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Abstract

Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material 

strength. During fabrication or repair activities, machining nanocomposites may release CNTs into 

the workplace air. An experimental study was conducted to evaluate the emissions generated by 

cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, 

Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, 

carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading 

instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber 

concentrations. Our study results showed that cutting Panel C with a band saw did not generate 

detectable emissions of fibers inspected by transmission electron microscopy but did increase the 

particle mass, number, and EC emission concentrations by 20% to 80% compared to Panels A and 

B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9×108 and 

2.8×106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A 

and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis 

of particle and EC concentrations from these same samples cannot clearly indicate the presence of 

CNTs, because extraneous aerosol generation from machining the composite epoxy material 

increased the mass concentrations of the EC.
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Background

During fabrication of structures from composites that contain nanomaterials, composites are 

subjected to common mechanical processing operations such as cutting, sanding, grinding, 
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and hole drilling. These machining operations can cause the generation of very high 

concentrations of ultrafine aerosol that exceed 105 particles per cubic centimeter (#/cm3) 

(Bello et al. 2008; Bello et al. 2009; Bello et al. 2010; Kuhlbusch et al. 2011; Methner et al. 

2012). Nano-sized tubes or fibers are released as bundles of agglomerated nanomaterials or 

as individual fibers (Bello et al. 2010; Cena and Peters 2011; Methner et al. 2012; 

Schlagenhauf et al. 2012). Machining operations can involve frictional heating that may 

cause the generation of ultrafine aerosol with particle sizes smaller than 100 nanometers 

(nm) (Stabile et al. 2013). During machining operations, nanoparticle and ultrafine aerosol 

releases were reportedly related to the energy transported to the surface (Gheerardyn et al. 

2010). The amount of energy transported to the surface is a function of the coefficient of 

friction, the force vector perpendicular to the surface, and tool speed. Ultimately, the 

mechanical power of the machining operation is converted to heat, which can increase tool 

and substrate temperature (Malkin and Guo 2007). According to studies of machining 

operations involving carbon-reinforced composites, tool temperatures can reach 287°C 

350°C and scorch marks are observed on the test composites (Weinert and Kempmann 2004; 

Chang et al. 2011). In structural composites involving graphite fibers cured into epoxy 

resins, heat damage occurs at 280°C and thermal decomposition happens at 340°C 

(McShane et al. 1999). Increasing the carbon nanotube (CNT) content of an epoxy 

composite from 0% to 2% promoted the threshold for thermal decomposition from 339°C to 

378°C (Chen et al. 2008). Temperatures in excess of 400°C are reported to cause thermal 

decomposition for some CNTs (Hsieh et al. 2010). Frictional heating of composites can 

increase surface temperatures, causing thermal decomposition of the composite matrix 

and/or CNTs.

CNTs reportedly cause pulmonary toxicity, fibrosis, carcinogenicity, mutagenicity, 

immunotoxicity, and cardiovascular toxicity (Aschberger et al. 2010; Donaldson et al. 2010; 

EPA 2011; Schulte et al. 2012; Castranova et al. 2013). Carbon-based nanotubes or 

nanofibers are biopersistent and poorly soluble. Particles with a high aspect ratio are 

reported to cause asbestos-like health effects, including fibrosis and mesothelioma (Schulte 

et al. 2012). Individual fibers are more toxic than agglomerated bundles of fibers, and fiber 

length affects the potency of CNTs for causing mesothelioma in animals (Castranova et al. 

2013). Thin (about 50 nm) multi-walled carbon nanotubes (MWCNTs) are reportedly more 

toxic than thicker (about 150 nm) or tangled MWCNTs (Nagai et al. 2011). However, the 

relationship between health effect and fiber dimensions such as fiber diameter and length 

have not been established (Murashov and Howard 2011; Nagai et al. 2011; Castranova et al. 

2013). Reportedly, the other health effects (e.g., cardiovascular and inflammatory reactions) 

occur regardless of fiber length and diameter. Based on the evidence available, International 

Agency for Research on Cancer Monograph Working Group agreed to classify the 

MWCNT-7 sample as possible carcinogenic to humans (Group 2B) (Grosse et al. 2014).

Enforceable exposure limits for CNTs have not been promulgated in the United States 

(OSHA 2013). Exposure limits become target exposure levels and therefore assist in 

decision-making about the implementation of control measures (e.g., respirator selection per 

the OSHA respirator standard) (OSHA 2010). Various exposure limits have been proposed. 

Some of the proposed exposure limits relevant to this study are listed in Table 1 (Schulte et 

al. 2010; van Broekhuizen et al. 2012; van Broekhuizen and Dorbeck-Jung 2013). The 
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NIOSH recommended exposure limit (REL) for respirable elemental carbon (EC) is 1 

microgram per cubic meter (μg/m3) as an 8-hour time-weighted average (TWA) 

concentration set to minimize respiratory health effects (NIOSH 2013a). The other limits in 

Table 1 are reportedly intended to minimize exposure and are not necessarily substantiated 

by toxicology (Schulte et al. 2010). These limits also include particle number concentrations 

and fiber concentrations (Murashov and Howard 2011).

The suggested limits listed in Table 1 are low and some of them are nonspecific; extraneous 

aerosol generation and ambient air pollution can affect the interpretation of measurements 

(Murashov and Howard 2011; van Broekhuizen et al. 2012). Particle number concentrations 

of 20,000 #/cm3 in urban environments are routine (Shi et al. 2001; Stanier et al. 2004; 

Morawska et al. 2008). Atmospheric EC concentrations were observed and estimated at a 

mean of 0.6 μg/m3 with a standard deviation of 0.7 μg/m3, while high EC concentrations 

were reported to reach 5 μg/m3 (Yu et al. 2004). Vehicular traffic in urban environments can 

contribute to elevated EC concentrations (Lena et al. 2002). Furthermore, process-generated 

aerosols can contribute to the exposure measurements (Ono-Ogasawara et al. 2009). 

Ultrafine aerosols reportedly have been generated by direct-fire gas heaters (Peters et al. 

2006), the carbon brushes on electric motors (Szymczak et al. 2007), welding (Peters et al. 

2008), and grinding (Maynard and Zimmer 2002; Peters et al. 2008). Thus, the contribution 

of extraneous processes and background air pollution to the measured concentration levels 

must be determined to evaluate compliance with the exposure limits stated in Table 1 (van 

Broekhuizen et al. 2012).

Characterizing emissions provides insight to identify air contaminants and the needed 

control strategy for common fabrication and repair activities involving nanomaterial 

substrates. This study was conducted to measure the emission rate of airborne particles from 

cutting and sanding composites containing graphite fibers or CNTs. The tested composites 

are being used as structural components in aviation.

Methods

Test Panels

This study was conducted to characterize the particle emissions from cutting and sanding on 

panels of composite material made from epoxy (977-3, Cytec Industries Inc., Woodland 

Park, NJ) reinforced with graphite fibers (IM7, Hexcel Corporation, Stamford, CT). The 

specification sheet states that the filament diameter is 5.2 micrometers (μm).The fibers are 

dispersed throughout all of three test panels. Specifically, three panels with dimensions 

30.5×30.5 centimeters (cm) were tested:

1. Panel A: This panel consists of IM7 graphite fiber in a cured epoxy resin.

2. Panel B: This panel has the same basic composition as Panel A but with a carbon-

based nonwoven mat as a surface ply. The mat has a fiber diameter of 7.5 μm.

3. Panel C: This panel has the same basic composition as Panel B. However, the mat 

is coated with M-grade MWCNTs (Buckeye Composites, Kettering, OH) and a 
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binder. The M-grade MWCNTs have an average diameter of 50 nm and an average 

length of 1 millimeter (mm).

Sampling System

Ventilated Enclosure—An enclosing hood (Figure 1) was constructed to capture the dust 

generated by cutting and sanding the composite panels. The aerosol was transported to the 

sampling location through a ventilation duct (Figure 2). Emission concentrations or rates 

were estimated as the product of air flow and contaminant mass concentrations. The 

enclosure around the band saw, shown in Figure 3, was constructed from 3.175-cm inner 

diameter polyvinyl chloride (PVC) pipes and 6-mil polyethylene vapor barrier. The 

enclosure included a mixing baffle between the air distribution slots and the exit from the 

enclosure. To create turbulence to mix the aerosol, two 2.54- × 96-cm slots were cut out of 

the mixing baffle about 4 cm from the side.

This test system was intended to promote mixing so that a single point would be a 

representative sample of the aerosol in the duct. The space between the baffle and the 

connection to the 30.5-cm-diameter duct (see Figure 1) should cause the formation of large-

scale eddies that cause mixing (McFarland et al. 1999). Elbows also promote turbulence and 

mixing. The sampling location was 15 duct-diameters downstream of the elbow (see Figure 

2), which should adequately mix the aerosol (Hampl et al. 1986)

As shown in Figure 2, the branch connection just upstream of the portable air exhaust 

system (Novair 2000, Novatek Co., Exton, PA) combined air from the duct system and a 20-

cm branch to which an adjustable blast gate was attached. The procedures outlined in the 

Ventilation Manual was followed to measure the air flow in the duct by two 10-point Pitot 

tube traverses horizontally and vertically (ACGIH 2013). The blast gate was placed on this 

connection to obtain the desired ventilation parameters; it was adjusted to keep the air 

velocity near the sampling nozzles for the Aerodynamic Particle Sizer (APS) and integrated 

filter samples at the desired 7 m/s as measured by the hot wire anemometer (VelociCalc Plus 

model 8386A, TSI Inc., Shoreview, MN).

In-Duct Sampling—Because particles smaller than 0.5 μm have negligible inertia, the 

FMPS drew sampled air by inserting a hose into the duct at the location shown in Figure 2. 

However, particle inertia can affect inlet sampling efficiency for larger particles. The APS 

and integrated samples were collected through isokinetic nozzles that were fabricated from 

brass shim stock (0.03 cm thickness) and sized for a duct velocity of 7 meters per second 

(m/s). The nozzle for the APS had an inlet diameter of 0.39 cm and a length of 5 cm; the 

nozzles for the integrated samples had an inlet diameter of 0.35 cm and a length of 3.3 cm.

The nozzle for the APS sampling was fitted into the copper tubing with an inside diameter 

of 1.92 cm, but the nozzle for the filter samples was compressed into the middle ring of an 

open-faced 25-mm filter. The entire nozzle assembly was soldered together. A tubing or 

conduit bender was used to create a gradual 90° bend so that the ratio of the radius of the 

bend to the tubing diameter (R/D) was 5.7, and the tubing Reynolds number (Re) was 353.
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Gravitational settling losses in the nozzles are unavoidable. Aerosol penetrations through the 

nozzles (transmission efficiency) for particles of 1, 5, and 10 μm were estimated (Brockman 

2011) and summarized in Table 2. The overall transmission efficiency through an elbow at 

R/D of 5.7 and Re of 1,000 was reportedly better than 0.95 (Brockman 2011). Therefore, the 

losses of particles smaller than 10 μm from the APS sampling should be negligible.

Direct-Reading Aerosol Measurements—In the nano-manufacturing workplace, 

direct-reading instruments used in real-time mode can help identify major emission sources 

and to assess the efficiency of control measures. They provide continuous measurements of 

concentrations that can be correlated with the specific production equipment and work 

processes (Ham et al. 2012). Size-dependent particle number concentrations were measured 

with the following two instruments:

1. The Fast Mobility Particle Sizer (FMPS) (Model 3091, TSI Inc., Shoreview, MN) 

uses an array of 32 electrometers to measure electrical mobility diameters between 

5.6 and 560 nm. For a 1-second sample, the detectable number concentration is 

from 100 to 107 #/cm3 at 5.6 nm and 1 to 105 #/cm3 at 560 nm.

2. The Aerodynamic Particle Sizer (APS) (Model 3320, TSI Inc., Shoreview, MN) 

uses particle transit time in an accelerating air flow to measure equivalent optical 

sizes between 0.5 and 20 μm. Its maximum processing rate for aerodynamic sizing 

is larger than 200,000 #/cm3.

The APS and the FMPS were used exclusively for in-duct sampling. Both instruments 

provide number concentrations expressed as #/cm3. Assuming that the aerosol particles are 

spherical with a density (ρ) of 1 g/cm3, mass concentrations can be estimated by the 

following equation.

(1)

where

Cm = mass concentration, mg/m3,

dp,i = midpoint particle diameter, μm, and

Cn,i = number concentration at the instrument channel i of j channels, #/cm3.

The respirable mass of aerosol (Cresp) in channel i can be computed by multiplying Cm,i by 

the fractional amount of respirable aerosol (fresp,i) that is documented in Appendix C of 

ACGIH’s listing of threshold limit values for chemical substances (ACGIH 2012).

(2)

All of the mass emissions measured by the FMPS were assumed to be respirable. For the 

APS data, the mass fraction of respirable aerosol was computed as Cresp/Cm.
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Before data collection, the times on all of the computers and instruments were synchronized. 

Data collection occurred on 2 days. At the start of each day, background samples for EC and 

fibers were collected behind the test enclosure. This location was about 10 m from the 

discharge of the air exhaust system and near the back of the enclosure. These samples 

quantify the ambient concentrations that were present in the study site.

Integrated Filter Samples

Air samples to determine the airborne mass concentration of EC were collected on open-face 

quartz fiber filters using air pumps (Universal Aircheck Sampler, Model 224-PCXR, SKC 

Inc., Eight Four, PA) at a sampling rate of 4 liters per minute (L/min). These 25-mm 

diameter filter samples were analyzed according to NIOSH NMAM 5040 (NIOSH 2003). In 

this study, seven media blanks were processed to determine the limit of detection (LOD) and 

limit of quantitation (LOQ).

Alongside each mass-based air sample, additional air samples were collected on 25-mm 

diameter, open-face mixed cellulose ester filters for CNT/fiber inspection using TEM with 

energy dispersive spectroscopy (EDS) in a manner similar to NIOSH NMAM 7402 (NIOSH 

1994). These samples were also collected with SKC air pumps operated at 4 L/min. Three 3-

mm copper TEM grids from each sample were examined at low magnification to determine 

loading and preparation quality. The counting protocol was every 40 grid openings or 100 

structures. TEM with EDS provides an indication of the relative abundance of 

nanostructures per cm3 of air, as well as other characteristics such as size, shape, chemical 

composition, and degree of agglomeration.

The filter samples for EC and fiber concentration were collected in the duct, on the worker, 

in the enclosure just downstream of the sanding or sawing operation (i.e., source samples), 

and at a background location. The duct samples were taken at the location shown in Figure 2 

using sampling nozzles to obtain isokinetic sampling conditions. The source sample was 

taken just behind the band saw’s table (Figure 3) to help characterize the emissions. The 

background sample was taken during each day of the study. The samples collected on the 

worker were used to evaluate the extent to which air contaminants can leak from the 

enclosure. Because the EC samples were not respirable samples, the results cannot be used 

to evaluate compliance with the exposure limits for CNTs stated in Table 1.

Machining Operations

In this study, cutting and sanding operations for test panels were tested to evaluate the 

emissions of nanomaterials due to these common fabrication and repair processes for 

nanocomposites.

Panel Cutting—A vertical band saw (Model 20, Delta Power Equipment Co., Anderson 

County, SC) was used to cut the composite panels (Figure 3). The band saw blade was 

located about 35 cm inside the enclosure. This band saw had a nominal blade speed of 25.9 

m/s. It was used with a 3.84-m long and 0.0762-cm thick blade. The same blade was used 

for all tests of panel cutting.
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Before using the band saw to cut composites, the aerosol emissions from the band saw were 

characterized by operating it for a period of 10 minutes without cutting. Next, each test 

panel was cut in half and one half-panel from each sample was reserved for the sanding 

experiments. Then, the other half of the panel was repeatedly cut using the band saw, 

resulting in 15-cm-long pieces of composite, which were discarded. The concentrations from 

the first cut of each panel were used to estimate the number of cuts for the test panels to 

generate the same mass loading on filter samples for transmission electron microscopy 

(TEM) analysis. Therefore, eleven cuts were made on Panel A, 11 cuts on Panel B, and 5 

cuts on Panel C. Because of a short time needed for making a single cutting, the worker 

continued the cutting process on each test panel for filter sampling. The sampling pumps 

were turned on a few seconds before cutting the panels and off about 1 minute after the 

cutting had stopped to allow the pulse of particle emissions to pass the in-duct aerosol 

instrumentation.

Panel Sanding—For the sanding experiments, the sander (Model S652D, Ryobi, 

Hiroshima-Ken, Japan, Figure 4) with fresh sand paper was used to sand the 30.5- × 15-cm 

composite panels (Panel A, Panel B, and Panel C1). A second test panel of composite C 

(Panel C2) became available during the sanding tests, and it was also cut to the test size and 

sanded. The sand paper was 100-grit with holes punched in the sand paper using the tool 

provided with the sander. The worker conducted the sanding operation on the work table of 

the band saw machine. The sanding operation was stopped once the substrate of the test 

panel was observed. The start and stop times for the sanding were recorded and used to 

estimate the emission rate. The actual sampling time was about 1 minute longer to allow the 

pulse of higher particle concentration to pass the sampling instruments in the duct.

After conducting the testing, we learned that the sander contained carbon brushes, which are 

reported to be a source of extraneous aerosol generation (Trakumas et al. 2001; Heitbrink 

and Collingwood 2005; Szymczak et al. 2007; Koponen et al. 2009). In electric motors, 

carbon brushes, which are essentially sticks or blocks of graphite, rub against the rotating 

commutator to complete the tool’s power circuit. This inevitably creates dust due to abrasion 

and, perhaps, arcing. The heat and aerosol are discharged through ventilation holes in the 

sander’s handle. To evaluate the emissions from the sander itself, the exhaust duct/air 

cleaner set-up (Figure 2) was reassembled in our ventilation lab after the experimental tests 

conducted at the site. The sander was positioned in an elbow (Figure 4) so that the aerosol 

generated by the sander was captured. The enclosure around the band saw was not 

reconstructed for these lab tests. This lab is air-conditioned and the supplied air passes 

through minimum efficiency reporting value (MERV) 12 filters to maintain low background 

concentrations.

Data Analysis

For composite cutting, the results are presented as emission concentrations (EM). To 

compute the EM, the concentration increase, ΔC, is determined as the difference between the 

in-duct concentration during the sampling time and the average concentration measured 

before the composite was cut (i.e., 5 minutes background concentration measured near the 

back of the enclosure in this study). The panel thicknesses and cut lengths varied so that 
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concentrations were not directly comparable. To remedy this, the EM was normalized based 

upon the volume of composite cut (Vc), air flow (Q), and sampling time (t). Therefore, 

emission concentrations from the process of composite cutting can be determined by:

(3)

where

EM = emission concentration, #/cm3 (for small particles from FMPS data) and mg/cm3 

(for large particles from APS data),

ΔC = concentration increase, #/cm3 or mg/cm3 same as EM,

Q = air flow rate, cm3/s,

t = sampling time, s, and

Vc = (blade thickness)×(length of cut)×(panel thickness), cm3. The values of Vc are 

presented in Table 3.

Unlike the cutting process where large volumes of materials were removed from the test 

panels, the emission rate (ER) for composite sanding is based upon the sanding time. The 

concentrations are determined by the actual sampling time. Emission rates from the sanding 

process were computed by:

(4)

where

ER = emission rate, #/s (for small particles from FMPS data) and mg/s (for large 

particles from APS data), and

ts = sanding time, s.

Results

Ventilation Measurements

The ventilation measurements were made to control airflow in the test system. The hood 

face velocity at the inlet was 1 m/s. The average centerline duct velocity near the sample 

probes was set to 7 m/s, and the exhaust air flow was 0.5 m3/s. Flow visualization with 

smoke tubes did not reveal the presence of eddies that might transport air contaminants out 

of the hood. In general, the particle emissions from test processes should have been 

contained within the test system.

Cutting Process

As shown in Table 4, cutting the panels with a band saw generated very high particle 

number concentrations (between 480,000 and 730,000 #/cm3). Panel C had a particle 

number emission concentration that was 20% higher than Panel A and 53% higher than 

Panel B. For the number size distribution, Panel A had a smaller size (nominal mode of 10 

nm) than Panels B and C (modes at about 35–40 nm) (Figure 5a). The possible reason for 
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this size difference was that Panels B and C were synthesized to enhance their mechanical 

strength—Panel B with a nonwoven mat and Panel C with MWCNTs. As shown in Table 4, 

the mass emission concentration for Panel C was 73 % higher than Panel A and 80% higher 

than Panel B. The shape of the mass distribution was not affected by the inclusion of the 

CNTs as the size distributions had a mode of 4–5 μm (Figure 5b). About half of the aerosol 

mass measured with APS was respirable as shown on the results of Cresp/Cm.

The EC concentrations are presented in Table 5. The EC concentrations at the source during 

cutting of Panel B (93 μg/m3) can be as high as 50 times the background concentration (1.8 

μg/m3). The lowest EC concentration was found from Panel A (35 μg/m3), but it was at least 

20 times higher than the background. This demonstrated that fragments of the larger carbon 

and graphite fibers were contributing to the EC concentration. The EC emission 

concentration was 6.9 mg/cm3 of cut volume for Panel C versus 4.9 mg/cm3 for Panels A 

and 4.1 mg/cm3 for Panel B. However, CNTs or fibers were not detected on any of the 

samples collected in the duct, on the worker, or at the source. Apparently, the EC 

measurements were not necessarily indicative of nanomaterial exposure in this case.

The EC concentrations measured on the worker were less than 1 μg/m3 for all three test 

panels and they were less than the background measured in the plant (Table 5). The 

concentrations measured on the worker were less than 1% of the concentrations measured in 

the duct. The hood appeared to be effective at reducing exposure for the band saw operator.

Sanding Process

As reported in Table 6, particle number concentrations during panel sanding were between 

15,000 and 18,000 #/cm3, compared with the background aerosol concentration at 11,000 

#/cm3. The in-duct sampling system excluding the test enclosure was reassembled in the 

laboratory to evaluate the sander operation; the concentration increase caused by the sander 

alone was 4,500 #/cm3, compared with the laboratory background concentration, which was 

under 150 #/cm3. Expressed as an emission rate, the sander produced 2x109 #/s based on the 

adjusted flow rate. The range of observed emissions from sanding the panels in the study 

site was from 109 to 4.3x109 #/s. The sander accounts for approximately 46% to 100% of 

the particle emissions. The plot of emission rate as a function of particle size in Figure 6a 

also shows that the sander itself contributes most of the particles smaller than about 15 nm. 

For particles larger than 50 nm, no measured emissions were from the sander alone, while 

the sanding operation generated a noticeable number of particles.

Table 6 and Figure 6b present the mass emission rates. As shown in Figure 6b, the mode in 

the mass distribution is between 3 and 4 μm. Panels B and C1 produced mass emission rates 

of 0.32 and 0.36 mg/s, but the mass emission rate for Panel A was 0.04 mg/s and Panel C2 

was 0.02 mg/s. The reason for the observed emission rate difference is not known. However, 

no mechanism existed to control the force applied to the sander, and this can affect the 

frictional force between the surface and the sander (Ringlein and Robbins 2004; Gheerardyn 

et al. 2010). According the APS data (Table 6), the range of mass fractions of respirable 

aerosol (Cresp/Cm) from sanding test panels was from 0.58 to 0.64.
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The TEM results are summarized in Table 7. Fibers were detected only when Panels C1 and 

C2 were sanded, but they were not detected on the personal samples. The fiber number 

concentrations in the duct were 290 fibers per cubic meter (f/cm3) for Panel C1 and 4.3 

f/cm3 for Panel C2; the emission rates were 1.9X108 f/s for Panel C1 and 2.8 X106 f/s for 

Panel C2. As shown in Figure 7, these fibers had a length shorter than 5 μm, which is the 

length specified for asbestos fibers in occupational exposure limits (ACGIH 2012). The 

CNTs and fibers used for toxicological testing were typically reported to be fiber bundles 

(Murray et al. 2012). In our study, the released fibers mostly existed individually (Figure 7a 

c and 7e). However, some fibers protruded from the particles (Figure 7d and 7f). The extent 

to which this fiber concentration and emission rate pose a hazard is unclear as the 

relationship between CNT shape (e.g., diameter, length, bundle size) and health hazard is 

not known.

The EC concentrations measured during the sanding operations appeared to be minimal 

(Table 8). A background sample collected for EC analysis during all of the sanding 

operations was 0.1 μg/m3. The EC emission rate during sanding of Panel A was 1.63 μg/s 

and Panel C1 was 2.51 μg/s, both higher than those for Panels B and C2. These EC results 

were different from the TEM data (Table 7) indicating that fiber emissions found from 

Panels C1 and C2 but not from Panels A and B. The possible reason of no correlation 

between the EC measurement and the observed fibers is due to different top coating 

materials on each test panels: Panel A with graphite fibers, Panel B with a nonwoven mat, 

and Panels C1 and C2 with MWCNTs. The concentrations measured in the worker breathing 

zone were below the NIOSH REL for CNTs of 1 μg/m3 measured as respirable EC, except 

for Panel B (1.62 μg/m3). The higher EC concentration generated from sanding Panel B 

could be due to its softer surface coating. Panel B was thicker than other test panels (Table 

3) but its surface was removed more easily than others. However, the induct sampling did 

not show consistent high EC concentrations from sanding Panel B. Again, the EC from the 

graphite fibers may be contributing to the EC concentrations and obscuring the EC 

concentrations resulting from the CNTs.

Discussion

The available data generally support the conclusion that the ventilated enclosure efficiently 

captured the debris generated by cutting and sanding the composite panels. Thus the 

emissions were completely captured enabling a characterization of emissions from 

machining nanocomposites. Flow visualization suggested that the ventilation system was 

separating the worker from the aerosol generated within the enclosure. The aerosol 

measurement also showed that worker exposure was not different than background air 

pollution, and the concentration measured on the worker was much less than the 

concentration in the duct.

To compare measurements with suggested exposure limits for engineered nanomaterials 

(e.g., Table 1), it is necessary to evaluate whether exposure measurements are due to 

engineered nanomaterials or extraneous aerosol sources (van Broekhuizen and Dorbeck-

Jung 2013). As identified by TEM data, the number concentration of CNTs from panel 

sanding was less than 290 fibers/cm3. In contrast, the number concentration of aerosol 
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generated by the sander was about 4.5x103 particles/cm3; likely from the motor’s carbon 

brushes. Furthermore, the fiber concentration was much lower than the number 

concentration measured by FMPS reported in Table 4 and Table 6. Although number 

concentrations generated during band saw cutting were 105 to 106 particles/cm3 (Table 4) 

and EC concentrations were 50 to 84 μg/m3 (Table 5), TEM data did not reveal the presence 

of CNTs or any fibers. For cutting with the band saw, the observed concentrations of 

extraneous aerosol and EC were much higher than the provisional occupational exposure 

limits stated in Table 1. In this study, TEM analysis seemed a better tool to identify real 

concentrations of nanomaterials. Cleary, one needs to consider the extent to which 

measuring concentrations are actually nanomaterials for characterizing worker exposures.

Sanding the composite Panel C, which contained CNTs, generated measurable fiber 

concentrations. The extent of the hazard is not known as relevant exposure metrics have not 

been developed. However, careful and aggressive control of exposure to CNTs is 

recommended (Castranova et al. 2013). The enclosure used in this study effectively 

contained the emissions, but it may not be suitable for all applications. The band saw used in 

this study had an exhaust take-off that could be attached to a vacuum cleaner; however, air 

flow recommendations are not available. The ACGIH Ventilation Manual has ventilation 

recommendations for band saws (ACGIH 2013). Orbital sanders frequently have exhaust 

take-offs for drawing air through holes in the sanding pads and sand paper. For orbital 

sanders, an exhaust flow rate of 1 m3/min can provide a 90% reduction in emissions when 

an appropriate vacuum cleaner is used to provide airflow and dust collection (Thorpe and 

Brown 1994, 1995). The dust collection bags provided with sanders and vacuum cleaners 

may be ineffective as dust control measures and in providing adequate airflow and air 

cleaning. In using vacuum cleaners, air flow maintenance needs to be addressed as some 

vacuum cleaners lose noticeable amounts of air flow as debris accumulates in the vacuum 

cleaner (Heitbrink and Santalla-Elias 2009). In addition to ventilation, water can sometimes 

be used to suppress dust generation. However, this requires efforts to develop application 

methods and to address electrical safety issues.

Conclusions

Sanding composites containing CNTs released fiber emissions while cutting these 

composites on a band saw did not generate noticeable quantities of fiber emissions. Both 

operations produced emissions of EC and ultrafine particles that are not specific to CNTs. 

The tested composites contained graphite and carbon fibers that caused most of the 

measured emissions of EC. Cutting on the band saw created extremely high ultrafine aerosol 

number concentrations. The sander motor appeared to generate large quantities of ultrafine 

aerosol. Adjusting exposure measurements for these extraneous aerosol sources would 

involve large adjustments that may obscure and overwhelm exposures that are excessive in 

terms of draft or provisional exposure limits for CNTs. Use of the EC mass data to 

determine possible occupational exposure to CNTs needs to be verified with TEM since 

other sources of EC (such as carbon composites) can contribute to the mass loading. 

According to the documentation for the NIOSH REL, other potential EC exposures may 

interfere with the interpretation of worker CNT exposure (NIOSH 2013a). Clearly, the hood 

used in this study effectively contained the emissions, but this enclosure may not be suitable 
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in all applications. Local exhaust ventilation can be used to capture and collect the aerosol 

and debris generated by the band saw. Useful information for controlling fugitive 

nanomaterials in the workplace is available from some published documents (SWA 2009; 

HSE 2011; ISO 2013; NIOSH 2013b).
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Figure 1. 
Front and side views of the enclosure around the band saw. Top half of frame and space 

between PVC and the band saw is wrapped in 6-mil polyethylene vapor barrier, forming an 

enclosure. All dimensions are in centimeters.
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Figure 2. 
Plan view showing relationship between enclosure, duct, sampling locations and portable air 

exhaust system.
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Figure 3. 
Enclosed band saw.
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Figure 4. 
The sander at the inlet to the duct.
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Figure 5. 
Size dependent emission rates based on (a) FMPS data and (b) APS data for cutting test 

panels.
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Figure 6. 
Size dependent emission rates based on (a) FMPS data and (b) APS data for sanding test 

panels.
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Figure 7. 
TEM images of fibers generated from sanding Panel C containing CNTs.
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Table 1

Provisional or draft exposure limit recommendations for engineered nanomaterials.

Description Limit Source of recommendation

Baytubes® MWCNTs 0.05 mg/m3 (Bayer MaterialScience 2010)

CNTs measured as EC 1 μg/m3 as an
8-hour TWA

(NIOSH 2013)

Nanocyl CNTs 2.5 μg/m3 (Nanocyl 2009)

Biopersistent granular nanomaterials in the range 
of 1–100 nm with a density larger than 6000 
kg/m3

20,000 #/cm3

Reference value for nanoparticles (van 
Broekhuizen et al. 2012; van Broekhuizen and 
Dorbeck-Jung 2013)

Biopersistent granular and fiber form 
nanomaterials in the range of 1–100 nm with 
density less than 6000 kg/m3

40,000 #/cm3

Rigid, biopersistent nanofibres that have effects 
similar to those of asbestos are not excluded. This 
included carbon nanotubes.

0.01 f/cm3 for fibers > 
5 μm
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Table 2

Estimated aerosol transmission efficiencies for the APS and filter samples.

dp (μm)

Transmission efficiency

APS Filter samples

1 0.997 0.997

5 0.950 0.950

10 0.880 0.880
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Table 3

Dimensions of the test panels and calculated volumes of cut (Vc) for the tests.

Test panel Length x width (cm) Thickness (cm) Vc (cm3)

A 30.5 × 30.5 0.21 3.106

B 30.5 × 30.5 0.45 6.787

C 30.5 × 30.5 0.28 2.292
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Table 5

Results of filter sampling from cutting test panels.

Test Panel

EC concentration* (μg/m3)
EC emission concentration based on volume of cut (mg/cm3)

Worker Source Duct

A 0.3** 35 50 4.9

B 0.8** 93 84 4.1

C < 0.7 54 75 6.9

*
Background EC concentration = 1.8 μg/m3.

**
between the LOD (0.2 μg/filter) and LOQ (0.52 μg/filter).
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Table 7

Summary of fiber concentrations detected by TEM during panel sanding.

Test Panel

Fiber concentration (f/cm3)
Fiber emission rate (f/s)

Source Duct

A 1 fiber detected ND* –

B 1 fiber detected ND –

C1 270 290 1.91×108

C2 11 4.3 2.83×106

*
non-detectable if concentration less than 0.2 f/cm3. Fiber concentrations were below the LOD of 0.2 f/cm3 on the worker.
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Table 8

Results of filter sampling from sanding test panels.

Test Panel

EC concentration* (μg/m3)
EC emission rate based on sampling time (μg/s)

Worker Source Duct

A 0.80** 15.58 2.95 1.63

B 1.62 2.69 <0.4 < 0.22

C1 <0.5 7.50 3.85 2.51

C2 <0.5 <0.5 0.70** 0.39**

*
Background EC concentration = 0.1 μg/m3.

**
Between the LOD (0.2 μg/filter) and LOQ (0.52 μg/filter).
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