and streets (Property Tax Office of Puerto Rico) within a 

Geographical Information System (GIS; ArcView 10, Esri, Redlands, CA) of La Margarita 

and Villodas to plan for the uniform deployment of fixed-position BG-Sentinel and SAGO 

traps across each study area. Traps were spaced at distances >30 m because it has been 

shown that Ae. aegypti adults cluster within that distance (Getis et al. 2003). Resulting 

average intertrap distances were 55 m for BG traps, 44 m for SAGO traps, and 25 m 

between any traps in the La Margarita, and 59 m for BG traps, 47 m for SAGO traps, and 29 

m between any traps in Villodas.

Source Reduction, Larviciding, and Oviciding

Before installing the AGO traps in La Margarita (intervention area), we conducted source 

reduction, larviciding, and oviciding, in both study areas to reduce the availability of 

containers with water and reduce the population of Ae. aegypti to lower levels. Source 

reduction consisted of the removal of all discarded containers that the owners authorized us 

to remove. We used three formulations of the larvicide Natular (spinosad) in granular (G) 

and tablet (T30 and XRT) formulations (Clarke, Roselle, IL). The larvicides were applied at 

the dosages recommended by the maker and approved by the Environmental Protection 

Agency (EPA) to containers that could not be removed and whose water was not for animal 

or human consumption. Granular formulation of Natular (G) was applied at 0.3 g/liter. 

Tablet formulation T30 was used in large containers such as boats and broken appliances 

(e.g., washer machines), whereas Tablet formulation XRT was applied to broken or open 

septic tanks. The inner walls of containers that could not be removed were also brushed and 

rinsed to remove Ae. aegypti eggs.

Statistical Analyses

To establish if adult mosquito abundance was similar between the two study areas before 

intervening with control measures (October–December 2011), we tested the null hypothesis 

that the number of female or male Ae. aegypti per BG or SAGO trap per week was the same 

in both study areas. We used a generalized linear mixed model to test for the effects of study 

area, accumulated rainfall during the third and second weeks before sampling, and average 

air temperature during the 3 wk before sampling. The distribution probability function of the 

dependent variable was the negative binomial with log link. The covariance structure for the 

repeated estimation of mosquito density per trap per week was a first-order autoregressive 

function. Trap ID was used as a random factor to account for individual trap bias using a 

covariance component identity matrix.

Similar analyses were performed to test the hypothesis that the number of female or male 

Ae. aegypti per BG or SAGO trap per week was the same in the two study areas after the 

intervention (source reduction, larviciding, and oviciding in both areas in December 2011; 

deployment of AGO control traps in La Margarita, December 2011–October 2012). The 
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relationship between average captures of female Ae. aegypti per trap per day for each week 

in BG and SAGO traps was explored using a reduced major axis regression analysis 

(regression type II). Statistical analyses were conducted in IBM SPSS Statistics 12 (IBM 

Corporation, Armonk, NY). A similar regression analysis was also used to compare the 

weekly reduction in female Ae. aegypti in the intervention area with the reference area.

Results

Preintervention

The average numbers of female Ae. aegypti per BG (F = 2.04; P > 0.05) or SAGO (F = 

0.04; P > 0.05) traps per week were not significantly different between study areas before 

the initiation of control measures, from October to December of 2011 (Table 1; Fig. 3). 

Rainfall was a significant covariate (F = 47.2; P < 0.001) that was positively associated with 

the average number of mosquitoes per trap. In general, BG traps captured more mosquitoes 

per unit time than SAGO traps if we consider that the former were operated for 3 d/wk and 

the latter for an entire week.

BG traps also captured more male Ae. aegypti than SAGO traps (Table 1). More males were 

captured per BG trap in La Margarita (F = 4.71; P < 0.05; 2.2 males/trap/wk; 1.6–3.0, 

model-estimated means; 95% CI) than in Villodas (1.3; 0.9–1.9) before the intervention 

(Table 1). As with female mosquitoes, rainfall was significantly and positively associated 

with the number of males in BG traps (F = 16.6; P < 0.001). Temperature was not a 

significant covariate in the preintervention study and was taken out of the final models.

Postintervention

The average numbers of female Ae. aegypti per BG or SAGO traps per week were 

significantly different between areas with and without AGO traps (Tables 1 and 2; Fig. 3). 

Overall captures rates in BG traps were 2.15 times (1.64–2.82; 95% CI) smaller in the 

intervention area than in the reference area, which is equivalent to a 53% reduction in 

female Ae. aegypti after allowing for rainfall and temperature effects (Table 2). Model-

estimated means were 3.0 (2.4–3.7) females per BG trap per week in the reference area and 

1.4 (1.2–1.6) females per BG trap in the intervention area. There were no significant 

differences in the number of males captured per BG trap in the study areas with and without 

control traps (F = 0.24; P> 0.05). Model-estimated means were 1.4 (1.0–2.1) males per trap 

in the reference area and 1.2 (0.0–1.7) in the intervention area.

The overall density of female Ae. aegypti per SAGO trap per week in the intervention area 

was 3.4 (2.6–4.4) times smaller than in the reference area, which is equivalent to a 70% 

reduction in the number of mosquitoes after allowing for rainfall and temperature effects. 

Model-estimated means for SAGO traps were 3.3 (2.7–4.0) females per trap per week in the 

reference area and 1.0 (0.8–1.2) in the intervention area (Table 2).

Rainfall (F = 67.7; P < 0.001) and temperature (F = 79.1; P < 0.001) were significant 

covariables that were positively associated with mosquito density in both types of traps 

through time (Table 2). Sharp increases in mosquito captures were observed following 

rainfall events using both traps, particularly in the area without control traps (Fig. 3). 
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Furthermore, differences in mosquito densities between study areas were largest during the 

first (April and May) and second rainy seasons (August and September; Fig. 3).

The average numbers of female Ae. aegypti per BG or SAGO trap showed a highly 

heterogeneous spatial pattern before the intervention in both communities and were more 

homogeneous in the area with control traps after the intervention (Figs. 4 and 5). A 

postintervention reduction in the abundance of female Ae. aegypti in La Margarita is evident 

in the maps, where there are more areas with low capture rates and fewer spots with high 

capture rates in both the SAGO and BG traps after the AGO traps were deployed (Figs. 4 

and 5).

Assuming that the reductions of female Ae. aegypti in the intervention area were mainly a 

result of the presence of control traps, we plotted the deficit of female Ae. aegypti in the 

intervention area (difference in mosquito density between the reference and intervention 

areas) against the density in the reference area (without control traps). The data analyzed 

here were from weeks 20 through 52, some prudent time after applying immature control 

activities (weeks 9–11) in an effort to isolate the action of the control traps. There was a 

highly significant positive linear relationship between the deficits of female Ae. aegypti and 

the density of this species in the reference area in both types of traps (Fig. 6). Capture rates 

of BG and SAGO traps were constant and similar throughout the observed range of 

mosquito densities in the reference study area, without any evidence of saturation or leveling 

off (Fig. 6).

Comparison of BG and SAGO Trap Captures

The relationship between the average numbers of female Ae. aegypti captured in BG and 

SAGO traps per day for all the weeks of the study (n = 52; Fig. 7A) was significant for 

samples collected in the intervention (Log10 females per AGO trap per day = −0.586 

[−0.659–−0.513; 95% CI] + 0.709 [0.459–0.959] × Log10 females per BG trap per day; R2 

= 0.482) and reference areas (Log10 females per AGO trap per day = −0.369 [−0.424–

−0.313; 95% CI] + 0.770 [0.664–0.876] × log10 females per BG trap per day; R2 = 0.743). 

In the reference area, the relationship was less variable and the model had a better fit to the 

data collected.

Significant and positive relationships were evident between percentages of SAGO and BG 

traps capturing at least one female Ae. aegypti (Fig. 7B) in the intervention (Percentage of 

positive AGO traps per week = 0.170 [−0.032–0.372; 95% CI] + 0.628 [0.352–0.904] × 

Percentage of positive BG traps per week; R2 = 0.369) and reference areas (Percentage of 

positive AGO traps per week = 0.320 [0.208–0.431; 95% CI] + 0.619 [0.461–0.777] × 

Percentage of positive BG traps per week; R2 = 0.552). Again, the modeled relationship for 

trap positivity in the reference area was better than the one for the intervention area. The 

slopes of the regressions for mosquito density and trap positivity between BG and SAGO 

traps were similar in both localities, but there were relatively smaller captures in SAGO 

traps in relation to BG traps in the study area with control traps (Fig. 7).
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Discussion

Ae. aegypti Control

This investigation used CDC-AGO to control Ae. aegypti in a relatively isolated urban area 

(327 buildings) in southern Puerto Rico that was compared with another urban area (241 

buildings) that had similar mosquito population dynamics and environmental conditions 

(Figs. 1 and 3). Postintervention reductions in the number of female Ae. aegypti captured in 

BG and SAGO traps attributable to the presence of the AGOs were 53 and 70%, 

respectively. More notably, the presence of the control traps prevented outbreaks of Ae. 

aegypti that were observed in the reference community after increased rainfall (Fig. 3). We 

believe that outbreak suppression was caused by significant reductions in the number of 

eggs that accumulated in container habitats (i.e., “egg bank”), which usually hatch after 

rains, producing bursts of new adult mosquitoes (Keirans and Fay 1970). In a previous 

study, we found a significant positive relationship between the number of eggs in 

conventional ovitraps (Reiter et al. 1991) and the number of female Ae. aegypti captured in 

paired SAGO traps in San Juan city, Puerto Rico (Mackay et al. 2013). It can also be 

observed that the number of female mosquitoes in the area with control traps tended to 

increase following rains but at a lower rate than in the reference area (Fig. 3). The results of 

the statistical analyses also showed significant positive effects of rainfall and temperature on 

the number of male and female Ae. aegypti (Table 2), as it has been previously observed in 

urban Puerto Rico (Barrera et al. 2011). Thus, AGO traps seem to be effective tools to 

suppress outbreaks of Ae. aegypti in the study areas.

We explored the relationship between reductions in the density of female Ae. aegypti in the 

intervention area in relation to its density in the reference area to better understand how the 

sticky traps operated. The results showed that capture rates in both sentinel BG and SAGO 

traps were similar and constant throughout the range of Ae. aegypti densities observed in the 

study areas, without showing evidence of saturation (Fig. 6). In general, traps captured more 

mosquitoes at larger densities and fewer mosquitoes at smaller densities, so these traps 

showed some capacity to regulate the population of Ae. aegypti. The degree at which AGO 

traps were capable of reducing the population of Ae. aegypti was indicated by the slope of 

the linear models (0.821 in SAGO and 0.839 in BG traps), for which theoretical maximum 

value is one, meaning a total reduction of the population. If the regression lines are forced to 

go through the origin, the slopes changed (0.682 in SAGO and 0.609 in BG traps) toward 

values that are more similar to the estimated net reductions caused on the Ae. aegypti 

population by the control traps, which was around 60%. These observations suggest that a 

greater effect could be achieved by increasing the number of traps or by increasing the 

capture efficiency of individual traps.

The use of sticky traps to manage Ae. aegypti populations is compatible with other means of 

controlling Ae. aegypti in the immature and adult stages such as source reduction, 

larviciding, and adulticiding (aerosol and residual spraying of insecticides). Because AGO 

traps do not efficiently capture male Ae. aegypti (Table 1), these traps could also be used 

concurrently with control techniques that rely on male mosquito control delivery systems, 

such as the sterile insect techniques, Wolbachia-induced cytoplasmic incompatibility, and 
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dominant lethal genes. AGO traps can also be a useful nonchemical means of controlling Ae. 

aegypti in areas showing resistance to insecticides (Ranson et al. 2010).

Some consideration needs to be made regarding the environmental conditions under which 

this study was conducted. The study areas had adequate public services, such as piped water 

supply, domestic garbage pickup, and sewerage, thus resembling similar environmental 

conditions that are prevalent in large cities in Puerto Rico and in the continental United 

States. The effect of the AGO traps should be investigated in urban areas with abundant 

permanent aquatic habitats that produce large numbers of Ae. aegypti, such as some water-

storage vessels. Although the efficiency of the AGO to capture female Ae. aegypti appeared 

to be constant, this study did not cover all ranges in Ae. aegypti densities. It is likely that 

some complementary control measures such as source reduction or larviciding would 

enhance the efficacy of the traps, as suggested by Chan (1973) for autocidal ovitraps. Next 

steps include scaling up to test whether AGO traps can significantly prevent or control 

dengue outbreaks. The fact that AGO traps suppressed Ae. aegypti outbreaks in this study is 

encouraging.

Comparing BG and AGO Traps

BG traps have been shown to be more effective at capturing adult Ae. aegypti than other 

mosquito surveillance devices (Maciel-de-Freitas et al. 2006, Williams et al. 2006). These 

traps are portable and can be deployed in sufficient numbers to obtain reliable estimates of 

the relative population density of Ae. aegypti (Williams et al. 2007a, Ritchie et al. 2013). 

The main constraint in using BG traps in Ae. aegypti control programs is their cost and 

dependence on electricity, which is needed to operate the fan that draws approaching adult 

mosquitoes into the collection bag. For these reasons, it is important to develop simpler less 

expensive traps to monitor populations of adult Ae. aegypti.

The results of the current study showed a highly significant, positive linear relationship 

between numbers of female Ae. aegypti in BG and SAGO traps (Fig. 7). This result 

demonstrates that AGO traps can also be used as surveillance tools to monitor the adult 

population of Ae. aegypti despite the fact that AGO traps mainly capture gravid females. In 

addition, AGO traps can be deployed in relatively small numbers to obtain reliable 

estimations of the relative population density of gravid female Ae. aegypti. AGO traps are 

also relatively inexpensive and do not require frequent servicing, which make them 

affordable to vector control programs (Mackay et al. 2013).
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Fig. 1. 
Weekly average temperature (°C) and accumulated rainfall (mm) from October 2011 to 

October 2012 in Villodas and La Margarita communities in southern Puerto Rico.
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Fig. 2. 
Description of the CDC-AGO (patent pending): (A) Black polypropylene netting to exclude 

the entry of debris, (B) polyethylene cylinder that serves as the trap entrance and capture 

chamber, (C) sticky surface made of a black styrene cylinder coated with a nonsetting 

adhesive, (D) screen barrier to prevent adult mosquitoes from reaching the infusion 

reservoir, (E) black pail lid, (F) black polyethylene pail, (G) drainage holes, (H) water, and 

(I) hay packet.
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Fig. 3. 
(A, B) Weekly variation in the numbers of female Ae. aegypti captured in BG-Sentinel (sum 

of 3-d captures per week) and SAGO (7-d captures) traps, and accumulated rainfall (second 

and third weeks before sampling) in the reference (Villodas) and intervention (La Margarita) 

areas. Mosquitoes were monitored in both areas before applying control measures from 

October to December 2011 and afterwards until October 2012, following the intervention. 

Rainfall data are plotted with a forward lag time of 2 wk to facilitate visual association with 

the numbers of mosquitoes.
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Fig. 4. 
Maps showing the location of SAGO traps and changes in overall weekly averages of 

female Ae. aegypti per trap before (October–December of 2011) and after the intervention 

(December 2011–October 2012) in the two study areas.
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Fig. 5. 
Maps showing the location of BG-Sentinel traps and changes in overall weekly averages of 

female Ae. aegypti per trap before (October–December of 2011) and after the intervention 

(December 2011–October 2012) in the two study areas.
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Fig. 6. 
Deficit of female Ae. aegypti in the intervention area (difference in mosquito density 

between the reference and intervention areas per week) against the density in the reference 

area (without control traps), from weeks 20 through 52 to show the reduction in numbers 

caused by the control traps.
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Fig. 7. 
(A) Plot of average numbers of female Ae. aegypti captured in SAGO and BG-Sentinel traps 

per day for all the weeks of the study. (B) Comparison of the percentages SAGO and BG-

Sentinel traps that were positive for female Ae. aegypti per week during the study.
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Table 1
Average (±95% CI, sample size in parentheses) female and male Ae. aegypti captured per 
BG trap (3-d capture per week) or per SAGO trap (7-d capture per week) in the reference 
and intervention areas before and after deploying the AGO control traps

Sentinel trap Period of study Reference area (Villodas) Intervention area (La Margarita)

BG traps Preintervention

 Females 3.60 ± 0.24 (251) 3.78 ± 0.18 (396)

 Males 2.31 ± 0.26 3.22 ± 0.22

Postintervention

 Females 4.06 ± 0.16 (1,196) 1.74 ± 0.33 (1, 889)

 Males 2.62 ± 0.15 2.18 ± 0.10

SAGO traps Preintervention

 Females 3.69 ± 0.51 (231) 2.65 ± 0.13 (387)

 Males 0.21 ± 0.18 0.13 ± 0.02

Postintervention

 Females 3.83 ± 0.14 (1,123) 1.25 ± 0.05 (1, 828)

 Males 0.10 ± 0.02 0.06 ± 0.01
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