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Abstract

Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme 

disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by 

meteorological conditions in preceding months. A meteorological-based empirical model for 

Lyme disease onset week in the United States is driven with downscaled simulations from five 

global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st 

century climate change on the annual onset week of Lyme disease. Projections are made 

individually and collectively for the 12 eastern States where >90% of cases occur. The national 

average annual onset week of Lyme disease is projected to become 0.4–0.5 weeks earlier for 

2025–2040 (p < 0.05), and 0.7–1.9 weeks earlier for 2065–2080 (p < 0.01), with the largest shifts 

for scenarios with the highest greenhouse gas emissions. The more southerly mid-Atlantic States 

exhibit larger shifts (1.0–3.5 weeks) compared to the Northeastern and upper Midwestern States 

(0.2–2.3 weeks) by 2065–2080. Winter and spring temperature increases primarily cause the 

earlier onset. Greater spring precipitation and changes in humidity partially counteract the 

temperature effects. The model does not account for the possibility that abrupt shifts in the life 

cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi 

in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The 

results suggest 21st century climate change will make environmental conditions suitable for earlier 

annual onset of Lyme disease cases in the United States with possible implications for the timing 

of public health interventions.
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Introduction

Lyme disease is a multisystem tick-borne bacterial zoonosis that is endemic in parts of 

North America, Europe and Asia. In the United States, Lyme disease is the most commonly 

reported vector-borne illness (CDC, 2008), with more than 25,000 Lyme disease cases 

reported annually since 2007 (CDC, 2014). The majority of Lyme disease cases are reported 

from Northeastern and north-central States where nymphal Ixodes scapularis ticks serve as 

the primary bridging vectors of the pathogenic bacterium Borrelia burgdorferi sensu stricto 

from zoonotic hosts to humans (CDC, 2008; Piesman, 1989). Lyme disease transmission 

occurs seasonally, and the majority of human cases report onset of clinical signs of infection 

during the months of June, July and August, a period that corresponds with exposure to the 

nymphal life stage of I. scapularis (CDC, 2008; Piesman, 1989). The geographic 

distribution of Lyme disease is focal, and inter-annual variation in case counts and seasonal 

onset is considerable (Diuk-Wasser et al., 2012; Moore et al., 2014).

Because Lyme disease cases can only occur in areas where humans encounter B. 

burgdorferi-infected ticks, much of the variability in where and when Lyme disease cases 

occur is attributable to the geographic distribution and seasonal host-seeking patterns of the 

ticks that serve as vectors of B. burgdorferi. Although at local scales host community 

structure plays a large role in determining the density of infected nymphs (Mather et al., 

1989; Ostfeld et al., 2006), at regional scales, temperature, humidity and precipitation are 

robust predictors of spatial and temporal distributions of I. scapularis (Brownstein et al., 

2003; Diuk-Wasser et al., 2006, 2010; Estrada-Pena, 2002). These variables have also been 

associated with the geographical and temporal distributions of human cases of Lyme disease 

in the United States (Ashley and Meentemeyer, 2004; McCabe and Bunnell, 2004; Moore et 

al., 2014; Ogden et al., 2014; Subak, 2003; Tran and Waller, 2013). Understanding how 

meteorology impacts the seasonality of Lyme disease case occurrence can aid in targeting 

limited prevention resources and may shed light on how climate change could affect the 

seasonal occurrence of the disease (Gray, 2008).

Based on cases reported through the National Notifiable Diseases Surveillance System 

(NNDSS) from 1992 to 2007, a companion study modeled the timing of the start, peak, 

duration and end of the Lyme disease season for 12 endemic States in the Northeast, mid-

Atlantic and upper Midwest as a function of meteorological variables (Moore et al., 2014). 

Moore et al. (2014) found significant associations between meteorological variables and the 

timing of the onset, peak and duration of the Lyme disease season; however, meteorological 

variables did not predict the end of the season. The strongest associations were found for the 

onset of the Lyme disease season. Across all States and years, the beginning of the Lyme 

disease season ranged from week 16–26 of the calendar year, and 60% of the variation was 

attributable to the geographic and temporal variability of climatic and other environmental 

factors. The Lyme disease season began earlier in more southerly and coastal States 
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compared with more northerly and inland States. Earlier onset of the Lyme disease season 

was positively associated with warmer and more humid conditions and lower rainfall 

amounts during the preceding winter and spring months. Other studies also indicate that 

warmer and/or more humid conditions are associated with I. scapularis characteristics 

including geographic distribution (Brownstein et al., 2003; Estrada-Pena, 2002; Ogden et al., 

2008) and increased density of host-seeking nymphal ticks (Diuk-Wasser et al., 2006, 2010).

Given that climate models project a temperature increase over the United States of 1.5–5.5 

°C by the end of the 21st century following a 0.8 °C increase during the 20th century, and 

that rainfall amounts will likely continue rising over the Northeastern U.S. (USGCRP, 2014) 

where most Lyme disease cases occur, it is plausible that climate change may affect the 

annual onset of Lyme disease in forthcoming decades. While previous studies have 

primarily examined climate change impacts on the geographic distribution, host-seeking 

phenology and reproductive rate of Ixodes scapularis (e.g., Brownstein et al., 2005; Ogden 

et al., 2006, 2008, 2014; Simon et al., 2014; Levi et al., 2015), none have investigated 

climate change impacts on the seasonality of human Lyme disease cases in the United 

States. Here, the national model of Moore et al. (2014) is employed to investigate how 

projected 21st century climate changes may affect the timing of annual Lyme disease onset 

in the eastern United States. Development and implementation of such models can aid in 

determining the magnitude by which climate change may drive shifts in the annual onset of 

Lyme disease cases, allowing public health officials to gauge whether it will be necessary to 

adjust future interventions to account for altered seasonality of Lyme disease.

Materials and methods

National Lyme disease model

The best-fit (adjusted R2 = 0.785) national-level model for Lyme disease onset presented in 

Moore et al. (2014) is:

(1)

where LOW is Lyme Onset Week (week 1 is defined at the beginning of the calendar year), 

GDDW20 is the cumulative growing degree days from week 1 to week 20, SDM5 is the mean 

saturation deficit in mmHg in the 5 weeks before the onset week, PRCPAW8 is the 

cumulative rainfall in mm from week 8 (approximately the beginning of spring) through the 

onset week, and DIST is distance in decimal degrees to the Atlantic Ocean coastline from 

the weighted mean center of each State's total Lyme disease cases. LOW is defined as the 

week with the maximum percent increase in the number of Lyme disease cases over the 

previous week. The model indicates that Lyme disease season is expected to begin 1.4 

weeks earlier for each additional 100 cumulative GDDs through week 20, about 1 week later 

for each 1 mmHg increase in saturation deficit (i.e., if humidity decreases with respect to the 

air temperature), and about 0.9 weeks later for each 100 mm increase in cumulative 

precipitation between week 8 and the beginning of the Lyme disease season. The time-

invariant variable DIST provides a measure of the maritime or continental climate 

influences in a State. Compared to inland areas, near-coastal areas often have smaller 

climatic fluctuations due to the moderating influence of the ocean (Bailey, 1980). The model 
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is applied to each State and year separately and then results are aggregated to the regional or 

national level as needed, or temporally averaged to obtain long-term averages of LOW.

The LOW model was developed using human cases of Lyme disease reported to the Centers 

for Disease Control and Prevention (CDC) by State and territorial health departments as part 

of the National Notifiable Disease Surveillance System (NNDSS) from 1992 to 2007 (CDC, 

2009). Over 95% of Lyme diseases cases in the United States occurred in 13 States in the 

east and north-central regions during the study period: Connecticut, Delaware, Maine, 

Maryland, Massachusetts, Minnesota, New Hampshire, New Jersey, New York, 

Pennsylvania, Rhode Island, Virginia, and Wisconsin. Reports from Delaware during the 

study period did not include an illness onset date and Delaware was subsequently excluded 

from the analysis. Therefore, the national model was developed using Lyme disease case 

data from the 12 States accounting for >90% of all United States cases reported for 1992–

2007. Additional details on case data, model development, and the methodology for defining 

observed LOW are in Moore et al. (2014).

Climate data

Moore et al. (2014) describe in detail the historical climate data used in the development of 

the national model. The data are briefly summarized here for clarity. Historical 

meteorological variables were obtained or derived from the 1/8th degree primary forcing 

data for Phase 2 of the North American Land Data Assimilation System (NLDAS-2) (Xia et 

al., 2012). The observation-constrained meteorological variables of NLDAS-2 span 1979-

present and are considered to be of suitable quality for use in climate-sensitive human health 

applications over North America (Luber, 2014). The NLDAS-2 variables were aggregated to 

the county-level using the Zonal Statistics spatial analysis tool in ArcGIS (Esri, Redlands, 

CA). State averages of the NLDAS-2 variables were then calculated annually for 1992–2007 

using the county-level data, weighted by the percentage of cases in each county during 

1992–2007.

Future climate projections were selected from a multi-model ensemble of atmosphere-ocean 

global climate models (AOGCMs) that participated in phase five of the Coupled Model 

Intercomparison Experiment (CMIP5) (Taylor et al., 2012). The CMIP5 simulations support 

the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC, 2013) and 

the Third National Climate Assessment for the United States (USGCRP, 2014). Specifically 

used were AOGCM simulations from a database of CMIP5 climate and hydrology 

projections that have been empirically downscaled with the bias-corrected spatial 

disaggregation method (Archive Collaborators, 2014; Brekke et al., 2013; Maurer et al., 

2007). The empirically downscaled projections were chosen because they are mapped on the 

same 1/8th degree domain as the historical NLDAS-2 data used in the original LOW model 

development, and because the database has a variety of AOGCMs and scenarios available, 

which facilitate an uncertainty analysis. Five AOGCMs were selected from the database 

(Table 1) according to the following three criteria:

1. They have at least one simulation available for all four CMIP5 climate change 

scenarios (described below);
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2. They rank among the top of the CMIP5 AOGCMs in their ability to simulate 

observed temperature and rainfall globally according to Knutti et al. (2013);

3. They each come from a different model genealogy according to Knutti et al. 

(2013), ensuring each model is sufficiently unique from the others.

AOGCM simulations from all four future emissions scenarios from CMIP5 are used. These 

are known as representative concentration pathway (RCP) scenarios (Moss et al., 2010) and 

include RCP2.6, RCP4.5, RCP6.0 and RCP8.5, with the numbers indicating the greenhouse-

gas (GHG) radiative forcing near 2100 (e.g., 2.6 W m−2, 4.5 W m−2, 6.0 W m−2 and 8.5 W 

m−2). RCP2.6 is a low emissions scenario with aggressive reductions in GHG emissions 

representing a technically feasible trajectory for limiting the global mean temperature 

increase to 2 °C or less (van Vuuren et al., 2011). RCP4.5 is a low-to-moderate emissions 

scenario representing a trajectory that may be plausible if, for instance, GHG emissions 

pricing were introduced in order to limit and stabilize radiative forcing (Thomson et al., 

2011). RCP6.0 is a moderate GHG emissions scenario that is similar to RCP4.5 in that a 

variety of strategies for reducing GHGs would be applied to eventually stabilize radiative 

forcing near the end of the 21st century (Masui et al., 2011). RCP8.5 is a high GHG 

emissions scenario representing a plausible trajectory if little is done to curb greenhouse gas 

emissions (Riahi et al., 2011).

For the first ensemble member of each AOGCM and RCP scenario combination, average 

monthly maximum temperature (TMAX), minimum temperature (TMIN), and precipitation 

(PRCP) data for the 12 State region were aggregated to the county level from their 1/8th 

degree grid, then averaged to the State level with the county-based weighting technique 

described above. This was done for the 16-year baseline period over which the LOW model 

was developed (1992–2007), as well as for two future 16-year periods: 2025–2040 and 

2065–2080. The TMAX, TMIN and PRCP fields were then used to calculate GDDW20, SDM5, 

and PRCPAW8 for the two future periods via a delta-based method (e.g., Hay et al., 2000), as 

described in the Supplemental Material, Part 1.

Statistical analysis

Present-day and future histograms of annual LOW and climatic data are constructed for 

numerous combinations of AOGCMs, RCP scenarios, and regions (State and national 

levels). The frequency distributions are approximately normal and therefore, future changes 

of LOW or climatic variables for each case are tested for significance (p < 0.01 and p < 

0.05) with a two-tailed Student's t-test for the difference between the means of the 

histograms. The statistical significance tests address two types of uncertainty: (1) that due to 

the choice of global climate model (the uncertainty among the 5 different AOGCMs), and 

(2) that due to the interannual variability of the climatic variables (the uncertainty among 

each year of the baseline and future 16-year periods). A third type of uncertainty is not 

addressed in this paper: that due to the uncertainty of the statistical model that describes 

LOW (Eq. (1)). The LOW model uncertainty could hypothetically be addressed by applying 

several different plausible national LOW models, however the four leading national LOW 

models published in Moore et al. (2014) have nearly identical explanatory variables, with 
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only slight deviations from one another. Therefore, only the ‘best’ national LOW model is 

employed here in order to avoid adding unnecessary complexity.

Results

National-level results for historical and future distributions of LOW are shown in Fig. 1. The 

multi-model future projection of national-average LOW for both the early (2025–2040) and 

late (2065–2080) 21st century periods is significantly earlier for all four RCP scenarios 

compared to the historical national average LOW for 1992–2007 of 21.2 weeks. The early 

21st century changes are similar among the four RCP scenarios because their respective 

GHG emissions trajectories do not diverge substantially until after mid-century. On average, 

LOW is projected to become 0.4–0.5 weeks earlier for 2025–2040, and 0.7–1.9 weeks 

earlier for 2065–2080, depending on the scenario. The strongest changes for the late century 

scenario are for the highest GHG emissions scenario, RCP8.5.

National-level results for the historical and future distributions of the climatic variables 

associated with LOW are shown in Fig. 2. The average temperatures for Jan-May 

(TJAN-MAY), though not directly used in Eq. (1), give a sense for the temperature increases 

that occur during the winter and spring months leading up to LOW. National-level mean 

TJAN-MAY increases by 1.2–1.7 °C for 2025–2040, and by 1.8–4.5 °C for 2065–2080, 

depending on the scenario. Consistent with the warmer temperatures, GDDW20 increases by 

54–76 GDDs for 2025–2040, and by 99–232 GDDs for 2065–2080. SDM5 increases by 

0.25–0.34 mmHg for 2025–2040, and by 0.43–0.92 mmHg for 2065–2080 as a result of 

warmer temperatures under constant relative humidity conditions (see Supplemental 

Materials, Part 1). PRCPAW8 increases by 18–32 mm for 2025–2040, and by 30–53 mm for 

2065–2080. The changes for all four climate variables in Fig. 2 are statistically significant 

for both future periods and all RCP scenarios. For all climatic variables, the smallest 

changes by the late 21st century are for the RCP2.6 scenario and the largest are for RCP8.5.

The historical values of LOW and associated climate variables for 1992–2007 for each State 

and nationally are shown in Table 2. The differences from these historical values for 2065–

2080 for the “best-case” RCP2.6 and “worst-case” RCP8.5 scenarios are shown in Tables 3 

and 4 respectively (see Supplemental Materials, Part 2 for results from other RCP scenarios 

and for 2025–2040). The States are categorized into the four regions following Moore et al. 

(2014) (note that the “mid-Atlantic” region is identical to the “south” region in Moore et al., 

2014). Some 1992–2007 State-level values of LOW are up to a few tenths of a week 

different than those presented in Moore et al. (2014) because missing values were present in 

the Moore et al. (2014) data, whereas Eq. (1) is used in this study to calculate LOW from the 

climatic data, so no missing values exist. This approach provides a more representative 

average of LOW for the 1992–2007 historical period. By 2065–2080, LOW is projected to 

become significantly earlier (p < 0.05) for 4-of-12 States for the RCP2.6 scenario, and for 

11-of-12 States for RCP8.5. Maine undergoes the smallest changes, −0.2 weeks (RCP2.6) 

and −0.9 weeks (RCP8.5), neither being statistically significant at the 95% confidence 

interval. Virginia undergoes the largest changes, −1.5 weeks (RCP2.6) and −3.5 weeks 

(RCP8.5), both statistically significant. In general, the largest future changes in LOW occur 

in the comparatively warmer mid-Atlantic States where LOW is historically earliest and the 
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increase in GDDW20 is largest on an absolute basis, followed by the Midwest which, despite 

having the coolest Jan-May temperatures, exhibits the strongest warming (ΔTJAN-MAY) and 

the largest percentage increase in GDDW20. LOW increases are smaller in the North and 

East where there are comparatively smaller increases in TJAN-MAY and GDDW20, and larger 

increases in SDM5 and PRCPAW8 (both of which are favorable for later LOW), though it is 

noteworthy that PRCPAW8 changes are not statistically significant for any State for RCP2.6, 

and only for 6–12 States for RCP8.5. Changes in GDDW20 contribute most to ΔLOW, about 

3–5 times more than SDM5 and about 3–23 times more than PRCPAW8 (comparison of final 

three columns in Tables 3 and 4). Additional commentary on the State-level results is 

included in Section “Discussion”.

Discussion

Future projections based on five AOGCMs and four emissions scenarios suggest an earlier 

beginning to the Lyme disease season nationally by 0.4–0.5 weeks (2025–2040) and 0.7–1.9 

weeks (2065–2080). The greatest changes were observed under the highest GHG scenario 

(RCP8.5). Notably, regional differences in LOW are expected. Larger changes in LOW are 

projected for the more southerly States of the mid-Atlantic region compared to the more 

northerly States of the North and Midwest. For example, for the RCP8.5 2065–2080 case 

LOW becomes 3.5 weeks earlier in Virginia compared to 0.9 weeks in Maine and 1.8 weeks 

in Minnesota, despite smaller increases in average winter-spring temperatures (TJAN-MAY) 

in Virginia (4.0 °C) compared to Maine (4.9 °C) and Minnesota (5.4 °C).

This raises the question of whether the LOW model is overly sensitive to the choice of a 

threshold-based variable, GDDW20, as a predictor. To explain, even though the GDDs 

increase more on a percentage basis in the northern States, the absolute increases are 

generally smaller because the base GDD threshold temperature of 10 °C is exceeded for a 

shorter period of time in cooler areas. Are the differential changes in LOW between northern 

and mid-Atlantic States a model artifact resulting from absolute changes in GDDs in the 

cooler northern States being smaller than for the mid-Atlantic States? To address the 

differential changes in LOW between northerly and southerly States, observed historical 

inter-annual variability of LOW for 1992–2007 in the mid-Atlantic States was assessed to 

determine if it is disproportionately larger than in the northern States in comparison to the 

inter-annual variability in winter and spring temperatures. The two States with the coldest 

and warmest average Jan-May temperatures, Minnesota and Virginia, were compared. The 

standard deviation of TJAN-MAY for Minnesota is 1.95 °C compared to 0.94 °C for Virginia, 

therefore Minnesota exhibits more than double the inter-annual variability for winter and 

spring temperatures compared to Virginia. However, despite having much larger 

temperature variability the standard deviation of annual LOW is similar for Minnesota and 

Virginia, 1.4 weeks and 1.3 weeks respectively (note that these values differ slightly from 

the standard deviations for LOW presented in Table 2 because they are observed, whereas 

model results are presented in Table 2). Therefore, similar changes in temperature are 

associated with larger changes in LOW in Virginia compared to Minnesota, and in general 

for mid-Atlantic versus northern States (results are similar for other States, not shown). The 

reduced sensitivity of LOW to a given change in temperature in the northern States has two 

origins. First, GDDs increase less for a unit increase in temperature in the northern regions 
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because they are based on a threshold temperature that is generally exceeded more often in 

the mid-Atlantic States. During model validation, the authors found the same north/south 

differences among GDDs even when lowering the GDD threshold to from 10 °C to 6 °C, 

given that previous studies suggest that a minimum temperature threshold required for I. 

scapularis or closely related I. ricinus to commence host-seeking activity following winter 

diapause may range from 6 to 10 °C (Gray, 1984, 1985; MacLeod, 1935, 1936; Mount et al., 

1997; Perret et al., 2000; Tagliapietra et al., 2011). Second, saturation deficit and 

precipitation contribute more toward offsetting the effects of GDDs on LOW in the northern 

States (Tables 3 and 4). In summary, the observed inter-annual variability of LOW and 

associated climatic drivers during the historical period are in agreement with the model 

results that show a differential sensitivity of LOW to temperature variations between 

northern and mid-Atlantic States. The results indicate that a threshold-based temperature 

proxy such as GDDs, which can account for differential sensitivity among States, is an 

appropriate explanatory variable. Additionally, the sensitivity analysis indicates that future 

changes for LOW may be larger in the mid-Atlantic States compared to the northern States 

for similar increments of warming, especially given that combined increases in the offsetting 

saturation deficit and precipitation variables are projected to be larger in the northern States.

As with all empirical models, there is always the possibility of the independent variables 

being serendipitously correlated with the dependent variables. However, numerous studies 

that have linked warmer and/or more humid conditions with I. scapularis characteristics in a 

manner conducive with earlier LOW support the associations between LOW and the 

explanatory climatic variables GDDW20, and SDM5 and PRCPAW8 in equation (1) 

(Brownstein et al., 2003; Diuk-Wasser et al., 2006, 2010; Estrada-Pena, 2002). While the 

positive association between PRCPAW8 and LOW may seem counter-intuitive given that 

SDM5 is also positively associated with LOW – i.e., higher precipitation is associated with 

later LOW, whereas one might expect lower precipitation to be associated with later LOW 

since humidity is lower – it is important to note PRCPAW8 may be impacting different 

aspects of the transmission cycle than SDM5, and at different timescales. PRCPAW8 covers a 

period of 2–4 months prior to LOW, whereas SDM5 covers a 7 day period 5 weeks prior to 

LOW. Greater PRCPAW8 is associated with cooler winter and spring temperatures as 

manifested by a negative correlation with the explanatory climatic variable GDDW20 (R = 

−0.35; p < 0.01); cooler temperatures associated with wetter conditions may delay the onset 

of Lyme disease by delaying interstadial tick development (Ogden et al., 2004), by delaying 

host-seeking activities (Eisen et al., 2002), or by delaying the springtime growth of 

vegetation that ticks exploit (Moore et al., 2014). Additionally, reduced human outdoor 

activity (and exposure to ticks) throughout the spring and early summer may also be 

associated with cooler, wetter conditions during that period (e.g., Fisman, 2007).

In conclusion, the model projects that increasing temperatures during the 21st century are 

expected to result in an earlier onset of Lyme disease cases in the eastern United States. 

Notably, the focus is on the temporal occurrence of human infections, and therefore the 

model captures the complexity of how meteorological variables influence human behaviors 

resulting in contact with B. burgdorferi infected nymphal ticks, and host-seeking phenology 

of nymphal ticks. Although both human behavior and nymphal host seeking phenology are 
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influenced by meteorological conditions (Randolph, 2004; Ogden et al., 2004), it is likely 

that they respond to different thresholds and at different time scales (Moore et al., 2014). As 

a result, the impacts of climate variability and change on each of these mechanisms 

individually cannot be elucidated within our modeling framework, and therefore the model 

can only estimate their combined impacts. In practice, how human behavior may change as a 

result of climate change may be relatively unpredictable.

Although the LOW model provides a quantitative assessment of how the annual onset of 

Lyme disease cases may shift as climate changes during the 21st century, it does not explore 

how incidence changes in relation to meteorological variables and therefore does not address 

how an earlier onset could translate to changes in overall annual disease incidence. An 

earlier onset could result in more cases if increased temperatures result in greater abundance 

of ticks and increased contact rates with humans, or could result in the same number of cases 

or fewer cases if tick numbers and human-tick encounter rates remain the same, but tick 

activity shifts seasonally. Because the end of the Lyme disease transmission season could 

not be modeled (Moore et al., 2014), it is impossible to ascertain from this model whether an 

earlier LOW would translate to a longer season overall. It remains unclear if increased 

temperatures could condense the duration of the season as is observed in warmer 

Mediterranean climates (Eisen et al., 2003; Gray et al., 2008, 2009), or if the season might 

be extended into autumn and winter months due to increased nymphal and adult tick 

questing during these periods (Dautel et al., 2008; Gray et al., 2009). Alternatively, nymphal 

host seeking could shift abruptly from nymphs being active in the spring to the autumn. 

Such a situation was proposed to arise if increasingly warmer spring and summer conditions 

resulted in acceleration of the pre-oviposition and pre-eclosion periods, which would allow 

larvae to emerge and become active earlier in the summer. Additionally, warmer summer 

and autumn temperatures were hypothesized to facilitate faster larval development, resulting 

in increased numbers of larvae that were able to feed and engorge in summer and molt into 

nymphs that feed in late summer or autumn of the same calendar year (Ogden et al., 2008). 

The model does not account for the possibility that abrupt shifts in the life cycle of I. 

scapularis may alter the disease transmission cycle in unforeseen ways.

The model results presented within should therefore be taken within the context of these and 

other potentially confounding factors, and should not be interpreted as more than what they 

are: a projection of enhanced climatic suitability for earlier LOW in the 21st century. Such 

knowledge may be useful for informing stakeholders of how the timing of Lyme disease 

prevention efforts may need to be altered, such as the application of acaracides in springtime 

to coincide with nymphal emergence (Rand et al., 2010), or public awareness campaigns to 

reduce human exposure to ticks (Connally et al., 2009; Hayes and Piesman, 2003).

Conclusions

A climate-based empirical model was driven with an ensemble of downscaled CMIP5 

climate model simulations to project the impacts of climate change on the annual onset week 

of Lyme disease nationally and for 12 States. The average LOW is projected to become 0.4–

0.5 weeks earlier nationally for 2025–2040 (p < 0.05), and 0.7–1.9 weeks earlier for 2065–

2080 (p < 0.01). The smallest changes are projected for the lowest greenhouse gas emissions 

Monaghan et al. Page 9

Ticks Tick Borne Dis. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scenario, RCP2.6, while the largest changes would occur for the highest greenhouse gas 

emissions scenario (RCP8.5). Warming temperatures during the winter and spring months 

increase GDDW20 and cause earlier LOW in the future. Projected increases in SDM5 and 

PRCPAW8 both partially offset the effects of warming on LOW. Regionally, the mid-

Atlantic States are projected to have larger changes in LOW compared to the northern 

States, a result the historical record supports. The results of the present study suggest that 

21st century climate change, particularly increasing temperatures, will likely make 

environmental conditions suitable for earlier onset of Lyme disease cases in the United 

States.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Box plots comparing the distributions of the national-level historical data for annual Lyme 

Onset Week (LOW) with the AOGCM multi-model mean distributions of LOW for each of 

the four RCP scenarios and two future periods. Each box plot shows the values of LOW for 

the maximum (top of dashed line), 75th percentile (top of box), mean (line through middle 

of box), 25th percentile (bottom of box) and minimum (bottom of dashed line) of the 

distribution. All distributions are comprised of values for 12 States and 16 years (N = 192). 

Circles along the top of each panel indicate whether the AOGCM multi-model mean is 

significantly different from the historical mean (see top legend). Box plot colors indicate 

different time periods (see middle legend). Black symbols on each box plot indicate the 

mean value of LOW from each individual AOGCM that contributes to the multi-model 

ensemble (see bottom legend).
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Fig. 2. 
As in Fig. 1, but for the national-level climate variables including Jan-May average 

temperature (A), cumulative GDDs through Week 20 (B), average saturation deficit in the 5 

weeks before LOW (C), and cumulative precipitation from week 8 until LOW (D).

Monaghan et al. Page 15

Ticks Tick Borne Dis. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Monaghan et al. Page 16

Table 1

List of climate modeling centers and AOGCMs used in this study.

Modeling center (or group) Institute ID Model name

Community Earth System Model Contributors NSF-DOE-NCAR CESM1 (CAM5)

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3

NASA Goddard Institute for Space Studies NASA GISS GISS-E2-R

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de 
Pesquisas Espaciais)

MOHC/INPE HadGEM2-ES

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology

MIROC MIROC5
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Table 2

State- and national-level historical (1992–2007) mean ± standard deviation for LOW and associated climate 

variables. DIST is included for completeness.

Region State LOW (weeks) TJAN-MAY (°C) GDDW20 (GDDs) SDM5 (mmHg) PRCPAW8 (mm) DIST (deg)

Midwest MN 22.8 ± 0.8 0.1 ± 1.8 120 ± 51 4.2 ± 0.5 207 ± 61 11.45

WI 21.9 ± 0.7 0.5 ± 1.7 106 ± 46 3.1 ± 0.5 205 ± 41 11.72

North ME 22.0 ± 0.9 1.8 ± 1.2 44 ± 27 2.3 ± 0.5 323 ± 96 0.18

MA 22.0 ± 0.6 4.3 ± 1.1 75 ± 31 2.7 ± 0.4 322 ± 61 0.31

NH 22.2 ± 0.8 2.6 ± 1.1 70 ± 36 2.8 ± 0.5 325 ± 83 0.60

East CT 21.7 ± 0.7 4.6 ± 1.1 105 ± 35 3.0 ± 0.5 309 ± 58 0.34

RI 21.9 ± 0.6 5.0 ± 1.0 89 ± 30 2.8 ± 0.4 330 ± 67 0.12

NJ 20.7 ± 0.9 6.0 ± 1.1 154 ± 45 3.0 ± 0.5 276 ± 67 0.35

NY 21.3 ± 0.8 4.8 ± 1.1 105 ± 37 2.8 ± 0.4 274 ± 60 0.54

PA 20.2 ± 0.9 6.1 ± 1.2 176 ± 50 3.0 ± 0.4 252 ± 68 0.64

mid-Atl MD 19.2 ± 1.2 8.3 ± 1.0 224 ± 57 2.9 ± 0.5 228 ± 77 0.06

VA 18.2 ± 1.0 8.8 ± 1.0 281 ± 59 3.0 ± 0.6 189 ± 60 0.30

National – 21.2 ± 0.8 4.4 ± 1.2 129 ± 42 3.0 ± 0.5 270 ± 67 2.22
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