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Abstract

Decades after public health interventions – including pre- and post-exposure vaccination – were 

used to eradicate smallpox, zoonotic orthopoxvirus outbreaks and the potential threat of a release 

of variola virus remain public health concerns. Routine prophylactic smallpox vaccination of the 

public ceased worldwide in 1980, and the adverse event rate associated with the currently licensed 

live vaccinia virus vaccine makes reinstatement of policies recommending routine pre-exposure 

vaccination unlikely in the absence of an orthopoxvirus outbreak. Consequently, licensing of safer 

vaccines and therapeutics that can be used post-orthopoxvirus exposure is necessary to protect the 

global population from these threats. Variola virus is a solely human pathogen that does not 

naturally infect any other known animal species. Therefore, the use of surrogate viruses in animal 

models of orthopoxvirus infection is important for the development of novel vaccines and 

therapeutics. Major complications involved with the use of surrogate models include both the 

absence of a model that accurately mimics all aspects of human smallpox disease and a lack of 

reproducibility across model species. These complications limit our ability to model post-exposure 

vaccination with newer vaccines for application to human orthopoxvirus outbreaks. This review 

seeks to (1) summarize conclusions about the efficacy of post-exposure smallpox vaccination from 

historic epidemiological reports and modern animal studies; (2) identify data gaps in these studies; 

and (3) summarize the clinical features of orthopoxvirus-associated infections in various animal 

models to identify those models that are most useful for post-exposure vaccination studies. The 

ultimate purpose of this review is to provide observations and comments regarding available 

model systems and data gaps for use in improving post-exposure medical countermeasures against 

orthopoxviruses.

Keywords

Smallpox vaccination; Prophylactic vaccination; Animal models; Post-exposure vaccination; 
Orthopoxviruses; Variola virus; Epidemiology; Smallpox; Monkeypox; Vaccinia

*Corresponding author at: Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, 
Poxvirus and Rabies Branch, 1600 Clifton Road, Mailstop G-06, Atlanta, GA 30333, United States. Tel.: +1 404 639 4179; fax: +1 
404 639 1061. hbq0@cdc.gov, shaoK@aol.com (M.S. Keckler). 

HHS Public Access
Author manuscript
Vaccine. Author manuscript; available in PMC 2015 October 28.

Published in final edited form as:
Vaccine. 2013 October 25; 31(45): 5192–5201. doi:10.1016/j.vaccine.2013.08.039.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

1.1. Overview

This review has three major goals: (1) to summarize conclusions about the efficacy of post-

exposure smallpox vaccination against clinical disease presentation from historic 

epidemiological reports and modern animal studies; (2) to identify data gaps in these studies; 

and (3) to summarize the clinical features of orthopoxvirus-associated infections in various 

animal models in order to identify those models that are most useful for post-exposure 

vaccination studies.

1.2. The origins of modern smallpox vaccines

Smallpox vaccination using a heterologous species of orthopoxvirus (OPXV) became 

common practice after Edward Jenner’s famous experiment in which he inoculated a young 

James Phipps with material from a cowpox (CPXV) lesion in 1796 [1]. Early reports on the 

effectiveness of pre-exposure vaccination were confirmed by well-documented studies 

performed throughout the 19th century which demonstrated significantly lower rates of 

smallpox mortality in geographic areas with mandatory vaccination as opposed to areas 

where vaccination was not required [2].

1.3. The role of vaccination in the eradication of smallpox

One major contribution to the eradication of smallpox was the availability of an effective 

live vaccinia virus (VACV) vaccine. Vaccination was utilized pre-exposure to prevent 

smallpox infection and post-exposure during smallpox outbreaks to vaccinate potentially 

exposed contacts of infected patients. This methodology coupled with the strict isolation of 

patients was successful in protecting those contacts from severe disease and producing a 

“ring” of protection that halted disease transmission. Other factors, including the lack of a 

reservoir for variola virus (VARV), the development of a heat-stable vaccine, the 

introduction of the bifurcated needle, and a disease course which allowed time for post-

exposure vaccination to elicit a protective immune response, all contributed to the 

development and implementation of the smallpox eradication effort [3]. Because of 

widespread pre-exposure vaccination, serious adverse events (SAEs) of smallpox 

vaccination were well known by the early 20th century but the more significant threat of 

endemic smallpox ensured that mass vaccination campaigns remained an important defense 

against outbreaks [4,5]. As eradication efforts progressed, it became apparent that 

eradication goals could not be met until surveillance systems, systematic investigation of 

outbreaks, and post-exposure isolation and vaccination were all successfully implemented 

[6,7]. As cases of smallpox declined, the relative risk of SAEs associated with 1st generation 

vaccines (vaccines utilizing live VACV propagated on livestock) rose, which led to the 

recommendation that mandatory vaccination be halted. This was done in the United States in 

1971 and worldwide by 1980, when smallpox was officially declared eradicated by the 

World Health Organization (WHO) [8]. The efficacy of pre-exposure vaccination using 

these 1st generation vaccines in preventing smallpox disease was well documented during 

the eradication era. However, post-exposure vaccination with 1st generation vaccines, while 

generally believed to be at least partially protective, remains less defined, which makes the 

evaluation of the efficacy of newer and future vaccines more complicated.
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1.4. Post-exposure vaccination as a medical countermeasure

The cessation of mandatory prophylactic vaccination has resulted in over half of the global 

population being potentially naïve to OPXV threats. Despite decades of continuous research 

to increase vaccine safety without a loss in efficacy, and the creation of 2nd generation 

vaccines (live VACV propagated in cell lines), 3rd generation vaccines (attenuated VACV) 

[9] and subunit vaccines [10,11]; only one vaccine (Acambis 2000) has been licensed for use 

at this time [12]. However, the use of Acambis 2000 continues to be limited due to its 

adverse event profile [13]. Recommendations to vaccinate U.S. health care workers and 

laboratorians have previously met with low compliance rates, largely due to the known risk 

of SAE’s following vaccination [14]. In addition, a sizable proportion of the global 

population is contraindicated for vaccination with Acambis 2000 due to various health 

conditions [15]. The development of medical countermeasures and safer vaccines that are 

efficacious against OPXV is an ongoing effort – one which requires an understanding of 1st, 

2nd, 3rd and subunit vaccine efficacy in both pre-and post-exposure scenarios [11].

1.5. Assessment of the threat of OPXV-related diseases

Medical countermeasures to OPXVs are important because smallpox re-emergence through 

a release of VARV would be a high-consequence event (although the risk of this happening 

is perceived to be low), and because emerging and re-emerging zoonotic OPXV-associated 

diseases continue to be a public health issue. The WHO Commission to Certify Smallpox 

Eradication instituted an international surveillance program for smallpox-like diseases in 

1971 [16], which ultimately resulted in an increased awareness of human monkeypox virus 

(MPXV) infection [17]. Today, MPXV infections are on the rise in the Democratic Republic 

of the Congo (DRC) [18], and outbreaks in Sudan and the United States indicate the 

potential for MPXV to spread [19]. Other OPXV infection outbreaks are routinely observed 

and include VACV in Brazil [20], CPXV in Europe [21], and buffalopox in India [22]. 

Current research also indicates that OPXV in wildlife reservoirs is more prevalent than 

previously thought [23–25]. Lastly, long-held concerns regarding the threat of smallpox as a 

weapon of bioterrorism increased after the events of September 11, 2001 and the subsequent 

anthrax releases [26]. Combined, these conditions make the development of medical 

countermeasures against OPXV-associated disease an ongoing and current research effort.

1.6. Future vaccine research

During the global eradication of smallpox, a wealth of epidemiologic data was collected. 

These data have subsequently informed public health practices regarding response strategies 

to outbreaks of OPXV-associated diseases. However, in the absence of smallpox disease, 

evaluating the efficacy of newer medical countermeasures – to include 2nd and 3rd 

generation as well as subunit vaccines – will likely depend on information derived from 

laboratory, rather than clinical, research [16,27]. The development and utilization of 

surrogate models will play an important role in the testing of newer vaccines for efficacy in 

both prophylactic and post-exposure/post-challenge scenarios against systemic OPXV 

infections [28,29].
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1.7. Summary

The data presented in this review can be used to identify those surrogate models that are 

most useful for post-exposure vaccination studies, inform policy and practice, identify 

additional research needs and offer insight into the use of post-exposure vaccination to 

control zoonotic OPXV outbreaks and potential VARV release.

2. Historical epidemiological reports

2.1. Efficacy of post-exposure vaccination

Historical reports on outbreaks of variola major offer insight to the use of post-exposure 

vaccination as a medical countermeasure to OPXV exposure. As early as 1904, it was well 

known that vaccination of persons exposed to smallpox helped protect these persons from 

smallpox disease [30], but the literature is rife with conflicting information about the timing 

of effective post-exposure vaccination. A summary review of the epidemiological literature 

which specifically mentions post-exposure vaccination efficacy in the context of variola 

major outbreaks [31–42] highlights historic estimations of the efficacy of vaccination at 

various timepoints post-exposure (Table 1). This literature is complicated to interpret due to 

various data gaps, which have also been detailed in Table 1.

Historical data in the early 20th century indicated to some researchers that post-exposure 

vaccination is not effective in preventing disease in immunologically naïve persons when 

administered at any timepoint post-exposure [43], while other researchers argued that 

primary vaccination administered post-exposure was completely protective if administered 

<1 day post-exposure, partially protective at up to 3 days post-exposure, but not protective 

after 3 days post-exposure [44]. This latter view is supported by more recent retrospective 

analyses. A DELPHI analysis of expert opinion [45] suggested post-exposure vaccination 

within 24 h would be 90% effective, and within 1–3 days post-exposure would be 80% 

effective, in disease prevention. In those who did develop disease, disease severity was also 

estimated to be minimized. Vaccination up to a week post-exposure was also estimated to 

have partial benefit. A review of four British clinical summaries of post-exposure 

vaccinations provided from the late 1800s through the early 1900s which did not prevent 

smallpox disease do indicate that post-exposure vaccination within 3 days post-exposure is 

effective at decreasing disease severity in those not previously vaccinated [46]. Fig. 1 is a 

generalized summary of data from the epidemiological reports reviewed in Table 1 and is 

designed to visually chart the longest period post-exposure where vaccination which was 

reported to increase survival and/or to reduce disease severity in each report. As can be seen 

in Fig. 1, these data suggest that the administration of post-exposure vaccination to contacts 

decreases mortality and/or reduces morbidity in 100% (12/12), 83% (10/12), 75% (9/12), 

67% (8/12), 58% (7/12), 42% (5/12), 33% (4/12) and 25% (3/12) of reports when vaccine is 

given at <1, <2, <3, <5, <7, <9, <10 and <12 days post-exposure, respectively. Due to the 

data gaps described below, the data summary in Fig. 1 is a qualitative representation of these 

reports.
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2.2. Identification of data gaps

In general, the epidemiological data from variola major outbreaks before and during the 

eradication era appear to support the current view that vaccination prior to 3 days post-

exposure will provide benefit in preventing smallpox disease in exposed persons regardless 

of prior vaccination status. In addition, it appears that post-exposure vaccination given prior 

to the appearance of rash affords clinical or survival benefit, but these benefits diminish 

when vaccine is administered greater than one-week post-exposure. However, it is important 

to note that these data are limited in many ways.

During this period only 1st generation vaccines were used; prior immunity in individuals 

within the population (whether from previous vaccination or exposure) may be 

underestimated; underlying immune issues of patients are unknown; specific descriptions 

(i.e. Rao’s classification) of the clinical presentation of index patients and contacts that 

develop disease are not included; vaccine quality and administration differences may be 

present as vaccine quality prior to 1971 was largely uncontrolled and the bifurcated needle 

was not recommended until 1968 [47,48]. Additionally, patient demographics as well as 

social/cultural/economic differences are also not always identified. Any one of these missing 

pieces of information could help explain the variability among – and affect interpretation of 

– these studies. Consequentially, our conclusions are tempered with the understanding that 

these patients are presumed to be naïve when given post-exposure vaccination, are presumed 

to be immunocompetent, are presumed to be exposed to sufficient VARV to cause infection 

and disease, and are presumed to have been given a quality vaccine using appropriate 

administration routes. These presumptions and data gaps make it difficult to interpret the 

true efficacy of post-exposure vaccination. In the absence of human smallpox disease, 

surrogate models offer our best chance of defining when post-exposure vaccination will 

provide a survival benefit. The next section of this review will examine the limited literature 

regarding post-exposure vaccination studies in surrogate models.

3. Current laboratory studies in surrogate models

3.1. Efficacy of post-exposure vaccination

Although both pre-exposure vaccination and post-exposure antiviral therapy studies in 

surrogate models contribute to our understanding of outcomes following OPXV challenge, 

for the purposes of this review, only those surrogate model studies that have provided 

information regarding the efficacy of post-exposure vaccination are addressed. The data 

from these few reports are highly variable depending on the surrogate model used. In 

contrast to the human epidemiologic literature, where “post-exposure” may not necessarily 

mean post-infection, in the animal models, all post-exposure data on vaccine efficacy is 

“post-infection”. Studies that did not show a significant survival benefit for post-exposure 

vaccination include a study where 2.5 × 105 TCID50 of VACV-Elstree (intracutaneous) was 

administered 1 day post-exposure in cynomologous macaques infected with 107 pfu of 

MPXV (intratracheal) without any significant survival benefit when compared to control 

animals [49]. In a second study, 106 pfu of Elstree (scarification) or 108 IU of Modified 

Vaccinia Ankara (MVA) (intramuscular) were administered post-exposure to BALB/C mice 

which were challenged with 104 or 106 pfu (VACV-Western Reserve) (respiratory) 
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respectively. The authors report that although MVA administration within 3 h of challenge 

protected the mice from death, these animals still manifest substantial disease symptoms. 

There was no significant survival benefit with MVA vaccination on day 1, 2, 3 or 4 and 

none with VACV-Elstree vaccination on day 0, 1 or 2 post-challenge [50].

Studies that did show a survival benefit for post-exposure vaccination used a murine model 

with an intranasal (respiratory) challenge using ectromelia virus (ECTV). This model has a 

longer disease course (mean time to death 10 days vs. 6 days) and longer incubation period 

(time to initial weight loss 7 days vs. 2–3 days) than VACV-WR intranasal (respiratory) 

infection of BALB/C or C57BL/6 mice. Using C57BL/6 mice lethally challenged with 

ECTV at 5 × LD50 (respiratory), 100% survival was observed after 106 pfu VACV-Lister 

(intramuscular) vaccination at 0 and 1 day post-exposure and a smaller survival benefit of 

40% was observed with vaccination 2 or 3 days post-exposure. Intramuscular administration 

of 1 × 108 pfu of MVA on day 0, 1 or 2 post-exposure demonstrated 100% protection while 

day 3 vaccination resulted in 80% survival benefit. In this same study, the use of BALB/c 

mice in a 3 × LD50 challenge with ECTV (respiratory), coupled with vaccination with 106 

pfu VACV-Lister (intradermal tail scarification) resulted in 100%, 83% and 16% survival 

when administered on day 0, 1 or 2 post-exposure. In a second experiment, 106 pfu VACV-

Lister (intramuscular) given on days 0, 1, 2, 3, or 4 post-exposure, survival benefit was 

100%, 80%, 40%, 20% and 20%. MVA proved more effective with 108 pfu of MVA 

(intramuscular) resulting in survival benefits of 100%, 100%, 100%, 60% and 20% when 

given on day 0, 1, 2, 3 or 4 post challenge. When C57BL/6 mice were used in the 3× LD50 

ECTV challenge, all animals (100%) survived when 1 × 108 pfu MVA vaccination 

(intranasal) was given on day 0 or day 1 with day 2 post-exposure vaccination providing 

50% survival [51]. In a second study, C57BL/6 mice were infected with a lethal dose of 3 × 

104 TCID50 ECTV (intranasal) and then vaccinated on day 2, 3, or 5 with 5 × 107 TCID50 

of MVA (intranasal). The survival benefit was 30% for day 2 vaccination and 0% for day 3 

and 5 vaccination. However, 100% survival was seen with 5 × 107 TCID50 MVA 

(intravenous) vaccination on day 2 and day 3 and 20% survival was seen with vaccination 

on day 5 [52]. In the final study reviewed here, mice with a deficient innate immune 

response (TLR9−/−) were lethally challenged with 100 TCID50 ECTV (respiratory) and 

received 1 × 108 TCID50 MVA (intranasal) 24 h and 48 h post-exposure with 100% survival 

benefit. The same study using 72 h post-exposure vaccination showed a 30% survival 

benefit [53]. Fig. 2 graphs the combined survival benefits shown in each of the 

aforementioned experiments by day of post-exposure vaccination.

In summary, these results indicate no protective effect of post-exposure vaccination with 

intradermal administration of 1st generation, or subcutaneous administration of 3rd 

generation, vaccines for either the MPXV (intratracheal) macaque model or the VACV-WR 

(respiratory) challenged mouse model – both of which have rapid onset of symptomatic 

illness. In contrast, protection by post-exposure vaccination was seen in the ECTV 

(respiratory) challenged BALB/C or C57BL/6 mouse models. Protection was beneficial for 

a longer period post-exposure if 1st generation smallpox vaccines were administered 

intramuscularly rather than intradermally (tail scarification), or when 3rd generation 

vaccines were given via intranasal, intramuscular or intravenous routes of administration.
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The studies above also provide data regarding immune responses related to short-term pre-

exposure and post-exposure vaccination in the ECTV model. One study utilized Rag-1−/− 

and IFNAR−/− mice vaccinated with 1 × 108 pfu MVA (intranasal) 2 days prior to ECTV 

challenge to demonstrate that Type IIFN is important but not essential for MVA-induced 

protection, whereas adaptive immunity is essential. In animals given either 1 × 106 or 1 × 

108 pfu of VACV-Lister or MVA (intramuscular), a higher dose of either vaccine resulted in 

more antibodies being made earlier. This study also demonstrated that the titer of antibodies 

necessary for passive protection (3 × 104) is higher than the titer induced by vaccination in 

this model [51]. In an additional study, ECTV was shown to depend on TLR9 recognition in 

order to stimulate innate immunity, whereas MVA could stimulate innate immunity without 

TLR9 [53]. C57BL/6 mice challenged with a 14× LD50 dose of ECTV and vaccinated with 

MVA (intranasal and intravenous) on day 3 post-exposure were only protected with 

intravenous vaccination. In these protected animals activation of innate and cell mediated 

immunity shown by increased cytokine production and activation of NK and T cells was 

higher than in non-protected animals. In animals with intravenous vaccination IgG 

neutralizing titers could be detected earlier (day 6) and had higher titers (~103) than in 

intranasally vaccinated animals (day 9) and (~102). The similarity of results between 

unvaccinated and intranasally vaccinated animals indicates that the immune response (both 

innate and adaptive) to the original ECTV challenge was not enhanced by intranasal 

vaccination [52].

3.2. Identification of data gaps

As the results above demonstrate, multiple variables contribute to the difficulty in 

interpreting surrogate model studies. These variables include differences in disease course 

and immune responses - which are, in turn, induced by different challenge viruses, vaccines, 

routes of infection, routes of vaccine administration, doses of virus and doses of vaccine. In 

the studies reviewed above, there is variability among models and even within the ECTV 

infected mouse model – results are consistent for day 0 and day 1 vaccination but not day 2, 

3, 4 and 5 vaccination. This may be due to differences in BALB/C and C57BL/6 mice or 

may reflect differences in vaccine routes of administration. The differences between VACV 

or ECTV disease in mice and human systemic OPXV disease do not permit a full evaluation 

of the potential effect of post-exposure vaccination on human disease. Lastly, intranasal or 

intravenous administration of post-exposure vaccination has not been studied in humans 

making the applicability of these studies difficult to ascertain. Therefore, while these studies 

have been the first to address the issue of post-exposure vaccination and certainly inform the 

field on this issue, additional animal models – preferably those models with an extended 

incubation period – and diseases courses, which better mimic human disease – will enable 

better predictions per the human experience. The next section of this review covers those 

surrogate models that are currently in use that would be most suitable for future post-

exposure vaccination studies.
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4. Comparative analysis of human and surrogate model disease courses

4.1. Identification of surrogate models for post-exposure studies

Because of the data gaps identified above in both historical epidemiology reports and current 

surrogate model data, more laboratory studies in different surrogate models may help to 

define the window of time in which post-exposure vaccination offers a survival benefit. 

Because there is no non-human reservoir for VARV [54], it is not possible to use a naturally 

infected species as a surrogate for human systemic OPXV infection [55]. Fortunately, 

scientists have been developing, testing, evaluating and improving surrogate models that use 

non-VARV OPXVs to challenge numerous animal species since the beginning of the 20th 

century [56,57]. While much progress has been made, many models are difficult to compare 

to human disease and most do not fulfill all the requirements of the Federal Drug 

Administration’s (FDA) animal rule, which provides the current standards that surrogate 

models must meet in order to replace human efficacy trials for FDA licensure [58]. The 

major requirements of this regulation are that there is (1) a reasonably well understood 

mechanism for the pathogenesis of the challenge virus, (2) an understanding of the 

correlates of protection for vaccination and (3) that these are demonstrated in more than one 

animal species. While many surrogate models share similarities with systemic OPXV 

disease in humans, none of the individual models fully recapitulates smallpox disease in 

humans. The majority of models have very short incubation times and rapid disease courses, 

which make them less desirable for post-exposure vaccination studies, therefore we have 

limited our review to those models that offer an incubation period of at least 5 days and in 

which previous studies have indicated vaccine efficacy of some kind [59–79].

The purpose of our analysis is to identify those models that appear to be most relevant for 

extrapolation to humans for the development of public health policy and research in the 

absence of pre-exposure vaccination and human VARV disease. Within the subgroup of 

currently used surrogate models that have an extended incubation period and previous 

vaccine efficacy data, we have given priority to those models that (1) utilize an etiological 

agent that is a human pathogen – in order to better compare mechanisms of pathogenesis 

between the model and humans, (2) exhibit rash illness and ~30% mortality – as rash illness 

is an important marker of morbidity and that coupled with realistic mortality allows for the 

fine analysis of the immune components of partial protection and (3) can be vaccinated with 

current vaccines at similar doses and routes of administration which have been tested in 

human trials - again, in order to clarify the comparisons between models and humans. Table 

2 details the clinical features of the incubation, prodrome, rash and resolution stages of 

OPXV infections in selected models. A comparative analysis of the disease course of 

smallpox in humans to the disease course of OPXV infections in these surrogate models 

allows for the identification of models that can be utilized most effectively for post-exposure 

vaccination efficacy studies.

4.2. Comparative analysis of surrogate models for post-exposure vaccination studies

Based on epidemiological data from the smallpox era, post-exposure vaccination is likely to 

be most efficacious when administered during the incubation period. As stated above, we 

have chosen only to consider those models demonstrating incubation periods of more than 5 
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days that have also previously been utilized to evaluate either pre- or post-exposure 

vaccination. This selection criteria led to the exclusion of the Rabbitpox – New Zealand 

White Rabbits (aerosol) or Variola – cynomologous macaque (intravenous) models due to 

short incubation periods [80–82]. The recently developed Calpox – marmoset (intranasal) 

[83,84] model shows promise for post-exposure vaccination modeling but was excluded 

from this review because no vaccine testing has occurred in this model at this time.

Each of the models in this table has weaknesses that limit their effectiveness, suggesting that 

post-exposure vaccination studies should be conducted in multiple surrogate models. The 

rhesus and cynomologous macaque model of VARV infection (aerosol) is a model with very 

low mortality, thus making it difficult to show survival benefit of post-exposure vaccination. 

The cynomologous macaque model of MPXV infection (aerosol) has differences in disease 

presentation when compared to human infections and has an abbreviated incubation period 

and high mortality (100%) when compared to the cynomologous macaque model of MPXV 

infection (intratracheal microspray aerosol) which has 33% mortality and a more similar 

disease course to humans with systemic OPXV infections. While the non-human primate 

model is the most studied of the smallpox surrogate models because these animals have a 

close evolutionary relationship to humans and reagents are readily available, there are 

several practical constraints to widespread use. For example, the expense, training and 

facility requirements associated with non-human primate studies limits the number of 

institutions that can perform research using these models and can occasionally result in 

underpowered experiments. While this concern can be partially offset by the use of the 

aforementioned highly lethal non-human primate models, these typically have a rapid 

disease onset and do not allow for an understanding of the kinetics of the immune response 

generated by post-exposure vaccination. In addition, regulations stipulate that potential 

therapies be proven efficacious in multiple animal models, which suggests the need for 

small animal models to complement non-human primate models.

Immunological reagents are also commercially available for mice and the availability and 

relatively low cost of mouse studies make them an attractive small animal alternative. The 

ectromelia virus (ECTV) (intranasal) infected mouse model has high lethality and dissimilar 

disease presentation when compared with human infections and ECTV is not virulent in 

humans. A better mouse model appears to be the MPXV infected (intranasal) CAST/EiJ 

model that has an extended incubation period when compared to the ECTV model. 

Unfortunately, this model also has a disease presentation that differs from human systemic 

OPXV infections in that animals do not demonstrate rash illness, which is an important 

marker for determining the effect of post-exposure vaccination on morbidity. Proportional 

mortality and presence of rash illness are especially important when attempting a fine 

analysis of the immune components of partial protection, vital for evaluation of smallpox 

vaccines in immunocompromised humans.

Lastly, the outbreak of monkeypox in the United States in 2003 offered a unique opportunity 

to evaluate exotic surrogate models, which are relatively inexpensive, outbred, natural hosts 

of MPXV. However, the lack of commercially available immunological reagents is a major 

weakness of these models. The MPXV infected (intranasal) prairie dog model has the 

advantage of an extended incubation period, similar disease presentation to infected humans 
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to include rash illness and 30–50% mortality. This is superior to the ground squirrel model, 

which has high lethality and atypical disease presentation. Therefore, although each of the 

models in Table 2 are suitable for post-exposure vaccination studies, the MPXV infected 

(intratracheal microspray aerosol) cynomologous macaque, the MPXV infected (intranasal) 

CAST/EiJ mouse and the MPXV infected (intranasal) prairie dog offer distinct advantages 

in terms of disease presentation, challenge virus used and extended incubation periods for 

post-exposure vaccination testing.

5. Conclusions

Examination of the studies reviewed here demonstrates multiple issues in the evaluation of 

post-exposure vaccination efficacy against OPXV threats. Data gaps identified in the 

historical epidemiological reports (Table 1 and Fig. 1) make it difficult to determine a post-

exposure efficacy window for human infection and do not reflect changes in immune status 

of the current human population. The data suggest that vaccination prior to 3 days post-

exposure will have significant benefit in minimizing smallpox disease in exposed persons 

and post-exposure vaccination any time prior to the appearance of rash may afford a slight 

survival benefit. However, it is difficult to compare this data to the studies performed in 

surrogate models (Fig. 2) for several reasons.

In animals with a somewhat accelerated disease course such as ECTV challenged mice 

(mean time from challenge to death = 10 days, time to weight loss 7 days), post-exposure 

vaccination with 1st generation vaccines via intradermal tail scratch at 1 or 2 days post-

exposure/infection is 83% and 16% protective, respectively. In human smallpox infections 

(mean time from exposure to death = 20 days (16–23 days)) [61], post-exposure vaccination 

at equivalent time points of <2 or <4 days are beneficial in 80% and 60% of reports. This 

simple comparison highlights the difficulties of interpreting data in models with an 

accelerated disease course and comparing those results to human smallpox data. Similarly, 

rash illness is an important marker of morbidity in the most common types of human 

smallpox cases, where mortality is ~30%. Models that lack rash illness, or have very high or 

very low mortality, produce data that are more difficult to extrapolate to post-exposure 

vaccination efficacy in humans.

Post-exposure vaccination is only efficacious if the vaccine elicits a protective immune 

response against OPXV infection prior to the point at which disease prevention or 

modification is no longer preventable. Only one study has directly compared differences 

between failed post-exposure vaccination protection (MVA-intranasal) and successful post-

exposure vaccination protection (MVA-intravenous) in the ECTV model. Results of that 

study indicate that activation of innate and adaptive immunity shown by increased cytokine 

and neutralizing antibody production as well as activation of NK and T cells is important for 

post-exposure vaccination protection [52]. However, a more recent study in the ECTV 

model indicates that B cells, but not T cells, are dispensable in protecting animals vaccinated 

with MVA (intranasal) and then challenged 2 days later with a 3× LD50 dose of ECTV [85]. 

While these data are consistent with innate and cell mediated immunity playing a large role 

in protection from primary infection they also illustrate the importance of understanding the 
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differences in protective immune responses that are induced by pre-exposure (long-term and 

short-term) vaccination and post-exposure vaccination.

Neutralizing antibody production in vaccinated humans has been shown to correlate with 

expression of various genes associated with innate and cell-mediated immunity, indicating 

the integral nature of the adaptive immune system in humans [86]. Mice that are incapable 

of producing poxvirus specific IgG and IgM are not protected by post-exposure MVA 

vaccination (intravenous) at day 3 post-exposure whereas wild type mice are which indicates 

the importance of neutralizing antibodies [52]. The time it takes a virus to spread to the point 

where post-exposure vaccination is not beneficial will depend in part on the incubation 

period of the virus and the kinetics of the immune response. For example, primary exposure 

requires 7–13 days to produce neutralizing antibodies against vaccinia in human studies 

[87–89], and smallpox in humans has a combined incubation and prodromal period that lasts 

7–17 days with a mean of 12.5 days [90]. Based on these data, smallpox contacts who have 

been exposed and have a shorter incubation period (<12.5 days) may not have time to mount 

a neutralizing antibody response to the VARV exposure and thus supplementing this 

response with a post-exposure vaccination may gain no protective benefit. Non-human 

primate studies demonstrate antibody formation after primary vaccination that is slightly 

faster than humans, with titers rising by day 6 and peaking by day 9–10 [91,92]. In mice, 

VACV infection induces neutralizing antibodies as early as 4 days post-challenge, while 

ECTV induced neutralizing antibodies appear by day 6 and peak around day 9 [52,93]. Anti-

VACV neutralizing antibodies have been shown to arise between days 7 and 10 post MPXV 

challenge in the prairie dog [77]. This illustrates the importance of an adequate incubation 

period to understanding the kinetics, magnitude and breadth of the antibody response after 

post-exposure vaccination and its correlation to protection.

An additional difficulty in bridging the data gaps between human and surrogate models 

involves the route of administration of challenge virus and vaccine. The models selected 

here (MPXV-macaque (intratracheal microspray aerosol), MPXV-CAST/EiJ mouse 

(intranasal) and MPXV-prairie dog (intranasal) all use a challenge virus that causes a 

systemic infection and can be vaccinated using the same route of administration that is used 

for human vaccination. Reports indicate that the route of administration of challenge virus 

and vaccine affects the magnitude of neutralizing antibodies [94]. In addition, protection 

from systemic or localized disease requires different antibody targets [95] making this an 

important aspect of surrogate model design. As human studies of vaccination must rely on 

challenges that utilize non-systemic infections (i.e. challenge with vaccines), surrogate 

models that exhibit systemic infection are important.

The data gaps identified in this review for both epidemiological reports from the eradication 

era and more modern surrogate studies indicate a need for additional studies in surrogate 

models. Although it has been challenging to implement the FDA animal rule for product 

review [96], the regulatory and scientific communities have made significant progress in 

clarifying what is needed to provide the appropriate data for use in regulatory product 

review [12]. The three models identified previously in this review as most advantageous for 

post-exposure vaccination studies (MPXV-macaque (intratracheal microspray aerosol), 

MPXV-CAST/EiJ mouse (intranasal), and MPXV-prairie dog (intranasal)) meet many of the 
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requirements for surrogate models. Each of these use a human pathogen as a challenge virus, 

routes/doses of vaccine that are similar to those tested in human vaccination trials and routes 

of challenge that approximate respiratory infection in humans. Lastly, the macaque and 

prairie dog models offer a disease presentation that most closely mimics human infection, 

the prairie dog and mouse models are relatively cost-effective and the mouse and macaque 

models have the best availability of immunological reagents for determining the correlates 

of protection in post-exposure vaccination studies. Therefore, a combination of post-

exposure studies using all three of these models offers our best chance of not only 

understanding post-exposure vaccination efficacy but also successfully testing new vaccines 

against OPXV infection in a post-exposure setting.

The question of the efficacy of post-exposure vaccination against smallpox is not a trivial 

one. “Sound administrative procedure must depend on accurate knowledge of epidemiology; 

once the latter is defined the former becomes clear” [31]. While the historical human data 

from the eradication era is and has been indisputably important, it represents smallpox 

vaccination with 1st generation vaccines in a global population where immunosuppression 

by HIV infection and medical treatments were relatively low. Without modern 

epidemiologic information on human cases of smallpox in today’s population using newer 

vaccines, policymakers are designing medical countermeasures against OPXVs in the 

absence of human infection data. To make informed decisions, research must continue to 

bridge the gaps between historic smallpox epidemiology and laboratory research. This can 

only be accomplished through the wise use of current surrogate models and the development 

of improved models.
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Fig. 1. 
Post-exposure vaccination window extrapolated from historical epidemiology reports. A 

review of references that described post-exposure vaccination as providing partial or 

complete protection from, or attenuation of, smallpox symptoms during disease outbreaks 

was accomplished. The reported post-exposure vaccination windows were charted (gray 

bars) by the days post-exposure that efficacious vaccination was administered (black 

horizontal axis text). The percentage of references that indicated a benefit to post-exposure 

vaccination prior to each day post-exposure (gray horizontal axis text) were determined.
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Fig. 2. 
Post-exposure vaccination window extrapolated from surrogate model studies. References 

that reported post-exposure vaccination studies were reviewed. The proportion of animals 

that survived lethal challenge (vertical axis) is given for each surrogate model tested (gray 

bars) by the day post-exposure vaccination (horizontal axis) was administered for each 

individual experiment.

Keckler et al. Page 19

Vaccine. Author manuscript; available in PMC 2015 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Keckler et al. Page 20

T
ab

le
 1

Su
m

m
ar

y 
of

 li
te

ra
tu

re
 r

ev
ie

w
 o

f 
po

st
-e

xp
os

ur
e 

va
cc

in
at

io
n 

ef
fi

ca
cy

 a
ga

in
st

 s
m

al
lp

ox
.

Y
ea

r(
s)

 o
f 

va
ri

ol
a

m
aj

or
 o

ut
br

ea
k

L
oc

at
io

n(
s)

 o
f 

va
ri

ol
a

m
aj

or
 o

ut
br

ea
k

O
ut

br
ea

k 
ca

se
 f

at
al

it
y

ra
te

 (
al

l c
as

es
)

O
ri

gi
na

l a
ut

ho
r 

co
nc

lu
si

on
s 

re
ga

rd
in

g 
th

e
ef

fi
ca

cy
 o

f 
po

st
-e

xp
os

ur
e 

va
cc

in
at

io
n 

in
pr

ev
io

us
ly

 u
nv

ac
ci

na
te

d 
co

nt
ac

ts

D
at

a 
ga

ps
 a

ff
ec

ti
ng

in
te

rp
re

ta
ti

on
 o

f 
co

nc
lu

si
on

sa
R

ef
.

19
42

G
la

sg
ow

, E
di

nb
ur

gh
an

d 
Fi

fe
, S

co
tla

nd
24

%
Pa

tie
nt

s 
va

cc
in

at
ed

 d
ay

 0
–3

 p
os

t-
ex

po
su

re
 h

ad
si

gn
if

ic
an

t i
m

pr
ov

em
en

t i
n 

fa
ta

lit
y 

an
d

re
du

ct
io

n 
in

 s
ev

er
ity

 o
f 

di
se

as
e.

 “
N

um
be

r 
of

ca
se

s 
of

 s
m

al
lp

ox
 in

 r
ec

en
tly

 v
ac

ci
na

te
d

co
nt

ac
ts

 w
as

 s
m

al
l”

.

Su
m

m
ar

y 
ar

tic
le

, “
re

du
ct

io
n 

in
se

ve
ri

ty
” 

un
ex

pl
ai

ne
d,

qu
an

tit
at

iv
e 

re
su

lts
 n

ot
re

po
rt

ed
.

[3
1]

19
46

T
ri

po
lit

an
ia

, L
ib

ya
,

N
or

th
 A

fr
ic

a
18

%
C

on
ta

ct
s 

va
cc

in
at

ed
 1

–5
,6

–1
0 

or
 1

0+
 d

ay
s

af
te

r 
co

nt
ac

t h
ad

 m
or

ta
lit

y 
ra

te
s 

of
 0

%
, 1

9%
 a

nd
25

%
 r

es
pe

ct
iv

el
y.

 P
at

ie
nt

s 
va

cc
in

at
ed

 w
ith

in
 5

da
ys

 o
f 

ex
po

su
re

 h
ad

 m
ild

er
 d

is
ea

se
.

Sm
al

l n
um

be
r 

of
po

st
-e

xp
os

ur
e 

va
cc

in
ee

s.
[3

2]

19
47

B
ils

to
n,

 E
ng

la
nd

20
%

V
ac

ci
na

tio
n 

~3
–4

 d
ay

s 
po

st
-e

xp
os

ur
e 

di
d 

no
t

in
fl

ue
nc

e 
di

se
as

e 
co

ur
se

. M
od

if
ie

d 
ca

se
s 

of
sm

al
lp

ox
 o

cc
ur

re
d 

w
he

re
 v

ac
ci

na
tio

n 
ha

d 
be

en
ca

rr
ie

d 
ou

t 0
–1

 d
ay

 p
os

t-
ex

po
su

re
.

Su
rv

iv
al

 o
f 

co
nf

lu
en

t c
as

es
un

kn
ow

n,
 q

ua
nt

ita
tiv

e 
re

su
lts

no
t g

iv
en

.

[3
3]

19
50

–1
97

1
C

as
es

 im
po

rt
ed

 in
to

E
ur

op
e

16
%

T
he

 c
as

e 
fa

ta
lit

y 
ra

te
 o

f 
pa

tie
nt

s 
va

cc
in

at
ed

po
st

-e
xp

os
ur

e 
w

as
 2

9%
 -

 c
om

pa
re

d 
to

 a
fa

ta
lit

y 
ra

te
 o

f 
52

%
 in

 th
os

e 
th

at
 w

er
e 

ne
ve

r
va

cc
in

at
ed

.

N
o 

ex
pl

an
at

io
n 

of
 th

e 
tim

in
g 

of
po

st
-e

xp
os

ur
e 

va
cc

in
at

io
n 

is
gi

ve
n.

[3
4]

19
61

–1
97

2
M

ad
ra

s,
 I

nd
ia

43
%

V
ac

ci
na

tio
n 

po
st

-e
xp

os
ur

e 
in

 4
26

 c
as

es
 o

f
or

di
na

ry
 s

m
al

lp
ox

 r
es

ul
te

d 
in

 a
 c

as
e 

fa
ta

lit
y

ra
te

 o
f 

20
.6

%
 c

om
pa

re
d 

to
 a

 c
as

e 
fa

ta
lit

y 
ra

te
 o

f
36

.9
%

 in
 1

29
6 

un
va

cc
in

at
ed

 p
er

so
ns

.

T
im

in
g 

of
 p

os
t-

ex
po

su
re

va
cc

in
at

io
n 

is
 u

nk
no

w
n.

 S
m

al
l

nu
m

be
r 

of
 p

os
t-

ex
po

su
re

va
cc

in
ee

s.

[3
5]

19
62

B
ra

df
or

d,
 E

ng
la

nd
50

%
V

ac
ci

na
tio

n 
w

ith
in

 2
4 

h 
of

 e
xp

os
ur

e 
re

su
lte

d 
in

m
ild

 f
or

m
s 

of
 d

is
ea

se
. P

ri
m

ar
y 

va
cc

in
at

io
n 

on
da

y 
11

 p
os

t-
ex

po
su

re
 w

as
 in

ef
fe

ct
iv

e.

D
es

cr
ip

tiv
e 

ca
se

 s
tu

di
es

 o
nl

y,
sm

al
l n

um
be

r 
of

 r
el

ev
an

t c
as

es
,

ou
tb

re
ak

 h
ad

 h
ig

he
r 

th
an

no
rm

al
 f

at
al

ity
 r

at
e.

[3
6]

19
65

–1
96

8
M

ad
ra

s,
 I

nd
ia

N
ot

 g
iv

en
In

 th
is

 s
tu

dy
 o

f 
fa

m
ili

al
 c

on
ta

ct
s,

 4
7.

6%
 o

f
un

va
cc

in
at

ed
 c

on
ta

ct
s 

de
ve

lo
pe

d 
sm

al
lp

ox
,

w
hi

le
 o

nl
y 

29
.5

%
 o

f 
th

os
e 

co
nt

ac
ts

 th
at

re
ce

iv
ed

 p
ri

m
ar

y 
va

cc
in

at
io

n 
di

d.
 O

f 
th

os
e

29
.5

%
, t

ho
se

 c
as

es
 (

ex
cl

ud
in

g 
pr

eg
na

nt
w

om
en

) 
th

at
 w

er
e 

va
cc

in
at

ed
 a

ft
er

 e
xp

os
ur

e
al

so
 s

ho
w

ed
 d

ec
re

as
es

 in
 h

em
or

rh
ag

ic
 d

is
ea

se
pr

es
en

ta
tio

n 
an

d 
in

cr
ea

se
s 

in
 m

od
if

ie
d 

di
se

as
e

pr
es

en
ta

tio
n.

N
o 

m
en

tio
n 

of
 f

at
al

ity
 r

at
es

 f
or

ou
tb

re
ak

, n
o 

di
sc

us
si

on
 o

f
w

he
n 

po
st

-e
xp

os
ur

e
va

cc
in

at
io

n 
w

as
 p

ro
vi

de
d 

(d
ay

1,
 2

,3
 p

os
t e

xp
os

ur
e 

et
c.

).
 D

at
a

ac
qu

ir
ed

 d
ur

in
g 

m
as

s
va

cc
in

at
io

n 
ca

m
pa

ig
n

[3
7]

19
67

Sh
ei

kh
up

ur
a 

D
is

tr
ic

t,
Pu

nj
ab

, W
es

t
Pa

ki
st

an

N
ot

 g
iv

en
75

%
 (

12
/1

6)
 o

f 
th

os
e 

w
ho

 w
er

e 
va

cc
in

at
ed

w
ith

in
 1

0 
da

ys
 o

f 
co

nt
ac

t d
ev

el
op

ed
 s

m
al

lp
ox

w
hi

le
 9

6%
 (

26
/2

7)
 o

f 
th

os
e 

no
t v

ac
ci

na
te

d
w

ith
in

 1
0 

da
ys

 d
ev

el
op

ed
 s

m
al

lp
ox

.

N
o 

m
en

tio
n 

of
 f

at
al

ity
 r

at
es

 f
or

ou
tb

re
ak

, s
m

al
l n

um
be

rs
, n

o
di

sc
us

si
on

 o
f 

po
st

-e
xp

os
ur

e
va

cc
in

at
io

n 
at

 s
pe

ci
fi

c 
da

y 
(d

ay
1,

 2
,3

 e
tc

.)
.

[3
8]

19
68

–1
97

0
Si

x 
ru

ra
l d

is
tr

ic
ts

,
Pu

nj
ab

, W
es

t
Pa

ki
st

an

21
%

O
f 

co
nt

ac
ts

 w
ith

 n
o 

pr
io

r 
va

cc
in

at
io

n 
hi

st
or

y,
78

.5
%

 (
73

/9
2)

 o
f 

co
nt

ac
ts

 w
ith

 n
o

po
st

-e
xp

os
ur

e 
va

cc
in

at
io

n 
de

ve
lo

pe
d 

di
se

as
e

Sm
al

l s
tu

dy
, n

o 
di

sc
us

si
on

 o
f

va
cc

in
e 

ef
fi

ca
cy

 a
ga

in
st

m
or

bi
di

ty
. P

os
t-

ex
po

su
re

[3
9]

Vaccine. Author manuscript; available in PMC 2015 October 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Keckler et al. Page 21

Y
ea

r(
s)

 o
f 

va
ri

ol
a

m
aj

or
 o

ut
br

ea
k

L
oc

at
io

n(
s)

 o
f 

va
ri

ol
a

m
aj

or
 o

ut
br

ea
k

O
ut

br
ea

k 
ca

se
 f

at
al

it
y

ra
te

 (
al

l c
as

es
)

O
ri

gi
na

l a
ut

ho
r 

co
nc

lu
si

on
s 

re
ga

rd
in

g 
th

e
ef

fi
ca

cy
 o

f 
po

st
-e

xp
os

ur
e 

va
cc

in
at

io
n 

in
pr

ev
io

us
ly

 u
nv

ac
ci

na
te

d 
co

nt
ac

ts

D
at

a 
ga

ps
 a

ff
ec

ti
ng

in
te

rp
re

ta
ti

on
 o

f 
co

nc
lu

si
on

sa
R

ef
.

co
m

pa
re

d 
to

 n
on

e 
(0

/2
) 

of
 th

e 
co

nt
ac

ts
 th

at
re

ce
iv

ed
 p

os
t-

ex
po

su
re

 v
ac

ci
na

tio
n 

w
ith

in
 7

da
ys

 o
f 

ex
po

su
re

.

va
cc

in
at

io
n 

ef
fi

ca
cy

 w
as

re
po

rt
ed

 in
 te

rm
s 

of
su

bs
eq

ue
nt

 a
tta

ck
 r

at
es

, w
hi

ch
as

su
m

es
 th

at
 a

ll 
ho

us
eh

ol
d

co
nt

ac
ts

 a
re

 e
xp

os
ed

 e
qu

al
ly

,
an

d 
w

ith
 s

im
ila

r 
tim

in
g.

19
72

B
an

gl
ad

es
h 

ev
ac

ue
es

in
 C

al
cu

tta
, I

nd
ia

50
%

Pr
im

ar
y 

va
cc

in
at

io
n 

0–
1 

da
ys

 p
os

t-
ex

po
su

re
re

su
lte

d 
in

 f
at

al
ity

 r
at

e 
of

 3
7.

1%
, p

ri
m

ar
y

va
cc

in
at

io
n 

2 
da

ys
 p

os
t-

ex
po

su
re

 h
ad

 f
at

al
ity

ra
te

 o
f 

41
.9

%
, c

om
pa

re
d 

to
 5

3.
4%

 in
 th

e 
ge

ne
ra

l
un

va
cc

in
at

ed
 p

op
ul

at
io

n.

N
o 

di
sc

us
si

on
 o

f 
va

cc
in

at
io

n
ef

fi
ca

cy
 a

ga
in

st
 m

or
bi

di
ty

.
[4

0]

19
72

K
hu

ln
a 

M
un

ic
ip

al
ity

,
B

an
gl

ad
es

h
27

%
C

on
ta

ct
s 

th
at

 r
ec

ei
ve

d 
pr

im
ar

y 
va

cc
in

at
io

n 
5–

7
da

ys
 p

os
t-

ex
po

su
re

 h
ad

 a
n 

at
ta

ck
 r

at
e 

of
7.

9/
10

00
 v

s.
 1

4.
4/

10
00

 in
 u

nv
ac

ci
na

te
d

pe
rs

on
s.

 O
ve

ra
ll,

 2
.4

%
 (

10
/4

14
) 

of
 u

nv
ac

ci
na

te
d

ho
us

eh
ol

d 
co

nt
ac

ts
 w

ho
 r

ec
ei

ve
d

po
st

-e
xp

os
ur

e 
va

cc
in

at
io

n 
de

ve
lo

pe
d 

di
se

as
e

co
m

pa
re

d 
to

 9
.2

%
 (

5/
54

) 
of

 u
nv

ac
ci

na
te

d
ho

us
eh

ol
d 

co
nt

ac
ts

 w
ho

 d
id

 n
ot

 r
ec

ei
ve

po
st

-e
xp

os
ur

e 
va

cc
in

at
io

n.

Po
st

-e
xp

os
ur

e 
va

cc
in

at
io

n
ef

fi
ca

cy
 w

as
 r

ep
or

te
d 

in
 te

rm
s

of
 s

ub
se

qu
en

t a
tta

ck
 r

at
es

,
w

hi
ch

 a
ss

um
es

 th
at

 a
ll

ho
us

eh
ol

d 
co

nt
ac

ts
 a

re
ex

po
se

d 
eq

ua
lly

, a
nd

 w
ith

si
m

ila
r 

tim
in

g.
 S

m
al

l n
um

be
r

of
 c

as
es

. N
ot

 a
ll 

po
st

-e
xp

os
ur

e
va

cc
in

at
io

n 
tim

in
g 

ex
pl

ai
ne

d.

[4
1]

19
73

C
al

cu
tta

, I
nd

ia
32

%
In

 p
at

ie
nt

s 
w

ho
se

 p
ri

m
ar

y 
va

cc
in

at
io

n
oc

cu
rr

ed
 <

9 
da

ys
 p

os
t-

ex
po

su
re

 th
e 

fa
ta

lit
y

ra
te

 w
as

 4
1.

1%
 c

om
pa

re
d 

to
 p

er
so

ns
va

cc
in

at
ed

 9
–1

2 
da

ys
 p

os
t-

ex
po

su
re

 w
hi

ch
ha

d 
a 

fa
ta

lit
y 

ra
te

 o
f 

50
%

 a
nd

 u
nv

ac
ci

na
te

d
pa

tie
nt

s 
w

hi
ch

 h
ad

 a
 f

at
al

ity
 r

at
e 

of
 5

3.
4%

.

N
o 

di
sc

us
si

on
 o

f 
va

cc
in

at
io

n
ef

fi
ca

cy
 a

ga
in

st
 m

or
bi

di
ty

.
[4

2]

a A
ll 

st
ud

ie
s 

in
 th

is
 ta

bl
e 

sh
ar

e 
th

e 
fo

llo
w

in
g 

da
ta

 g
ap

s:
 v

ac
ci

ne
 s

tr
ai

n 
no

t s
pe

ci
fi

ed
, v

ac
ci

ne
 a

dm
in

is
tr

at
io

n 
m

et
ho

d 
no

t s
pe

ci
fi

ed
, v

ac
ci

ne
 o

ri
gi

n 
an

d 
qu

al
ity

 n
ot

 s
pe

ci
fi

ed
, i

nd
iv

id
ua

l p
at

ie
nt

 n
um

be
rs

 a
nd

 
de

m
og

ra
ph

ic
s 

no
t s

pe
ci

fi
ed

, c
on

ta
ct

s 
th

at
 w

er
e 

va
cc

in
at

ed
 p

os
t-

ex
po

su
re

 a
nd

 d
id

 n
ot

 b
ec

om
e 

in
fe

ct
ed

 a
re

 n
ot

 d
is

cu
ss

ed
.

Vaccine. Author manuscript; available in PMC 2015 October 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Keckler et al. Page 22

Table 2

Disease course comparisons between human smallpox infection and surrogate models.

Disease stages (day of onset)

Incubation Prodrome Rash Resolution

Smallpox human exposure
dose and strain varies
“Respiratory Droplet”
[59–61]

Day 0–9
(range 0–16)

Day 10–12
(range 7–17)

Day 12–15
(range 9–20)

Day 26–28
(range 24–37)

Asymptomatic Fever, headache, chills,
backache, vomiting

Maculopapularto papular within 1–2 
days,
vesicular by day 4–5 and pustular by 
day 7 and
scabbed by day 14

Death (~30%) or
survival and
desquamation

Smallpox macaque 108 pfu
harper particle size <1µm
aerosol [62,63]

Day 0–5 Day 5–7 Day 7–8 (range 6–11) Day 10–11

Asymptomatic Malaise, fever, primary
bronchopneumonia

Centrifugal distribution papular to 
vesicular to
pustule (within 5 days)

Death (~1%) or survival
and desquamation

Monkeypox macaque
104–105 pfu zaire 79 particle
size = 1.2 µm aerosol [64]

Day 0–6 Absent Day 6–8 Day 11

Asymptomatic Primary bronchopneumonia, papular 
to
vesicular to scabbed (within 3–4 
days),
hemorrhagic lesions

Death (100%)

Monkeypox macaque
3.4 × 106 pfu zaire 79 
particle
size = 8 µm intratracheal
aerosol[65]

Day 0–3 Day 3–8 Day 8–10 Day 12–18

Asymptomatic Fever, malaise,
lymphadenopathy,
weight loss

Primary bronchopneumonia papular to
vesicular to pustular to scabbed 
(within 4–6
days), hemorrhagic lesions

Death (~30%) or
survival and
desquamation

Ectromelia mice(C57BL/6) 800 
pfu
Moscow intranasal [66–69]

Day 0–5 Absent Day 5–7 Day 9–11

Asymptomatic Death (~80%)

Monkeypox Mice(CAST/EiJ)
103 pfu MPXV-Z79-CB2
intranasal [70,71]

Day 0–6 Absent Day 6–8 Day 8–10

Asymptomatic No rash, weight loss, ruffling, 
hunching,
lethargy

Death (~60%) or
survival

Monkeypox ground squirrel
500–5000 pfu
MPXV-Z79-CB2 intranasal
[70,72,73]

Day 0–6 Absent Day 6 Day 6–9

Asymptomatic Lethargy, anorexia, frequent 
nosebleeds, and
terminal respiratory distress

Death (100%)

Monkeypox prairie dog
103–104 pfu MPXV-
ROC-268
intranasal [74–79]

Day 0–5 Day 5–7 Day 9–11 Day 12–17
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Disease stages (day of onset)

Incubation Prodrome Rash Resolution

Asymptomatic Weight loss,
inappetence

Maculopapularto papular within 1–2 
days,
vesicular by day 3–4 and pustular by 
day 4–7
and scabbed by day 9–11

Death (~30–50%)or
survival and
desquamation
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