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Abstract

Carbon nanotubes (CNTs) are rapidly emerging as high-priority occupational toxicants. CNT 

powders contain fibrous particles that aerosolize readily in places of manufacture and handling, 

posing an inhalation risk for workers. Studies using animal models indicate that lung exposure to 

CNTs causes prolonged inflammatory responses and diffuse alveolar injury. The mechanisms 

governing CNT-induced lung inflammation are not fully understood but have been suggested to 

involve alveolar macrophages (AMs). In the current study, we sought to systematically assess the 

effector role of AMs in vivo in the induction of lung inflammatory responses to CNT exposures 

and investigate their cell type-specific mechanisms. Multi-wall CNTs characterized for various 

physicochemical attributes were used as the CNT type. Using an AM-specific depletion and 

repopulation approach in a mouse model, we unambiguously demonstrated that AMs are major 

effector cells necessary for the in vivo elaboration of CNT-induced lung inflammation. We further 

investigated in vitro AM responses and identified molecular targets which proved critical to pro-

inflammatory responses in this model, namely MyD88 as well as MAPKs and Ca2+/CamKII. We 

further demonstrated that MyD88 inhibition in donor AMs abrogated their capacity to reconstitute 

CNT-induced inflammation when adoptively transferred into AM-depleted mice. Taken together, 

this is the first in vivo demonstration that AMs act as critical effector cell types in CNT-induced 

lung inflammation and that MyD88 is required for this in vivo effector function. AMs and their 

cell type-specific mechanisms may therefore represent potential targets for future therapeutic 

intervention of CNT-related lung injury.
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Introduction

Carbon nanomaterials are being applied to a rapidly growing number of biomedical, 

industrial, and engineering technologies. In particular, carbon nanotubes (CNTs) have been 

at the forefront of the materials industry owing to their utility in numerous applications. 

These include use in advanced polymer composites and construction materials, cabling, heat 

shielding, and other applications in electrical and biotechnology systems [De Volder et al, 

2013]. Because of the nature of these uses and their ubiquitous need, the global prevalence 

of CNTs has grown rapidly and increases in their manufacture, transport, and processing are 

expected to continue for many years. Accordingly, the risk of human exposure to CNTs in 

occupational settings and the environment is expected to increase. CNTs can become 

airborne when manufactured or subsequently agitated and can persist as aerosols [Dahm et 

al, 2012, Han et al, 2008]. CNTs must therefore be considered in terms of their potential as 

inhalational toxicants.

Published studies indicate that CNTs exposures induce inflammatory features in animal 

models of acute lung exposure, including leukocytic infiltration and elaboration of pro-

inflammatory cytokines and chemokines [Ma-Hock et al, 2009, Muller et al, 2008, Nygaard 

et al, 2009, Porter et al, 2010]. Chronic exposure studies [Mercer et al, 2011, Wang et al, 

2011] suggest that these effects lead to chronic pathologies such as hyperplasia and 

granulomatous lesions. Although descriptive toxicology studies have become widespread, 

much remains to be done concerning CNT toxicity mechanisms. There has been growing 

evidence of inflammasome activation by CNTs in various cell types [Hussain et al, 2014, 

Palomäki et al, 2012], and IL-1R signaling has been shown to be critical in acute 

inflammatory responses to exposure [Girtsman et al, 2014]. However, many studies rely 

primarily on in vitro models or global knock-out mutants and thus may be limited in 

appreciating the complex orchestrations of in vivo toxic responses, which may involve the 

coordinated participation of specific effector cell compartments and cell type-specific 

mechanisms. This investigation was specifically aimed at identifying critical effector cells in 
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the lung in vivo and the cellular and molecular mechanisms necessary for their role as such. 

The objective is to help establish a mechanistic knowledge base that may lend critical 

support to the development of therapeutic intervention strategies for potential CNT 

exposure-associated lung diseases.

Several published studies have observed that macrophages are activated and produce 

cytokines when exposed to CNTs in culture systems [Brown et al, 2007, Cheng et al, 2009, 

Hirano et al, 2008]. In the lung, alveolar macrophages (AMs) are resident phagocytes 

localized in the bronchoalveolar spaces and airways. Their phenotype is distinct from those 

found in other locations such as the peritoneum and lung interstitium. The primary roles of 

AMs are maintaining immunological homeostasis of the terminal airspaces [Thepen et al, 

1989] and the clearance of debris from the bronchoalveolar areas [Lehnert et al, 1989]. AMs 

can mediate lung inflammation through the production of immunological mediators such as 

TNF, IL-1ß, and IL-6, which can increase capillary leakage, recruit inflammatory 

leukocytes, and promote the formation of granulomatous and fibrotic lesions [Ware, 2006, 

Marshall et al, 1996]. The functions of AMs are necessary for the health of the lung, but 

they may also act to damage the organ when inflammatory responses are too severe or do 

not resolve appropriately [Oberdörster et al, 1992]. Based on these observations, it is 

reasonable to hypothesize that AMs act as specific effector cells in lung responses to CNT 

exposures. However, this hypothesis has not been systematically tested in vivo.

We employed a selective, in vivo, cell-specific depletion and repopulation approach in a 

mouse model to assess the in vivo effector function of AMs and investigate underlying 

mechanistic events responsible for the inflammatory responses to CNT exposure in 

conjunction with an in vitro cell model.

Methods and Materials

Reagents and chemicals

For routine work, phosphate-buffered saline (PBS) buffer and RPMI 1640 base medium 

were obtained from Hyclone through ThermoFisher (Waltham, MA). Fetal bovine serum 

(FBS) used was from Atlanta Biologicals (Flowery Branch, GA). For AM depletions, 

liposomal clodronate (LC) was obtained from Encapsula Nanosciences (Nashville, TN). For 

cytokine measurements, IL-1ß was measured using Duoset ELISA (R&D, Minneapolis, 

MN) and all other cytokines were measured using Ready-Set-Go ELISA (eBioscience, San 

Diego, CA). The following drugs were used for targeted inhibition studies: SB203580 

(Tocris, Bristol, UK) for p38, SP600125 (Millipore, Billerica, MA) for JNK, pepinh-MYD 

(Invivogen, San Diego, CA) for MyD88.

CNT material preparation and characterization

High-purity multi-wall carbon nanotubes (MWCNTs, referred to as CNTs throughout this 

manuscript), produced using chemical vapor deposition, were obtained from Baytubes 

(Leverkusen, Germany) as a dry bulk powder form. Briefly, the material was characterized 

using the following analyses: size and morphology using scanning electron microscopy, 

metal content using inductively coupled plasma with atomic emission spectroscopy, surface 
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area using the Brunauer, Emmett, and Teller (BET) method, and thermogravimetric analysis. 

Detailed description of the methods for material characterization analyses are given in 

supplementary information (SI).

To prepare our exposure-ready material, CNT powder was weighed and suspended in an 

appropriate aqueous delivery medium, using PBS buffer (for animal exposures) or RPMI 

medium base with no added FBS and antibiotics (for in vitro cell exposures). Pluronic F127 

(Sigma, St.Louis, MO) was added (1% final concentration) in both cases to aid dispersion. 

Suspensions were subjected to ultrasonication for up to 2 h until dispersed suspensions were 

observed by microscopy. Suspensions were centrifuged (3200 g for 30 min) to pellet large 

CNT aggregates, and pellets were dried and weighed to determine the suspension 

concentrations. LAL Chromogenic Endotoxin Assay (Pierce, Rockford, IL) was used to 

screen for potential contaminating endotoxin, which was not detected in cleared 

supernatants. For visualization of the particles, transmission electron microscopy (TEM) 

was performed (see SI for method). Sizes of imaged CNTs were measured using ImageJ 

software (http://imagej.nih.gov). The suspended sample was also subjected to elemental 

carbon analysis using a thermal–optical analyzer described previously [Birch & Cary, 1996, 

Birch, 2004a, 2004b] and in SI.

Animal Exposures

The use of animals in this study was approved by the University of Cincinnati Institutional 

Animal Care and Use Committee, Cincinnati, Ohio 45221, USA. For routine experiments, 6 

week-old CF-1 Non-Swiss Albino mice were purchased from Harlan Laboratory (Haslett, 

MI). All experiments used an n=4. To administer exposures via orotracheal aspiration, 

animals were anesthetized with isoflurane and suspended on an inclined plane. The tongue 

was held and a 50-μL bolus was placed at the back of the tongue. The nose was held until 

the animal had fully aspirated the bolus and drawn two deep recovery breaths. Animals were 

exposed to 4 mg/kg body weight CNTs for experiments, which translated to 0.774 m2 CNT 

surface area per kg body weight based on CNT surface area analysis (see results). The same 

aspiration technique was used for AM depletion or adoptive transfer/reconstitution 

experiments. For depletion of AMs, 70 μL of 5 mg/mL LC was administered to the lung 

8-24 h prior to experimental exposures. To reconstitute AMs by adoptive transfer, naive 

CF-1 mice were euthanized and exsanguinated. Bronchoalveolar lavage (BAL) was 

performed and AMs (>99% purity based on morphology) were collected by centrifugation. 

Donor AMs (1×105 AMs/mouse) were immediately instilled via aspiration into AM-

depleted mice (20 h after liposomal clodronate administration), 1 h prior to CNT exposures. 

To assess the dependence of in vivo responses on MyD88, donor AMs were incubated for 2 

h in complete cell culture media with 100 μM pepinh-MYD peptide before being instilled as 

above. Control donor AMs were incubated with no peptide inhibitor.

Determination of Lung Cells and Cytokines

Animals were sacrificed by 20-μL IP injection of Euthasol (Butler Schein, Dublin, OH). 

Exsanguination was performed by severing the vena cava. BAL was performed by exposing 

and canulating the trachea and two 1-mL lavages of PBS were performed. Lavage cells were 

centrifuged and cytokines were measured in the supernatants using ELISA. Cells from BAL 
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fluid were resuspended in PBS/5% FBS for total cell counting. Differential cell counts were 

obtained using cytospin centrifugation followed by Hema3 staining to type cells based on 

morphology. Differences among groups were evaluated for significance using one-way 

ANOVA with Tukey post-hoc analysis.

Cell culture and in vitro experiments

In vitro macrophage responses were tested using the murine alveolar macrophage cell line 

MH-S (ATCC, Manassas, VA). Cells were cultured in complete RPMI1640 medium at 37°C 

in a 5% CO2 incubator. For experiments, cells were seeded at 5×105 cells/mL with n=4 

(replicate wells) and the medium was supplemented with vehicle or CNT preparation (400 

μg/mL final concentration) for selected durations. The in vitro exposure dose was chosen 

based on dose-response curves (shown in SI) and this dose translated to a CNT surface area 

of 77.4 cm2/mL in culture media. To measure cytokine production, supernatants were 

collected and centrifuged to remove suspended cells. Pelleted cells were combined with 

monolayer and lysed in nondenaturing lysis buffer (20-mM Tris-HCl, 150-mM NaCl, 1-mM 

EDTA, 1% Triton X-100). Cytokines were measured in the culture supernatant (TNF) or cell 

lysate (IL-1ß) as above. For pathway inhibition studies, respective inhibitory agents were 

added to the culture medium 1h prior to CNT exposure. Significant differences in levels of 

cytokines versus control were evaluated using one-way ANOVA with Dunnett's test for 

multiple one-sided comparisons.

Results

Physicochemical characterization of CNTs

SEM of ‘as-supplied’ CNTs showed that dry bulk particles were composed of compact 

aggregates. The size distribution of dry, unprocessed aggregate particles is given in Fig. S1. 

Average metal contents (n =3) and TGA results are shown in Table 1. The following metals 

were found in decreasing content order: Co, Mn, Mg, Al, and Ni. The results of 

thermogravimetric analysis (n=3) indicated a peak decomposition temperature of 598 °C. 

The average surface area of CNTs, determined by duplicate BET analysis, was 193.6 m2/g, 

with a relative percent difference of 0.9.

TEM showed that ‘as-instilled’ CNT materials in suspension were primarily composed of 

loose, tangled agglomerates (Fig. 1). Occasionally, isolated CNT fibers (not shown) also 

were observed. The mean CNT diameter was 10.7±3.1 nm. It was not possible to accurately 

measure length but the majority of fibers appeared to be 1 μm or longer. In comparing the 

elemental carbon and CNT mass concentrations of the suspensions, a test concentration of 

660 μg/mL CNTs was measured to be 664±15 μg/mL elemental carbon.

CNT exposure induced acute neutrophilic inflammation in the lung

Exposure to CNTs (4 mg/kg body weight) in adult mice (n=4) via orotracheal aspiration 

caused a time-dependent inflammation in the lung as measured by the quantification of 

neutrophils and pro-inflammatory mediators in bronchoalveolar lavage (BAL) fluid 

collected at selected time points (Fig. 2). Neutrophilia peaked at 24 h post-exposure, 

declining to above-baseline levels in the following days. Cells found in BAL fluid consisted 
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almost exclusively of macrophages and neutrophils. The number of macrophages did not 

change appreciably in the time period examined. Vehicle controls were performed with n=3 

at 24, 48, and 72 h and showed no signs of neutrophilic inflammation or any other change, 

and are not shown. TNFα and IL-6 cytokines increased following CNT exposure, peaking at 

6 h post-exposure and declining thereafter. Cytokine levels in above vehicle controls were 

negligible and an average of the controls is shown as a background reference. These data 

indicate that CNT exposures cause an acute inflammatory reaction in the lung consisting 

primarily of neutrophilic infiltration.

AM depletion attenuated CNT-induced inflammation in the lung

AMs depletion via orotracheal administration of liposomal clodronate (LC) 8 h prior to CNT 

exposure attenuated the influx of neutrophils (Fig. 3). The greatest difference was seen at the 

peak of inflammation 24 h after exposure. The number of neutrophils recovered from LC-

pretreated mice at this time point was reduced to 49±17% of that from animals treated with 

CNT alone. For reproducibility, this experiment was repeated at the 24 h time point and the 

results are presented pooled. It should be noted that liposomal suspensions alone also induce 

some neutrophilic infiltration in lungs. In this context, a control experiment showed that pre-

treatment with blank (non-LC) liposomes (obtained from the same vendor) prior to CNT 

exposure resulted in increased neutrophil count compared to CNT exposures alone (Fig.S2), 

thus the attenuated CNT-induced neutrophilia following LC treatment was attributed to 

depletion of AMs. Pretreatment of mice with LC also sharply attenuated levels of pro-

inflammatory cytokines induced by CNT exposure (Fig. 4); TNF and IL-6 levels were 

decreased to 42±19% and 10±33%, respectively. As above, these results were confirmed in 

a repeat experiment and the data are presented as an average. Collectively, the above 

observations indicated that depletion of AMs by LC pretreatment attenuates inflammation 

caused by acute CNT exposures.

AM reconstitution rescued lung inflammatory response to CNTs

We sought to confirm the specific role of AMs as effector cells in CNT-induced 

inflammatory endpoints by testing whether reconstitution of the AM population by adoptive 

transfer from naïve donor mice into the AM-depleted mice prior to CNT exposure could 

rescue inflammatory responses. In this experiment, the group exposed to CNTs alone is used 

as the baseline (100% of neutrophilic response). Macrophage depletion via 18 h 

pretreatment with LC significantly attenuated neutrophilia (measured in BAL fluid) to 

44.6±14.7% of baseline, as in the previous experiment. Reintroduction of AMs 1 h prior to 

exposure rescued this endpoint to 75.6±5.6% of baseline (Fig. 5). Reintroduction of AMs 

without subsequent CNT exposure had no apparent difference from the LC+CNT group. In 

addition, CNT-induced pro-inflammatory cytokines were recovered by AM reintroduction 

(Fig. 6). TNF attenuated by AM depletion recovered partially by reintroduction of AMs 

(44.2±14.9% in LC+CNT to 79.4±5.5% in LC+AM+CNT). IL-6 in the LC+AM+CNT 

group was increased relative to groups not exposed to CNTs, but not relative to the LC

+CNT group, suggesting that this cytokine may not play as influential a role as TNF in 

determining the extent of neutrophilic inflammation in this case. These data suggest that the 

presence of AMs is a determining factor in the ability of LC-mediated AM depletion to stunt 
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CNT-induced inflammatory responses and demonstrate that AMs are critical effector cells in 

the full elaboration of CNT-induced acute inflammation.

CNT-induced cytokine production by AMs is partially dependent on MAP kinases p38 and 
JNK

MH-S cells pre-incubated with inhibitors for p38 and JNK pathways exhibited blunted 

production of TNF and IL-1ß compared to naïve cells (Fig. 7) following in vitro exposure to 

400 μg/mL CNTs. This dose was determined by dose-response data shown in Fig. S3. p38 

inhibition reduced levels of both TNF and IL-1ß, whereas JNK inhibition reduced levels of 

TNF but did not affect IL-1ß. The data demonstrate that full elaboration of CNT-induced 

TNF and IL-1ß by AMs is dependent on p38 and JNK pathways.

Cytokine induction in AMs is dependent on calcium- and MyD88- signaling

A series of drug-based inhibition studies indicated two critical mechanisms of CNT-induced 

AM responses in this study (Fig. 8). Chlorpromazine, a drug which perturbs Ca+-dependent 

activity, nearly fully abrogated production of both TNF and IL-1ß. Pretreatment with 

pepinh-MYD inhibitory peptide specific for MyD88 completely abolished both TNF and 

IL-1ß induced by CNT exposure, indicating that AMs require this pathway to produce these 

cytokines in direct response to CNT exposure.

MyD88 function is required for AM-dependent inflammatory responses to CNT exposures 
in vivo

Based on the in vitro observations, we hypothesized that MyD88 inhibition in AMs would 

decrease their effectiveness as effector cells of CNT-induced inflammatory responses in 

vivo. We used a variation of the adoptive transfer model in which donor AMs from naïve 

mice were incubated for 2 h with or without MyD88 inhibitory peptide. Again using a CNT-

only control as a baseline 100% response, transfer of control AMs incubated for 2 h with no 

peptide into AM-depleted mice reproduced the aforementioned results, showing a 

76.4±6.5% response when neutrophilia was measured. Transfer of MyD88-inhibited AMs in 

the same case resulted in 43.1±4% of the measured response, indistinguishable from the AM 

depletion-mediated attenuation of neutrophilia characterized in earlier experiments (Fig. 9), 

and significantly less than the level seen with transfer of naïve AMs. Similarly, MyD88-

inhibited AMs failed to rescue CNT-induced TNF and IL-6 as measured in BAL fluid. Both 

TNF and IL-6 were rescued by naïve AMs in this experiment (Fig. 10), in contrast to earlier 

observations (Fig.6) in which AM transfer rescued TNF only. This difference may be due to 

the 2 h incubation interval, which may improve the competency of transferred AMs to 

produce and/or elicit IL-6 in this model.

Discussion

While toxicological studies continue to make progress in the characterization of toxic lung 

responses to CNT exposures, more remains to be done to identify critical mechanisms which 

could potentially serve as targets for therapeutic intervention. We have approached this 

knowledge gap by first seeking to demonstrate critical effector cells of toxic responses in the 

lung and then investigating their molecular mechanisms. We have used this approach to 
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identify effector cell-specific mechanisms of CNT toxicity through systematic 

experimentation in an in vivo exposure model.

Because of their short history of manufacture and use, there is no confirmed reference for 

the amount of accumulated inhaled CNT material expected during a realistic occupational 

lifetime which would guide relevant dosing in experimental models. We therefore designed 

our initial studies based on our preliminary dose-response analysis in mice indicating 

4mg/kg CNTs as scientifically appropriate to pursue mechanistic experiments. Furthermore, 

this dose approximates those used in several important published studies [Mercer et al, 2011, 

Nygaard et al, 2009, Porter et al, 2010], which will aid interpretation of this work in the 

context of existing and ongoing efforts in this field.

The strategy employed here for assessing the role of AMs in exposure-related lung 

responses involved depleting these cells from the lung using instillation of liposomal 

clodronate, in which a cytotoxic drug is encapsulated in liposomes which are selectively 

taken up by AMs. This approach has been successfully used for other lung pathogenesis 

models including studies on control of influenza [Tate et al, 2010] and pseudomonas 

[Kooguchi et al, 1998] infections as well as various mechanisms of injury including 

ischemia-reperfusion [Zhao et al, 2006] and ventilator-induced injury [Frank et al, 2006]. 

However, to our knowledge, this approach has not been reported for nanotoxicology studies. 

In our studies, AM depletion regularly reduced CNT-induced neutrophilic inflammation by 

~50%. This indicates a significant effector role for AMs, although the attenuation of the 

effect is not total. Two reasons may account for this: first, AM depletion by LC is not total. 

We routinely measured AMs in the BAL fluid of LC-treated animals in the range of 22-50% 

of the number retrieved from control animals. That the attenuation of inflammation is partial 

may simply reflect partial nature of the depletion, with remaining AMs still capable of 

mounting a partial response. Second, AMs may not be the only cell population with effector 

functions in this scenario. Epithelial cells, for example, may contribute directly to the 

elicitation of in vivo lung responses to CNT exposures. Furthermore, mast cells have been 

shown to act as effector cells for selected lung responses to exposure [Katwa et al, 2012]. 

These considerations motivated our need to confirm the effector role of AMs using adoptive 

transfer models.

Numerous studies have highlighted the direct effects of in vitro CNT exposures on 

macrophage-like cells in the form of both cell lines and primary cells and generally report 

similar responses including production of pro-inflammatory cytokines, among other assorted 

effects [Cheng et al, 2009, Hirano et al, 2008, Hussain et al, 2014, Muller et al, 2008]. At 

least one study [Hirano et al, 2008] reports in vitro responses of apparently similar 

magnitude shown here at considerably lower concentrations of CNTs by weight. We suggest 

this variability arises primarily from differences in physicochemical characteristics between 

specific materials used in various studies. Physicochemical characterization showed that the 

CNTs used in our study carry negligible levels of contaminating metals and no detectable 

iron, which has been recognized to account for observed effects in some studies [Kagan et 

al, 2006, Pulskamp et al, 2007]. In addition, diameters of CNTs in this study were between 

5-20 nm, whereas many other published studies used larger diameter CNTs in the range of 

60-80 nm [Brown et al, 2007, Hirano et al, 2008]. CNTs of the larger diameter have a more 
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needle-like quality and have been shown to cause damage through partial internalization or 

skewering of cells, which may or may not rely on cellular uptake processes [Hirano et al, 

2008]. Particles of the smaller diameter CNTs used in this study displayed a more curled, 

tangled morphology and may not exert such effects. In light of these considerations in 

addition to the many limitations of cell line-based models in this situation, we have limited 

our use of in vitro AM models in this study to the screening of inhibitory drugs where the 

use of primary AMs would not be economical due to their limited availability.

We demonstrate here a critical role for MyD88 in the AM-mediated inflammatory response 

to CNTs. This molecule was found to be critical for in vitro production of CNT-induced 

cytokines and was furthermore necessary for AM-mediated rescue of CNT-induced 

inflammation in vivo. All TLRs (except TLR3) and IL-1 receptors rely on this adapter 

molecule for signaling function [Trinchieri & Sher, 2007]. As mentioned earlier, IL-1R is 

now known to play a role in the regulation of CNT-induced inflammation in vivo, thus the 

demonstrated importance of AM-specific MyD88 may relate to such emerging findings. 

Meanwhile TLRs, including TLR4, are being shown to be involved in lung responses to an 

increasing number of insults beyond classical stimuli such as LPS [Li et al, 2011, Maes et al, 

2006]. The current study suggests a key role of the MyD88 pathway in mechanisms of CNT 

toxicity, which may involve IL-1R- or TLR-dependent signaling. As detailed in Fig. 11, a 

proposed scheme of MyD88-linked mechanisms of action could include perturbation of the 

cell membrane and receptor ligation (or clustering of trans-activating receptors). These 

events may cause receptor-linked MyD88 to act on downstream IRAKs and TRAFs which 

then induce proinflammatory NF-κB and AP-1 pathways. As supported by other studies 

[Hussain et al, 2014, Palomäki et al, 2011], internalized CNTs may also cause lysosomal 

instability and NLRP3 inflammasome activation, leading to production of mature IL-1s and 

positive feedback through IL-1R, which may be MyD88-dependent. These proposed 

mechanisms may be relevant to cytokine expression seen in MyD88-dependent macrophage 

responses to other toxicants as well [Uto et al, 2011, Chang et al, 2013, Ho et al, 2013].

In vitro, MAPK inhibitors for p38 and JNK and Ca+2 antagonist significantly blocked AM 

responses to CNTs. This suggests a role for MAPK- and Ca2+- signaling pathways in the 

elaboration of AM responses to CNTs. The protein kinases p38 and JNK are commonly 

responsive to stress, heat, osmotic shock and a variety of stress stimuli, including single-wall 

CNTs [Azad et al, 2013]. These MAPKs also modulate signaling downstream of MyD88 by 

acting on AP-1 [Shaulian & Karin, 2002]. Reports on involvement of MAPKs in toxic 

responses to MWCNTs present mixed outcomes [Hirano et al, 2008, Lee et al, 2012], which 

may be a result of physiochemical differences between CNTs. Further investigation into 

specific players in these signaling pathways may potentially uncover valuable targets for 

therapies against immune cell-mediated CNT toxicity. The Ca2+/CamKII signaling axis is 

known to be implicated in the process of immune cell activation in response to pathogens, 

stress, and soluble mediators and AM-mediated inflammatory insults [Brown et al, 2004, 

Alkharfy et al, 2000]. To our knowledge, this is the first observation on the role of this 

signaling pathway in CNT toxicity. Furthermore, as chlorpromazine is known to inhibit 

clathrin-mediated endocytosis [Wang et al, 1993], the results suggest that AM responses 

may arise from CNTs internalized by this mechanism.
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In conclusion, this work is the first to experimentally confirm in vivo that alveolar 

macrophages act as critical effector cells in CNT-related lung changes, and that MyD88 

plays a crucial role in the functions of these effectors. These conclusions will serve to 

advance the knowledge of pathogenic mechanisms related to exposure to this important 

emerging class of occupational and environmental particle toxicants. Additionally, the 

strategy employed highlights the potential for effector cell-targeted intervention with 

minimal off-target effects in a therapeutic context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Demonstrated in vivo effector role of alveolar macrophages (AMs) in CNT 

toxicity

• MyD88 , MAPKs, and Ca2+/CamKII are required for AM inflammatory 

responses in vitro

• MyD88 signaling is required for in vivo effector function of AMs

• MyD88 may be a potential target for intervention in CNT lung exposures
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Fig. 1. TEM characterization of CNTs used in this study
TEM micrographs were used to characterize physical dimensions of CNTs following 

preparation in aqueous delivery medium. A: Low magnification, B: higher magnification, C: 

Frequency distribution of CNT diameter. Measured diameters yielded the following 

statistics (in nm): mean=10.7; SD=3.1; Q1=8.6; Q3=11.9; min=4.9; max=19.9.
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Fig. 2. CNT exposures caused acute neutrophilic inflammation in the lung in a mouse model
NSA mice (n=4) received 4 mg/kg CNT or vehicle at t=0 and sampled over 72 h. BAL fluid 

was collected at time points shown and cells were counted by type (A). Vehicle controls (not 

shown) performed at 24, 48, and 72 h showed no signs of inflammation in neutrophilia or 

cytokines. Cytokines were measured using ELISA (B) and an average of 24, 48, and 72 h 

vehicle controls is shown (VH) for background reference.
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Fig. 3. Depletion of AMs attenuated neutrophilic inflammation of the lung in a mouse model of 
CNT exposure
Neutrophils were quantified in BAL fluid collected at indicated time points following 

exposure to CNTs (4 mg/kg). Peak neutrophilia induced by CNT exposure (at 24 h) was 

reduced to 49%±17 in animals which received an AM-depleting dose of LC (LC+CNT) 

prior to exposure. n=4, *p<0.5.
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Fig. 4. Depletion of AMs attenuated levels of CNT-induced cytokines in the lung in a mouse 
model
TNF and IL-6 were measured in BAL fluid collected 12 h following CNT exposure. Both 

cytokines were decreased in animals which received an AM-depleting dose of LC prior to 

exposure. n=4, *p<0.5
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Fig. 5. Reintroduction of AMs rescued CNT-induced neutrophilic response in the lung of a 
mouse model of CNT exposure
Values are expressed here as percentage of baseline neutrophilic response (CNT). 

Macrophage depletion here (LC+CNT) attenuated the response to 44.6±14.7% (of CNT 

alone). Adoptive transfer of AMs into macrophage-depleted animals (LC+AM+CNT) 

resulted in partial rescue of CNT-induced neutrophils (75.6±5.6% of CNT alone). 

Reintroduction of AMs without subsequent CNT exposure (LC+AM) had no observed 

effect. n=4, *p<.05
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Fig. 6. Effect of reintroduction of AMs on CNT-induced pro-inflammatory cytokines in the lung 
of a mouse model of CNT exposure
Adoptive transfer of AMs into macrophage-depleted animals (LC+AM+CNT) resulted in 

partial rescue of CNT-induced TNF (44.2±14.9% in LC+CNT to 79.4±5.5% in LC+AM

+CNT) as measured in BAL fluid in a manner which mirrored the effect on neutrophilia. 

n=4.
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Fig. 7. Cytokine induction in AMs (MH-S cells) following CNT exposure is partially dependent 
on the MAP kinases p38 and JNK
TNF production by AMs was significantly reduced (A) by pre-incubation with 20 μM of p38 

inhibitor SB203580 or JNK inhibitor SP600125. Pre-incubation with 20 μM p38 inhibitor 

significantly reduced IL-1ß production (B); JNK inhibition had no effect. n=4, *p<0.05.
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Fig. 8. CNT-induced TNFα and IL-1ß production in AMs (MH-S cells) is dependent on calcium- 
and MyD88- signaling
Pretreatment with drugs chlorpromazine (CPZ, 20 μM) or inhibitory peptide pepinh-MYD 

(MYD, 100 μM) were used to inhibit calcium signaling and MyD88 signaling, respectively. 

Both drugs abrogated production of TNF (A) and IL-1ß (B). n=4, p<0.05.
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Fig. 9. Inhibition of MyD88 in primary AMs transferred into AM-depleted mice led to no rescue 
of CNT-induced neutrophilia
Values are expressed here as percentage of baseline neutrophilic response (CNT). Adoptive 

transfer of AMs (105/animal) treated with MyD88 inhibitory peptide (2 h pre-incubation) 

into macrophage-depleted animals (LC+AM(inh)+CNT) resulted in no rescue of CNT-

induced neutrophils (43.1±4% of CNT alone), while normal rescue (76.4±6.5% of CNT 

alone) was observed after reintroduction of AMs incubated without inhibitory peptide (LC

+AM(na)+CNT. n=4, *p<.05
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Fig. 10. Inhibition of MyD88 in primary AMs transferred into AM-depleted mice did not rescue 
CNT-induced proinflammatory cytokines
Adoptive transfer of AMs incubated with MyD88 inhibitory peptide into macrophage-

depleted animals (LC+AM (inh)+CNT) resulted in no rescue of CNT-induced TNFα and 

IL-6, while robust rescue was observed in both endpoints after reintroduction of AMs 

incubated without inhibitory peptide (LC+AM(na)+CNT). n=4, *p<.05
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Fig. 11. Proposed role of MyD88 and MAPKs in the overall mechanism of action in AM 
responses to CNTs
MyD88 may link CNT exposures to inflammatory responses though IL-1-dependent 

feedback through IL-1R or activation of TLRs, with p38 and JNK MAPKs modulating 

downstream AP-1 activity. Known interactions in these pathways are shown by solid 

arrows. Proposed mechanisms of action by CNTs (dotted arrows) are based on the current 

and related studies [Girtsman et al, 2014, Hussain et al, 2014, Palomäki et al, 2011].
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Table 1

Metals content (top) and thermogravimentric analysis (bottom) of carbon nanotubes.

Element Average μg/mg STD Error

Co 2.7545 0.1752 .0636

Mn 2.5123 0.1158 .0461

Mg 2.0892 0.1842 .0882

Al 1.9245 0.1308 .068

Ni .0631 0.0018 0.029

Sample IDT
a
 °C PDT

b
 °C EDT

c
 °C RW

d
 %

CNT 502 598 675 2

a
initial decomposition temperature, weight loss >5%

b
peak decomposition temperature

c
ending decomposition temperature, weight change<0.1%/min

d
residual weight

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2016 November 01.


