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Abstract

Terpinolene’s (1-methyl-4-(propan-2-ylidene)cyclohexene) reaction with ozone or the nitrate 

radical was investigated using a denuder/filter apparatus in order to characterize gas-phase and 

particulate reaction products. Identification of the reaction products (i.e., aldehydes, ketones, 

dicarbonyls and carboxylic acids) was made using two derivatization methods; O-(2,3,4,5,6-

pentafluorobenzyl)hydroxylamine (PFBHA) to derivatize the carbonyl products or 3-Ethyl-1-[3-

(dimethylamino)propyl]carbodiimide hydrochloride (EDC) and 2,2,2-trifluoroethylamine 

hydrochloride (TFEA) to derivatize the carboxylic acid products. Proposed carbonyl products for 

ozonolysis of terpinolene are: 4-methylcyclohex-3-en-1-one, 2-hydroxy-4-methylcyclohex-3-en-1-

one, glyoxal, methyl glyoxal, 3-oxobutanal, and 6-oxo-3-(propan-2-ylidene)heptanal. Proposed 

carbonyl products for nitrate radical reaction of terpinolene are: 2-hydroxy-4-methylcyclohex-3-

en-1-one, glyoxal, methyl glyoxal, and 4-oxopentanal. No carboxylic acid products were detected 

with either oxidizing reactant.
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1. Introduction

Volatile organic compounds (VOCs) are introduced indoors by outdoor ventilation, 

emissions from building materials, and the use of various cleaning products (Nazaroff and 

Weschler, 2004). In indoor environments these VOCs can react with oxidants such as ozone 

(O3) and the nitrate radical (NO3•) in the gas phase or on indoor surfaces and can transform 

into oxygenated organic and/or nitrated species. Indoors the reaction of ozone and NO2 

yields nitrate radicals (NO3•) with an estimated concentration of 2 × 107 molecules cm−3 

(1.1 parts per trillion) (ppt) (Sarwar et al., 2002). An indoor ozone concentration of 1 × 1012 

molecules cm−3 (50 parts per billion) (ppb) has been estimated by Sarwar et al. (2002). 

Using these concentration estimates in combination with VOC/ozone or VOC/nitrate radial 
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reaction rate constants, VOC removal rates due to reaction effectively competes with typical 

indoor air exchange (0.6 h−1) (Wilson et al., 1996). Thus, identifying the VOC/O3 and 

VOC/NO3• reaction products for VOC typically present indoors is critical to characterize 

occupant exposure (Quirce and Barranco, 2010; Makela et al., 2011; McHugh et al., 2010).

The VOC/O3 and VOC/NO3• reaction products for VOC normally found indoors encompass 

a wide variety of oxygenated organic compounds. These reactions proceed by addition to 

carbon–carbon double bonds and also by H abstraction for VOC/NO3• reactions. The 

reaction products formed include: aldehydes, ketones, dicarbonyls, carboxylic acids, and 

organic nitrates (e.g. alkyl nitrates, peroxyacyl nitrates (PANs), hydroxynitrates, dinitrates) 

(Atkinson and Arey, 2003; Spittler et al., 2006; Wangberg et al., 1997). It is expected that 

many of these compounds may have harmful health effects and should be investigated. All 

of these oxygenated organic compounds have the potential to induce a respiratory response, 

including WRA (Magnano et al., 2009). Organic nitrates may also have the potential to be 

carcinogenic (Dungworth et al., 1969). Determining the reaction products of NO3• and O3 

reactions with VOC are essential in assessing potential exposures of indoor occupants.

One VOC common in many cleaning formulations is terpinolene (l-methyl-4-(propan-2-

ylidene)cyclohexene). Recent work by Singer et al. determined the 1 h concentration of 

terpinolene after the application of a full strength cleaning product to be 900–1300 µg mm−3 

(∼160–230 ppb) (Singer et al., 2006). Terpinolene with its two carbon–carbon double bonds 

reacts rapidly with O3 or NO3• with rate constants (in units of cm3 molecule−1 s−1) of 190 × 

10−17 and 97 × 10−12, respectively (Atkinson and Arey, 2003). More recently Stewart et al. 

(2013) published recommended values for rate constants of terpinolene reaction with O3 or 

NO3• (in units of cm3 molecule−1 s−1) of 154 × 10−17 and 50 × 10−12, respectively. Previous 

investigations of terpinolene oxidation chemistry include: three from terpinolene/ozone (Ma 

and Marston, 2009; Reissell et al., 1999; Hakola et al., 1994) and one from terpinolene/

nitrate radical reaction product kinetics (Baker et al., 2004). In this present study, the 

oxidation of terpinolene due to reaction with ozone or nitrate radical was investigated using 

a denuder/filter apparatus to characterize gas-phase and particulate reaction products. 

Identification of the reaction products (i.e., aldehydes, ketones, dicarbonyls, and carboxylic 

acids) was made using two derivatization methods: O-(2,3,4,5,6-

pentafluorobenzyl)hydroxylamine (PFBHA) to derivatize the carbonyl products (Yu et al., 

1998) or 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) and 2,2,2-

trifluoroethylamine hydrochloride (TFEA) to derivatize the carboxylic acid products (Ford 

et al., 2007).

2. Experimental methods

2.1. Apparatus and materials

Experiments to measure the gas-phase reaction products formed from the reaction of 

terpinolene with O3 or NO3• were conducted with a previously described apparatus 

(Harrison et al., 2007). A brief description is provided here. Reactants were introduced and 

samples were withdrawn through a 6.4-mm Swagelok (Solon, OH) fitting attached to a 95 L 

Teflon-film chamber. Compressed air from the National Institute for Occupational Safety 

and Health (NIOSH) facility was passed through anhydrous CaSO4 (Drierite, Xenia, OH) 
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and molecular sieves (Drierite) to remove both moisture and organic contaminants. This 

treated dry air from the NIOSH facility flowed through a mass flow controller and into a 

humidifying chamber and was subsequently mixed with dry air to the pre-determined 

relative humidity of 50%. The filler system was equipped with a heated syringe injection 

port facilitating the introduction of liquid reactants into the chamber. All reactant mixtures 

and calibration standards were generated by this system.

Identification of reaction products was made using PFBHA to derivatize carbonyl products 

or EDC and TFEA to derivatize carboxylic acid products. Derivatized reaction products 

were analyzed using a Varian (Palo Alto, CA) 3800/Saturn 2000 GC/MS system operated in 

both the electron ionization (EI) and chemical ionization (CI) modes (Yu et al., 1998). 

Compound separation was achieved by a Restek (Bellefonte, PA) RTX-5MS (0.25 mm i.d., 

30-m long, 1 µm film thickness) column and the following gas chromatograph (GC) oven 

parameters: 40 °C for 2 min then 10 °C min−1 to 140 °C, then 20 °C min−1 to 280 °C and 

held for 8 min.

Samples were injected in the splitless mode, and the GC injector was returned to 50:1 split 

mode one minute after sample injection, with the following injector temperature parameters: 

200 °C for 0.5 min then 200 °C min−1 to 300 °C and held for 6 min. The Saturn 2000 ion 

trap mass spectrometer was tuned using per-fluorotributylamine (FC-43). Full-scan EI 

spectra were collected from m/z 40 to 650. Acetonitrile was the CI reagent used for all CI 

spectra. When possible, commercially available samples of the identified products were 

derivatized and subsequently analyzed to verify matching ion spectra and chromatographic 

retention times.

Ozone was produced by photolyzing air with a mercury pen lamp in a separate Teflon 

chamber. Aliquots of this O3/air mixture were added to the Teflon reaction chamber using a 

gas-tight syringe. O3 concentrations were measured using a Thermo Electron (Waltham, 

MA) UV photometric ozone analyzer Model 49C.

Nitrate radicals (Reaction 1) were generated by the thermal decomposition of N2O5 using a 

similar method as described by Atkinson et al. (1988). N2O5 (solid) kept at −75 °C was 

heated and allowed to transfer to an evacuated 2 L collection bottle until pressure was 

between 0.1 and 0.2 Torr. The collection bottle was then pressurized with ultra-high purity 

nitrogen up to 1000 Torr and connected to the reaction chamber via a Teflon® shut-off 

valve. The valve to the collection bottle and the chamber shut-off valve were opened and the 

system was allowed to equilibrate for 20 s. For product experiments, approximately 30 min 

elapsed before any samples were collected after the introduction of ozone or N2O5.

All compounds were used as received and had the following purities: from Sigma–Aldrich 

(Milwaukee, WI): Terpinolene (90%), methylene chloride (99.5%) 3-Ethyl-1-[3-

(dimethylamino)propyl] carbodiimide hydrochloride (EDC) (98%), 2,2,2-

trifluoroethylamine hydrochloride (TFEA) (98%), O-(2,3,4,5,6-pentafluorobenzyl) 

hydroxylamine hydrochloride (PFBHA) (98+%), from Fisher Scientific (Fairlawn, NJ): 

Harrison and Wells Page 3

Atmos Environ (1994). Author manuscript; available in PMC 2015 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acetonitrile (ACN) (99.5%), XAD-4 resin and methanol (99%). Water (DI H2O) was 

distilled, deionized to a resistivity of 18 MΩ cm and filtered using a Milli-Q® filter system 

(Billerica, MA). Nitrogen dioxide as a 5% mixture in nitrogen and ultra-high purity (UHP) 

oxygen was obtained from Butler Gases (Morrisville, PA). Helium (UHP grade), the carrier 

gas, was supplied by Amerigas (Sabraton, WV) and used as received. Experiments were 

carried out at (297 ± 3) K and 1 atm pressure.

2.2. Experimental procedures and sample derivatization

For the terpinolene + O3 or NO3• experiments, the typical concentrations of the terpinolene 

in the 95 LTeflon chamber were 1 ppm (2.5 × 1013 molecule cm−3), 0.1 ppm (2.5 × 1012 

molecule cm−3) of ozone, or 0.2 ppm (5 × 1012 molecule cm−3) of NO3•. All solutions were 

added through the syringe injection port (described above). An additional port attached to 

the Teflon chamber enabled the injection of N2O5 or O3. After terpinolene was injected, 

background samples were taken before addition of O3 or NO3•. All sample collections 

(described below) were treated the same. Each experiment was conducted at least three 

times.

The reaction chamber was sampled for 3 min 20 s at a flow rate of 18 L min−1 (60 L total 

sample) onto a 5 channel, 400 mm length denuder (URG-2000-30B5, URG, Chapel Hill, 

NC) coated with ground XAD-4 resin (average particle size 0.7 mm) and a filter pack 

(URG-2000-30FG-3, URG, Chapel Hill, NC) with a 47 mm 0.45 micron PTFE filter 

(Fluoropore membrane, Millipore, Billerica, MA). The gaseous species diffuse to the 

denuder walls and are trapped while the particulate species exit the denuder (due to 

momentum) and deposit on the filter. Reaction products were analyzed as their oxime or 

2,2,2-trifuoroethylamide derivatives, described below.

After sampling, the denuder was extracted with 30 mL of methylene chloride using a 

previously described method (Wells, 2012). To identify oxygenated reaction products (i.e., 

aldehydes, ketones, and dicarbonyls), 100 µL of PFBHA (Yu et al., 1998) (250 mM in 

deionized H2O) was added to the methylene chloride extract. These vials were stored 

overnight for derivatization reaction completion. After reaction, the deionized water layer 

was carefully removed and the remaining methylene chloride extract in the vials were blown 

down to approximately 6 mL, transferred into 7 mL vials then blown down to complete 

dryness using dry house air and then reconstituted in 100 µL of methanol.

After sampling, the filter was placed into a clean 40 mL vial and extracted, by shaking, with 

5 mL of deionized water (for carboxylic acid derivatization) and 5 mL of methylene chloride 

(for carbonyl derivatization). The carboxylic acid derivatization method by Ford et al. 

(2007) was modified and used on this deionized water– methylene chloride extract. Briefly, 

the water–methylene chloride extract was separated by carefully removing the bottom layer 

(which is the methylene chloride portion of the extract). The carbonyl derivatization method 

for the methylene chloride filter extract is described above. To the water extract, 1 mL each 

of 0.8 M aqueous EDC and 0.8 M aqueous TFEA. This solution was vortexed for 1 min then 

allowed to react for a minimum of 10 min. Then, 5 mL methylene chloride was added and 

the mixture was vigorously shaken and stored overnight for derivatization reaction 
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completion. The methylene chloride layer was collected into a 7 mL vial, blown to dryness 

with treated house air, and reconstituted with 100 µL of methanol.

2.3. SPME GC/MS

Sampling to monitor the reaction progress for these terpinolene/O3/NO3• product 

experiments was performed using a 65 µm polydimethylsiloxane/divinylbenzene (PDMS/

DVB) solid phase micro-extraction (SPME) fiber (Supelco, Milwaukee, WI) assembly 

which was inserted into a 6.4-mm Swagelok (Solon, OH) fitting attached to a 95 L Teflon®-

film bag (the reaction chamber). The reaction chamber contents were sampled for 5 min 

with the SPME fiber. The SPME was then inserted through a Merlin Microseal (Half Moon 

Bay, CA) and into the heated injector of the Agilent (Wilmington, DE) 6890 gas 

chromatograph with a 5975 mass selective detector (GC/MS) and Agilent ChemStation 

software. The GC settings were the following: injection port was set to 250 °C; and oven 

temperature began at 40 °C for 2 min and was ramped 10 °C min−1 −140 °C and was 

ramped 20 °C min−1 −280 °C and held for 10 min.

For terpinolene/O3 reaction product yields a 100 µm polydimethylsiloxane (PDMS) fiber 

was used to sample the Teflon chamber contents. In order to accurately determine 

terpinolene consumption, its concentration was reduced to approximately 480 ppb (1.2 × 

1013 molecule cm−3). The ozone concentration range was between 30 ppb and 100 ppb 

(0.75–2.5 × 1012 molecule cm−3) of ozone. These concentrations were utilized to avoid 

analytical system saturation.

2.4. Terpinolene/O3 and Terpinolene/NO3• reaction products using PFBHA

Derivatization of nonsymmetric carbonyls using PFBHA typically resulted in multiple 

chromatographic peaks due to stereoisomers of the oximes. Identification of multiple peaks 

of the same oxime compound is relatively simple since the mass spectra for each 

chromatographic peak of a particular oxime are almost identical. In most cases, the m/z 181 

ion relative intensity for the chromatographic peaks due to terpinolene + O3 or terpinolene + 

NO3 reaction product oximes was the base peak in the mass spectrum and was used to 

generate selected ion chromatograms. The product data are described below.

The following chronological chromatographic retention time results and mass spectra data 

were observed utilizing PFBHA derivatization and the Varian 3800/Saturn 2000 GC/MS 

system. The reaction products’ chromatographic peak areas were a function of the initial 

terpinolene concentration and were observed only after introduction of O3 or NO3 to 

terpinolene/methanol/air mixtures. Derivatization experiments performed in the absence of 

terpinolene, but in the presence of all other chemicals in the reaction chamber (O3/NO3•/air/

methanol) did not result in any of the data reported below.

The PFBHA reaction products observed from the terpinolene/O3 addition to the double 

bonds are 4-methylcyclohex-3-en-1-one, 2-hydroxy-4-methylcyclohex-3-en-1-one, glyoxal, 

methyl glyoxal, 3-oxobutanal, and 6-oxo-3-(propan-2-ylidene)heptanal (listed in Table 1). 

The PFBHA reaction product observed from the terpinolene/NO3• via hydrogen abstraction 

or addition to the double bonds are 2-hydroxy-4-methylcyclohex-3-en-1-one, glyoxal, 
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methyl glyoxal and 4-oxopentanal (listed in Table 2). Elucidation of the proposed reaction 

products for terpinolene were facilitated by mass spectrometry of the derivatized reaction 

product coupled with plausible terpinolene/O3 or terpinolene/NO3• reaction mechanisms 

based on previously published VOC/O3 or organic com-pound/NO3• gas-phase reaction as 

described below (Spittler et al., 2006; Atkinson and Arey, 2003).

2.5. Terpinolene/O3 reaction products and yields

2.5.1. Oxime at retention time 17.8 min—The oxime observed with a chromatographic 

retention time of 17.8 min had ions of m/z (relative intensity): 79 (65%), 107 (100%), 181 

(45%), 277 (20%), and 306 (34%). In the CI spectra, an M + 1 ion of m/z 306 was observed 

for the PFBHA-derivatized sample. A proposed reaction product assignment of 4-

methylcyclohex-3-en-1-one was based on observed data. The product was also observed in 

the SPME sampling of the reaction chamber and a yield of approximately 28 ± 6% was 

determined (Fig. 1).

2.5.2. Oxime at retention time 18.6 min—The oxime observed with a chromatographic 

retention time of 18.6 min had ions of m/z (relative intensity): 43 (48%), 95 (49%), 123 

(60%), 181 (100%), 261 (38%), 292 (38%), 306 (50%) and 322 (48%). In the CI spectra, an 

M + 1 ion of m/z 322 was observed for the PFBHA-derivatized sample. A proposed reaction 

product assignment of 2-hydroxy-4-methylcyclohex-3-en-1-one was based on observed data.

2.5.3. Oxime at retention time 19.2 and 19 min—The oxime observed with a 

chromatographic retention time of 19 and 19.3 min had ions of m/z (relative intensity): 181 

(100%), 265 (35%–10%), 281 (15%–10%), and 448 (40%–7.5%). In the CI spectra, an M + 

1 ion of m/z 448 was observed for the PFBHA-derivatized sample. A proposed reaction 

product assignment of glyoxal was based on observed data. The PFBHA-glyoxal oxime was 

synthesized to confirm this chromatographic assignment.

2.5.4. Oximes at retention time 19.6 min—The oxime observed with a 

chromatographic retention time of 19.6 min had ions of m/z (relative intensity): 181 (100%), 

265 (75%–35%), and 448 (10%–7.5%). In the CI spectra, an M + 1 ion of m/z 462 was 

observed for the PFBHA-derivatized sample. A proposed reaction product assignment of 

methyl glyoxal was based on observed data. The PFBHA-methyl glyoxal oxime was 

synthesized to confirm this chromatographic assignment.

2.5.5. Oxime at retention time 20.1 min—The oxime observed with a chromatographic 

retention time of 20.1 min had ions of m/z (relative intensity): 181 (100%), 225 (18%–14%) 

and 476 (20%–17%). In the CI spectra, an M + 1 ion of m/z 476 was observed for the 

PFBHA-derivatized sample. A proposed reaction product assignment of 3-oxobutanal was 

based on observed data.

2.5.6. Oxime at retention time 23.5, 23.8, 24.3, and 24.4 min—The oxime observed 

with a chromatographic retention time of 23.5, 23.8, 24.3, and 24.4 min had ions of m/z 

(relative intensity): 181 (70%–100%) and 361 (75%–100%). In the CI spectra, an M + 1 ion 
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of m/z 559 was observed for the PFBHA-derivatized sample. A proposed reaction product 

assignment of 6-oxo-3-(propan-2-ylidene)heptanal was based on observed data (Fig. 2).

2.6. Terpinolene/NO3• reaction products

2.6.1. Oxime at retention time 18.6 min—The oxime observed with a chromatographic 

retention time of 18.6 min had ions of m/z (relative intensity): 43 (42%), 95 (40%), 123 

(58%), 181 (100%), 278 (22%), 306 (350%) and 322 (10%). In the CI spectra, an M + 1 ion 

of m/z 322 was observed for the PFBHA-derivatized sample. A proposed reaction product 

assignment of 2-hydroxy-4-methylcyclohex-3-en-1-one was based on observed data.

2.6.2. Oxime at retention time 19.2 and 19.3 min—The oxime observed with a 

chromatographic retention time of 19.2 and 19.3 min had ions of m/z (relative intensity): 181 

(100%), 281 (20%–12.5%), and 448 (38%–30%). In the CI spectra, an M + 1 ion of m/z 448 

was observed for the PFBHA-derivatized sample. A proposed reaction product assignment 

of glyoxal was based on observed data. The PFBHA-glyoxal oxime was synthesized to 

confirm this chromatographic assignment.

2.6.3. Oximes at retention time 19.6 min—The oxime observed with a 

chromatographic retention time of 19.6 min had ions of m/z (relative intensity): 181 (100%), 

265 (75%–35%), and 448 (10%–7.5%). In the CI spectra, an M + 1 ion of m/z 462 was 

observed for the PFBHA-derivatized sample. A proposed reaction product assignment of 

methyl glyoxal was based on observed data. The PFBHA-methyl glyoxal oxime was 

synthesized to confirm this chromatographic assignment.

2.6.4. Oximes at retention time 20.5 min—The oxime observed with a 

chromatographic retention time of 20 min had ions of m/z (relative intensity): 181 (100%), 

279 (75%), and 491 (5%). In the CI spectra, an M + 1 ion of m/z 491 was observed for the 

PFBHA-derivatized sample. A proposed reaction product assignment of 4-oxopentanal was 

based on observed data. The PFBHA-4-oxopentanal oxime was synthesized to confirm this 

chromatographic assignment (Fig. 3).

3. Discussion

In the indoor environment, terpenes found in consumer products can transform by reacting 

with O3 and NO3• into oxygenated and nitrated organic species (Aschmann et al., 2002; 

Muthuramu et al., 1993; Spittler et al., 2006). Importantly exposure to these reaction 

products may have the potential to cause adverse health effects including asthma and 

respiratory irritation (Quirce and Barranco, 2010). Terpinolene is a large volume component 

in many cleaning formulations and its reactivity with O3 and NO3• suggests that 

terpinolene’s oxidation will effectively compete with its removal by indoor air exchange 

(Singer et al., 2006; Ma and Marston, 2009; Hakola et al., 1994; Wilson et al., 1996). While 

the terpinolene/NO3• rate constant has been measured (Atkinson and Arey, 2003; Stewart et 

al., 2013), terpinolene/NO3• reaction products have not been previously investigated. The 

terpinolene/O3 rate constant has been measured (Atkinson and Arey, 2003; Stewart et al., 

2013) and the reaction products have been investigated as well (Ma and Marston, 2009; 

Hakola et al., 1994; Reissell et al., 1999).
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3.1. Terpinolene + O3 reaction products

O3 can react by adding to the either the exocyclic or endocyclic carbon–carbon double bond 

of the terpinolene molecule. Using the Environment Protection Agency’s AoPWin (EPA, 

2000), the calculated ozone addition rate constants to the exocyclic double bond or the 

endocyclic double bond site are (in units of 10−17 cm3 molecule−1 s−1) 120 and 43, 

respectively. This calculation suggests that O3 addition to the exocyclic double bond site of 

terpinolene is favored by almost 3 to 1 to the endocyclic double bond site. Ozone addition to 

the exocyclic double bond leads to the formation of 4-methylcyclohex-3-en-1-one reported 

here and previously (Ma and Marston, 2009; Hakola et al., 1994; Reissell et al., 1999) (Fig. 

4). Additionally, the 28 ± 6 yield observed in this work and the 50% yield of 4-

methylcyclohex-3-en-1-one from the terpinolene + O3 reaction further supports the 

reactivity calculation above (Ma and Marston, 2009; Hakola et al., 1994; Reissell et al., 

1999). O3 addition to the endocyclic double bond results in the formation of the observed 6-

oxo-3-(propan-2-ylidene)heptanal and is consistent with previous results (Hakola et al., 

1994) (Fig. 4). A 1% yield of 6-oxo-3-(propan-2-ylidene)heptanal has been measured 

previously (Hakola et al., 1994). The reduced terpinolene concentrations used in the yield 

experiments did not result in an observation of 6-oxo-3-(propan-2-ylidene)heptanal which 

further supports the preference of exocyclic ozone addition versus endocyclic ozone 

addition.

Other reaction products observed in terpinolene + O3 are proposed to be: 2-hydroxy-4-

methylcyclohex-3-en-1-one, glyoxal, methyl glyoxal and 3-oxobutanal (Table 1). These 

carbonyl products are unexpected, because they are fragments of the terpinolene molecule 

and their multi-oxygenated structures suggest they may be secondary reaction products in 

the experimental system described here. Their formation may possibly be the result of ozone 

reacting with the double bond of 4-methylcyclohex-3-en-1-one. To explore the likelihood of 

this possible product formation route, additional rate constant and product yield information 

is needed. The ozone + 4-methylcyclohex-3-en-1-one rate constant of 7 × 10−17 cm3 

molecule−1 s−1 (Baker et al., 2004) is 27 times smaller than the terpinolene ozone reaction 

rate constant. The maximum 4-methylcyclohex-3-en-1-one concentration could be 50 ppb 

(based on a 50% yield and 100 ppb ozone (the limiting reagent)). It is significantly more 

likely that ozone will react with terpinolene (1 ppm) versus 4-methylcyclohex-3-en-1-one 

given the experimental conditions. The fragmented products observed could also be the 

result of OH radicals formed from ozonolysis reacting with 4-methylcyclohex-3-en-1-one. 

The OH is produced as a byproduct of the reaction forming 4-methylcyclohex-3-en-1-one 

(Herrmann et al., 2010). The OH + 4-methylcyclohex-3-en-1-one rate constant of 110 × 

10−12 cm3 molecule−1 s−1 (Baker et al., 2004) is 2 times smaller than the terpinolene + OH 

reaction rate constant. The maximum OH concentration could be 50 ppb (based on a 50% 

yield and 100 ppb ozone (the limiting reagent)) and it is significantly more likely that OH 

will react with terpinolene versus the 4-methylcyclohex-3-en-1-one given the experimental 

conditions. The observed dicarbonyl products are likely the result of O3 adding to the 

endocyclic double bond of terpinolene and subsequent fragmentation of that primary 

ozonide formed. The information suggests that additional molecular rearrangements of the 

Criegee radical may lead to smaller multi-oxygenated products.
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In these experiments, it should be noted that no carboxylic acids were detected in the gas-

phase or as particulate. However, Ma and Marston (2009) observed carboxylic acids and 

tentatively identified five different acids in the gas-phase ozonolysis of terpinolene (2-

dicarboxylic acids and 3 carboxylic acids). They determined yields for the carboxylic acids 

of less than 0.5% (on average). This carboxylic acid yield was observed with 20 ppmv of 

terpinolene and 15 ppmv of ozone which was 20 and 150 times larger than the experimental 

conditions used for this work. Under the experimental conditions reported here a 0.5 ppb 

carboxylic acid concentration would be expected. This is currently below our detection limit 

(approximately 10’s of ppb) and would not be observed using the apparatus described 

above.

3.2. Terpinolene + NO3• reaction products

The nitrate radical (NO3•) can react with terpinolene by H-atom abstraction and/or addition 

to carbon–carbon double bonds (Spittler et al., 2006). For comparison, the NO3• reaction 

with the structurally similar compound limonene leads to the formation of carbonyl 

compounds and organic nitrates (Spittler et al., 2006). NO3• addition to terpinolene’s 

carbon–carbon double bonds could yield reaction products similar to the ones previously 

observed from the terpinolene + O3 reaction (Hakola et al., 1994; Ma and Marston, 2009; 

Reissell et al., 1999). The expected product from NO3• addition to the exocyclic double 

bonds would be 4-methylcyclohex-3-en-1-one. The expected product for NO3• addition to 

the endocyclic double bond would be 6-oxo-3-(propan-2-ylidene)heptanal. Unfortunately, 

neither 4-methylcyclohex-3-en-1-one nor 6-oxo-3-(propan-2-ylidene)heptanal were detected 

in NO3•/terpinolene experiments. To determine if the experimental apparatus or methods 

were giving erroneous results, back to back O3/terpinolene and NO3•/terpinoelene 

experiments were conducted. 4-methylcyclohex-3-en-1-one and 6-oxo-3-(propan-2-

ylidene)heptanal were detected in the terpinolene + O3 experiments and not in the 

terpinolene + NO3• experiments confirming the earlier finding that these two products are 

not formed in the terpinolene + NO3• system. The reaction products in terpinolene + NO3• 

observed are proposed to be: 2-hydroxy-4-methylcyclohex-3-en-1-one, glyoxal, methyl 

glyoxal and 4-oxopentanal (See Table 2). These products are formed from the 

rearrangements and fragmentation of the intermediate species after NO3• reacts with the 

double bonds of terpinolene. There also could be products not detected such as organic 

nitrates, hydroperoxides, PANs, etc. These undetected products could account for the 

“missing” carbon balance. An organic nitrate detection technique is needed to do a more 

accurate characterization of the terpinolene/NO3• reaction products in particular and 

VOC/NO3• reaction products in general.

In these terpinolene/NO3• experiments, it should be noted that no carboxylic acids were 

detected in the gas-phase or as particulate. The reason carboxylic acids were not detected is 

explained above.

3.3. Impact to indoor air quality

Indoor environment concentrations of the NO3• of 2 × 107 molecules cm−3 (approximately 

1.1 ppt) and O3 of 1 × 1012 molecules cm−3 (approximately 50 ppb) have been previously 

estimated by Sarwar et al. (2002). Using the rate constants reported by Atkinson and Arey 
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(2003), terpinolene + NO3•, 97 × 10−12 and terpinolene + O3, 190 × 10−17 (in units of cm3 

molecule−1 s−1) and the above indoor concentrations of NO3• and O3, yields pseudo-first 

order rates (k′) of 8.6 h−1 and 8.4 h−1, respectively. Additionally, a lifetime assessment of 

the primary terpinolene/ozone reaction product can be made using the 4-methylcyclohex-3-

en-1-one + NO3• rate constant, 1.81 × 10−12 cm3 molecule−1 s−1 and 4-methylcyclohex-3-

en-1-one + O3 rate constant, 6.98 × 10−17 cm3 molecule−1 s−1 (Baker et al., 2004), yielding 

the pseudo-first order rates (k’) of 0.3 h−1 and 0.1 h−1, respectively. A comparison of these 

values to a typical indoor air exchange rate of 0.6 h−1 (Wilson et al., 1996), suggests that 

NO3 radical and O3 chemistry are an important removal mechanism for terpinolene, but not 

for 4-methylcyclohex-3-en-1-one. It is apparent that nitrate radical and ozone chemistry 

could play a critical role in terpinolene’s transformation in the indoor environment.

Indoor occupant exposures to terpinolene oxidation products could be ongoing due to 

repeated application of cleaning products. Oxygenated organic and organic nitrates species 

have demonstrated the potential to cause a number of adverse health effects including 

asthma and respiratory irritation (Quirce and Barranco, 2010).
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Highlights

• Determined and contrasted the products of the reaction of terpinolene with 

ozone or nitrate radical.

• Products captured using a denuder/filter apparatus.

• Reaction products identified using a dual derivatization method.
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Fig. 1. 
PFBHA derivative observed in the ozonolysis of terpinolene at retention time of 17.8 min: 

4-methylcyclohex-3-en-l -one.
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Fig. 2. 
PFBHA derivative observed in the ozonolysis of terpinolene at retention time of 23.8 min: 

6-oxo-3-(propan-2-ylidene)heptanal.

Harrison and Wells Page 14

Atmos Environ (1994). Author manuscript; available in PMC 2015 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
PFBHA derivative observed in the nitrate radical reaction of terpinolene at retention time of 

20.5 min: 4-oxopentanal.
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Fig. 4. 
Terpinolene + O3 reaction mechanism.
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Table 1

Terpinolene ozone products.

Retention time (min) Structure Name Molecular weight (amu) CI ions observed

17.8 4-methylcyclohex-3-en-1-one 110 305

18.6 2-hydroxy-4-methylcyclohex-3-en-1-one 126 321

19.2
19.3 Glyoxal 58 448

19.6 Methyl glyoxal 72 462

20.1 3-oxobutanal 86 476

23.5
23.8
24.3
24.4

6-oxo-3-(propan-2-ylidene)heptanal 168 558
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Table 2

Terpinolene nitrate radical products hazards.

Retention time (min) Structure Name Molecular weight (amu) CI ions observed

18.6 2-hydroxy-4-methylcyclohex-3-en-1-one 126 321

19.2
19.3 Glyoxal 58 448

19.6 Methyl glyoxal 72 462

20.5 4-oxopentanal 100 491
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