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Abstract

Careful fidelity monitoring and feedback are critical to implementing effective interventions. A 

wide range of procedures exist to assess fidelity; most are derived from observational assessments 

(Schoenwald et al, 2013). However, these fidelity measures are resource intensive for research 

teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host 

organization to rate when the program is implemented on a large scale. We present a first step 

towards automated processing of linguistic patterns in fidelity monitoring of a behavioral 

intervention using an innovative mixed methods approach to fidelity assessment that uses rule-

based, computational linguistics to overcome major resource burdens. Data come from an 

effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered 

preventive intervention found to be efficacious in reducing conduct problems, substance use and 

HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on 

“joining,” which measures the quality of the working alliance of the facilitator with the family. 

Quantitative assessments of reliability are provided. Kappa scores between a human rater and a 

machine rater for the new method for measuring joining reached .83. Early findings suggest that 

this approach can reduce the high cost of fidelity measurement and the time delay between fidelity 

assessment and feedback to facilitators; it also has the potential for improving the quality of 

intervention fidelity ratings.

Introduction

A current finding in the emerging field of implementation science (Chambers 2012; 

Landsverk et al., 2012; Aarons, Hurlburt, & Horwitz, 2011) is that evidence-based 

interventions need to be delivered with precision, or fidelity, in order to achieve the level of 
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effects in large-scale implementation that were previously obtained in efficacy or 

effectiveness research trials (Durlak & DuPre, 2008; Allen, Linnan, & Emmons, 2012). 

Fidelity monitoring and feedback are critical parts of implementing effective behavioral 

interventions (Poduska et al., 2009) for without these we cannot expect acceptable delivery 

or intended outcome of high quality programs (Schoenwald et al., 2011). These challenges 

are central to implementation research, which involves “the use of strategies to adopt and 

integrate evidence-based health interventions and change practice patterns within specific 

settings” (Chambers 2008). Key determinants of the fidelity assessment process in practice 

includes the capacity of community based organizations, or community or state level service 

agencies to use such a measure for monitoring and feedback (Landsverk et al., 2012). Thus, 

fidelity measurement systems must be both readily available and responsive to the capacity 

of state level agencies and community service providers engaged in implementation.

In general terms, fidelity is the extent to which an intervention is delivered as intended. 

Schoenwald and colleagues (2011) describe fidelity as composed of three elements: 

adherence (interventionist adherence to an intervention), competence (interventionist 

competence), and differentiation (intervention differentiation). There is an overabundance of 

fidelity rating systems now being used in many behavioral interventions delivered in mental 

health and other social service settings (Schoenwald et al., 2011). A recent review of the 

fidelity measurement literature (between 1998 and 2008) identified 249 unique adherence 

measurement methods in 304 studies of psychosocial interventions (Schoenwald & Garland, 

2013). These methods rely on direct observation of supervisors, review of videotapes and 

audiotapes, and even self-reports of the interventionist or facilitator. Most of these methods 

require a major commitment in resources and produce a time lag from the time that the 

rating takes place and the time the feedback is given to the facilitator.

In the prevention field, the host organization for such program implementation is often a 

school or community based organization, and while such prevention programs may support 

its overall mission, e.g. a drug abuse prevention program in schools, the host organization 

often does not have sufficient support for fidelity monitoring and supervision during 

implementation. This contrasts with effectiveness trial research projects in which a research 

partner or the program's purveyor generally serves to provide this monitoring, feedback, and 

supervision support. Fidelity monitoring in an effectiveness trial would routinely be paid by 

grant funds that pay for the trial. However, for implementation research or practice, the 

fidelity monitoring and feedback system would only be sustainable if supported outside of 

the grant funding mechanisms. When faced with the choice, host organizations are more 

likely to use methods that match the available resources, which often prohibit full fidelity 

monitoring, and as a consequence they often times fail to achieve the desired outcomes in 

the populations they serve (S. K. Schoenwald et al., 2008; Fixsen, Naoom, Blase, Friedman, 

& Wallace, 2005; Real & Poole, 2005). Thus, for research on implementation, we would 

ultimately seek to develop cost-effective and accurate fidelity monitoring systems that can 

easily be embedded within the available community or service systems. Hanson et al. (2013) 

found that implementation interventionists recognize the difficulty in maintaining fidelity 

and acknowledge the high resource intensity of effective intervention implementation, 

leading them to advocate for the increased use of technology to monitor and reduce drift. In 
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addition to accurate fidelity monitoring, usability requires that we would have a minimum 

time lag between fidelity rating and feedback to the facilitator.

Brown and colleagues (2013) propose exploring innovative methodology, such as the use of 

computational technology, to address these and other fundamental challenges in 

implementation. Our main objective in this paper is to examine whether computational 

approaches, and particularly computational linguistics, can be used to support automated 

monitoring of fidelity data in an effectiveness trial of Familias Unidas, an evidence-based 

preventive intervention being delivered via school counselors to Hispanic families (Prado & 

Pantin, 2011). Ours is a proof of concept approach, examining the extent to which one 

computational component applied to videotapes from the Familias Unidas family-based, 

adolescent substance abuse and HIV prevention intervention, shows sufficient reliability to 

recommend further work. We specifically examine whether machine-scored (i.e., computer 

generated) fidelity scores are reliable against human-scored fidelity ratings.

We first describe the Familias Unidas preventive intervention and its evaluation in an 

effectiveness trial. We then describe the specific challenge of obtaining cost effective, valid, 

and reliable fidelity ratings in Familias Unidas. In this paper we focus on one key aspect of 

Familias Unidas’ assessed fidelity called joining, a characteristic of competence that is 

described below. We then develop a micro-level coding system to assess facilitator joining 

quality that can be assessed by both humans and through a computer algorithm, and compare 

the reliability of machine versus human coding on this construct. Because computational 

approaches, including computational linguistics, are likely to be unfamiliar to many readers, 

we provide a short background to this field, followed by a rationale explicating why 

computational approaches could be useful for fidelity monitoring. Further, we relate these 

computational approaches to mixed methods research. Finally, we describe what other 

components would be required for a fully developed automated fidelity rating system, as 

well as what challenges such a system would face in wide-scale implementation.

Familias Unidas Effectiveness trial: Joining, Facilitators

Familias Unidas (Prado & Pantin, 2011) is a Hispanic specific, family-based preventive 

intervention guided by eco-developmental theory (Szapocznik & Coatsworth, 1999). The 

intervention is designed to reduce risk for behavioral problems, substance use, and risky 

sexual behaviors in Hispanic adolescents by improving family support of the adolescent, 

parental involvement, parental monitoring of peer and school activities, as well as parent and 

adolescent effective communication. The Familias Unidas intervention has been evaluated in 

three completed randomized clinical trials and found to be efficacious in reducing substance 

use and sexual risk behavior among Hispanic youth (Pantin, Schwartz, Sullivan, Prado, & 

Szapocznik, 2004; Pantin et al. 2009; Prado et al., 2007; Prado et al., 2012). Familias Unidas 

is delivered through eight family-centered, multi-parent groups and through four family 

visits that place parents in charge and in a role that can promote change in their families and 

adolescents.

In these sessions, parents most often communicate in Spanish while the adolescent often 

converses in English, so facilitators often speak in both Spanish and English in the same 

session. In order to assess implementation fidelity in the Familias Unidas program, a fidelity 
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rating system of randomly selected videotapes of family visits was implemented (Prado, 

Pantin, Schwartz, Lupei, & Szapocznik, 2006). This rating system has been used in the 

previous trials (Prado et al., 2007). To assess fidelity, 10% of all family visits (N = 111) in 

the effectiveness trial were selected randomly for videotape rating by adherence raters. 

Raters used a standard adherence form to record the presence or absence of prescribed (e.g., 

joining) and proscribed (e.g., acts as a switchboard and/or speaks for long periods of time) 

facilitator behaviors. Adherence raters were trained to achieve an interrater reliability 

(intraclass correlation) of .80 or above to a senior Familias Unidas rater, the “gold standard.” 

Interrater reliability between the adherence raters and with the Gold Standard was 

reevaluated monthly to control for rating drift, and any adherence problems identified by 

raters were discussed with the Principal Investigator and Clinical Supervisor in weekly 

intervention integrity meetings. When adherence ratings fell below 70% for 2 out of 4 

consecutively rated sessions, the information was brought to the attention of the clinical 

supervisor who met with the facilitators and actively retrained.

Familias Unidas and the Joining Process

In this paper we discuss automating one component of “joining,” a key dimension of 

Familias Unidas’ fidelity assessment. The joining process in the field of behavioral mental 

health, also commonly referred to as the therapeutic alliance or working alliance (Minuchin, 

1974), is considered a strong predictor of treatment adherence and outcome (Barber et al, 

2006). Minuchin and Fishman (1981) elegantly described “joining” as “the glue that holds 

the system [family/individual-interventionist relationship] together.” It is of vital importance 

to effectively join and form a strong therapeutic system in order to affect change in the 

family or individual. Research on the statistical power of the joining process to engage 

individuals and families into treatment reflects more than 1000 findings that support this 

notion (Orlinsky, Ronnestad, & Willutski, 2004).

In the Familias Unidas intervention, joining includes the following components: (a) 

Facilitator communicates acceptance, respect, and trust to all family members; (b) Facilitator 

uses humor; (c) Facilitator encourages family to disclose anecdotes; (d) Facilitator addresses 

individuals’ statements/concerns; (e) Facilitator asks an open-ended question; (f) Facilitator 

validates family members. Joining is measured on a numerical score (0 to 6) for each 30-

minute segment of the Familias Unidas family visits. In an efficacy study, Prado et al. found 

that joining was directly linked to engagement and retention of families into the intervention 

(Prado, Pantin, Schwartz, Lupei, & Szapocznik, 2006). Consequently, the Familias Unidas 

intervention places strong emphasis on joining as a key component of the fidelity rating 

process, closely monitoring facilitators’ progress in engaging and retaining families into the 

intervention.

Challenges in Fidelity Assessment of Familias Unidas

While considering the benefits of computational linguistics in fidelity monitoring, we have 

three motivating principles to guide our computational design: cost, speed, and rating 

accuracy. In terms of costs, standard fidelity coding of each 45-minute family session of the 

Familias Unidas intervention takes approximately two hours to complete by the traditional 

human based method. In the current trial there were 376 families scheduled for 4 family 
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visits. Thus, the direct cost for coding would exceed $90,000. Such costs would be 

prohibitive if implemented in a public school system.

With regard to speed, even when financial resources are available for a system based 

entirely on human effort, there is considerable time investment required for rating training, 

calibration, and other tasks. One major recurrent time delay is that between the fidelity 

assessment of a session and the feedback given to each Familias Unidas facilitator. In the 

current effectiveness trial, fidelity ratings are typically completed within one week following 

the intervention session. The feedback is then given to the supervisor, who compiles it with 

other measures of adherence such as attendance and clinical issues, and delivers the 

feedback to facilitators during weekly supervision sessions. Several weeks may elapse by 

the time facilitators receive clinical feedback on a particular intervention session, at which 

point additional sessions may have occurred that repeat the same clinical delivery concerns. 

A computational based approach has the potential to reduce this time lag, narrowing the gap 

closer towards real time, thus allowing session facilitators to receive feedback quickly and 

potentially thus rectify fidelity concerns.

In terms of rating accuracy, coders can drift in their ratings over time. This rating bias is 

created because the fidelity raters may not be chosen with equal rigor or may not have the 

same level of supervision as that within the research teams. In addition, standard methods of 

measuring fidelity may be biased in the dissemination trials, because the raters may be close 

colleagues of the facilitators and may or may not feel comfortable with rating their peers. A 

computational approach removes this potential bias introduced in the intervention 

dissemination at the school districts or other community settings.

What can computational linguistics contribute to Fidelity Monitoring?

Computational linguistics allows us to recognize spoken words (Holmes and Holmes 2002), 

ask questions in natural language to search databases (Popescu, Etzioni, & Kautz, 2003), and 

create approximate translations of text (Lopez 2008) using computer algorithms that can 

recognize linguistic patterns, a process that previously required human level intelligence. In 

this paper we present our findings using a system called FARE (Fidelity Automatic RatEr) 

as a proof of concept for automating measurement of joining in the Familias Unidas 

intervention. Joining is a complex interactional behavior to assess; raters are trained to pay 

attention to verbal as well as nonverbal interactions. While nonverbal cues can be detected 

by computational means (Inoue, Ogihara, Hanada, & Furuyama, 2010), the current approach 

is limited to transcribed speech of the facilitator only, thus severely limiting the information 

available for the computational algorithm, but making the computational task sufficiently 

“simple” to attack even after taking account of the fact that a facilitator may speak in both 

Spanish and English, sometimes in the same sentence. To the best of our knowledge, this is 

the first work that uses speech analysis, knowledge engineering, and computational 

linguistics to measure a component of fidelity.

In this single component of FARE that is described here, the computational system uses a 

transcribed text to rate facilitators’ utterances (in Spanish and/or English) as input, then 

applies a decision tree algorithm that categorizes linguistic patterns associated with high or 

low fidelity on the joining dimension. These linguistic patterns were developed by a process 
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of knowledge engineering alongside experts on fidelity to the Familias Unidas intervention. 

While some human based fidelity ratings are coarse, with only a single measure per session, 

the ratings obtained with FARE are more akin to micro-coding of each spoken contribution 

made by the facilitator.

What does this computational approach have to do with mixed methods?

Computational approaches are often seen as purely quantitative, i.e., manipulating numbers. 

But computers also manipulate symbols through well-defined rules (Huth 2004). It is this 

second use that we describe as we examine fidelity assessment. Symbol manipulation 

underlies all of natural language processing (NLP), and as the objective is to extract 

meaning from sentences, this process more closely resembles ethnographic and other types 

of qualitative analysis that imposes rules so that reliable meaning can be abstracted. Indeed, 

one could view a computational algorithm that is based on rules to extract information about 

“fidelity” as a type of qualitative analysis of written text where all human judgment is 

replaced by clearly stated rules that are followed to the letter. By combining these 

algorithmic approaches with quantitative analysis of reliability, the methods discussed in 

this paper represent a mixed methods approach (Palinkas et al., 2011).

Additionally, several methods described in this paper that rely solely on human effort can be 

considered qualitative methods. The first of these is the elicitation of critical elements 

behind fidelity, which were obtained through interviews with the Familias Unidas efficacy 

and effectiveness trials clinical supervisor and the Familias Unidas program developer. 

While we did not follow formal procedures for taping and extracting these interviews, the 

method used did closely follow knowledge extraction procedures, an engineering procedure 

often used to develop a class of artificial intelligence known as expert systems 

(Bahrammirzaee 2010).

Methods

Population and Sampling

Data for this project are based on an ongoing randomized trial evaluating the relative 

effectiveness of the Familias Unidas preventive intervention (R01DA025192, NIDA) (Prado 

et al., 2012; Prado et al., 2013; Prado et al. 2007). In this effectiveness trial, the intervention 

is delivered by school counselors who serve as facilitators and deliver the program to 

parents and adolescents, with training and supervision by the research team. School 

counselors carry out the delivery of this intervention outside of their normal responsibilities 

in the school system. Seven hundred and forty-six parent-child dyads were recruited and 

randomized to one of two study arms, Familias Unidas (N=376) or control (N=370). 

Participants in this study were assessed at baseline, randomized, and reassessed at 6 and 18 

months, with the last assessment scheduled to occur at 30 months post baseline. For the 

intervention group, the Familias Unidas program was delivered through 8 parent group 

sessions and 4 family visits. A total of 24 groups consisting of 15 parents on average were 

conducted over the course of two years. All family visits and parent group sessions were led 

by one of 27 trained Familias Unidas facilitators.
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During the family visits, parents had an opportunity to practice the skills learned during 

group sessions with the help of the facilitator. Family visits were videotaped with 

participants’ consent and lasted approximately 45 minutes to 1 hour. Fidelity scores on 

several dimensions were obtained by viewing the first half-hour of these tapes and rating the 

facilitator on 7-point scales, described in more detail below. One of the dimensions scored is 

joining, and we refer to these scores as traditional joining scores to distinguish them from 

the micro-level joining scores we developed here. Traditional joining scores, which are 

described in more detail below, were available on facilitators conducting 111 family visits. 

For the 88 families assessed in these 111 family sessions, the average total intervention 

attendance (8 parent group sessions and 4 family visits) was 9, (SD= 2.5).

Familias Unidas Video Selection—To conduct this automated fidelity study, we 

selected 33 of the 111 family visit videos for further coding by humans and machine using a 

new micro level coding system for joining. We selected this subset of family visits to 

maximize the variation across the following five dimensions: (1) fidelity rating for joining 

dimension in the first thirty minute segment of video (score range 0 to 6), (2) visit placement 

in four session sequence (1-4), (3) Familias Unidas facilitator conducting the family visit, 

(4) number of individuals in the session (between two and five people attending the session 

plus the facilitator), and (5) the language spoken in session (Spanish only, English only, or 

Spanish and English). A total of 20 out of 27 facilitators and 31 of 88 parent-child dyads are 

represented. In this subset of 33 family visits, the average total attendance (8 parent group 

sessions and 4 family visits) was 8.8 (SD= 2.8), and the family visit joining score average 

was 4 (SD=.6). Thus, this sample is representative of the full sample of visits.

Fidelity Rated by Humans

Traditional Joining Ratings

Session-Level Coding: The traditional system for rating fidelity in Familias Unidas was 

used to maintain adherence to the Familias Unidas program and for supervision during the 

effectiveness trial. Four paid, master's level research assistants rated each video in the data 

set for the prescribed behavior of the facilitator. In order to measure fidelity to the Familias 

Unidas model, the raters were trained extensively by a senior Familias Unidas expert rater 

(~5 years rating experience) for a total of 3 days, with several supervised rating sessions. 

The raters rated this prescribed facilitator behavior (i.e., joining) on an extensiveness/quality 

rating ranging from “0 = not at all/very poor” to “6 = extensively/excellent.” Videos were 

rated in 30-minute segments. Raters had to achieve an inter-reliability (intraclass 

correlation) of .80 or greater with the senior rater before rating sessions on their own. The 

average family visit joining score was 4, (SD=.6). Thus, these traditional joining ratings 

were nearly all in the good to excellent range.

Human Utterance-Level Coding of Joining—In contrast to the more molar, session-

level, traditional joining score described above, an utterance-level joining manual for the 

Familias Unidas intervention was developed with direction from the Familias Unidas 

program developer and the Familias Unidas clinical supervisor for the effectiveness trials so 

that it would be similar to and theoretically comparable to the traditional session level 

joining measure, but applicable to each facilitator utterance. An utterance is defined as a 
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sequence of contiguous sentences voiced by the facilitator and separated by verbalizations 

from family members. These utterance scores could then be combined over the session to 

make a more molar score. We developed coding instructions for humans to assess the 

quality of these utterances in an instruction manual similar to the traditional manual that 

assesses the prescribed behavior of the facilitator. Instead of a single score on each fidelity 

dimension per 30-minute segment in the traditional manual, we instructed coders to assess 

each utterance of the facilitator and assign a fidelity score. This molecular coding of the 

intervention's fidelity has the potential to yield a finer detail of behavior and pinpoint 

correctives during supervision (Busch, Kanter, Callaghan, Baruch 2009).

The first step in utterance level coding was to create written transcripts. While 

computational approaches can be used to generate written transcripts, and this will 

ultimately be included in the FARE system, we used human generated transcriptions during 

this proof of concept. The data set of 33 videos was transcribed by a paid master's level 

research assistant fluent in both Spanish and English. This person was instructed to 

transcribe speech from all individuals that appeared in the first thirty-minute segment of the 

family visit. The transcriber was instructed to ignore repeated words and to write words as 

intended by the speaker, a standard procedure in human transcriptions so that each word is 

orthographically correct (Gallo 2010; Gallo 2007). Transcripts were divided into utterances, 

which are assemblies of contiguous sentences by one speaker. A total of 86,000 words 

(4,300 utterances) were transcribed. An average session contained 2,618 words and 128 

utterances. An average facilitator spoke for 60 utterances; an average parent spoke for 46 

utterances; and an average adolescent spoke for 22 utterances. There were a total of 2052 

utterances spoken by the facilitator.

We focus in this paper on the joining sub-dimension (e) Facilitator asks an open-ended 

question; open-endedness invites families to express feelings and thoughts freely, enhances 

engagement and promotes deeper conversations rather than closed-end questions or 

statements (Overholser 1995). Clinical knowledge informed systematic rules on how to rate 

each utterance; i.e., distinguishing what constitutes an open-ended question. Each utterance 

was rated accordingly as one of the following: Not Relevant, Improvable, or Good. A 

statement is labeled Not Relevant under this dimension if the utterance is a factual 

statement or a rhetorical question (e.g. “Yo soy nueva aqui” – I am new here; “¿Qué piensas 

de este clima? Por qué a mi no me gusta” – What do you think of this weather? Because I 

don't like it). A statement is labeled Improvable if it contains one of the following: “Dónde, 

Cuándo, Cuál, Cuántas, Con qué frencuencia” – Where, When, Which, How many, How 

often (e.g “¿Dónde jugaste basket?” – Where did you play basketball?; “¿Qué tan frenquente 

juegas basket?” – How frequently do you play basketball?; “¿Cuál de tus amigos te gusta 

mas?” – Which of your friends do you like best?). An utterance is rated as Good if it is an 

open-ended question. It can contain words such as “Qué,Cómo,Por qué” – How, What, Why 

(e.g. “¿Qué piensas sobre lo que tu hija hizo?” – What do you think about what your 

daughter did?).
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Machine Utterance-Level Coding of Joining

Automated coding for Good, or open-ended questions, was obtained at the utterance level 

using the same input, i.e., transcripts of facilitator speech. We developed a system based on 

expert knowledge that uses linguistic patterns related to joining. We used 193 utterances 

(9% of 2052 total facilitator utterances) to develop the rules of the system. We developed a 

decision tree that assigns each utterance a score for open-ended questions. This decision tree 

was developed based on the patterns uncovered by the expert clinicians involved in the 

project. Figure 1 displays the decision tree for the joining sub-dimension of open-ended 

questions. The top diamond is the entry point, and each diamond represents a query to 

categorize the utterance under review to be assigned one of the three possible labels (Not 

Relevant, Improvable, Good). The query is based on a regular expression implemented in 

the Perl programming language (Wall, Christiansen, & Orwant 2000). A regular expression 

is recognized as a What/Why question, for example, by recognizing punctuation that 

signifies a question and recognizing question keywords such as “Por qué/Qué” – What/Why. 

Once we recognized those utterances as What/Why questions, we coded this utterance as 

Good.

Analysis

Ratings—Our analyses involved reliability comparisons of 1) human-machine coding of 

human utterance-level assessments of open-ended questions, 2) human-human coding of 

these same utterance-level assessments; and 3) comparison of these same utterance-level 

scores that are aggregated at the session level.

Reliability of Utterance Level Coding—In order to establish reliability in our coding at 

the utterance level, we computed kappa scores (Carletta 1996) among the two humans and 

machine rater using three-levels (Not Relevant, Improvable, Good). We also report 

reliability at a two-level scale where we merged Improvable and Good categories together. 

A kappa score allows us to measure how much the agreement between the labels assigned 

by two different raters exceeds that of chance agreement.

Correlations between raters at the session level—In practice we would aggregate 

the scores from the micro level (utterance-level) to the molar level (session-level). Thus, we 

tested reliability of the computed-based rater against human raters by using Pearson 

correlations to compare two types of aggregate indicators. The first indicator type involved 

the total number of utterances that were relevant to open-ended questions (i.e. binary, 

improvable, and good questions and their sums). The second indicator type involves a 

quality score equal to a weighted average where binary questions were scored 0, improvable 

questions were scored 1 and good questions were scored 2.

Results

Utterance-Level Coding

In the 33 transcripts that were coded by a human, the average session contains 1484 Not 

Relevant, 375 Improvable, and 158 Good utterance levels. Similarly, there were 1262 Not 
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Relevant, 408 Improvable, and 304 Good utterance labels identified by the machine rater. 

Thus, the machine rating had a distribution similar to a human coder.

Reliability of Utterance Level Coding

We computed the agreement among human and machine raters first for the three level 

coding: Not Relevant, Improvable, Good. The kappa between human and the machine 

ratings was low, .43. However, on the two-level score where Improvable and Good were 

combined, reliability was much higher. The kappa between human rater and machine rater 

was .83. Regarding the aggregated scores, the correlation between human and machine 

raters was .84 (total number of utterances were 2052).

We also evaluated our system by finding the correlation in two different ways shown in 

Table 1, which focuses on different ways to decompose the total counts of the different 

categories and Table 2, which focuses on overall quality measures. In the first table, we 

added the label of each utterance to obtain a session level sum for all categories, and 

compared their relationship between raters using the Pearson correlation. For instance, the 

correlation between the sum of all questions for the human rater 1 and rater 2 is .95. 

Correlations between machine and human ratings were acceptably high, above .77, for the 

sum across all questions or relevant questions, but a few correlations were low when looking 

at each individual category. Figure 2 shows that the number of questions identified in a 

session by the machine are almost never less than that for either human rater.

In Table 2, we computed the total quality score which is equal to the sum of all categories as 

follows: binary questions times zero, plus improvable questions times one, plus good 

questions times two.

In Table 2 we found that total quality scores between the machine and humans are strongly 

correlated although not as high as they are between humans (based on a small number of 

sessions). However, the averaged quality scores for the machine had much low reliability 

than they did for the total quality scores or the two humans. In Figure 3 (A) we note the 

strong correlation of total quality score between human raters, and in a similar fashion, 

Figure 3 (B) shows the strong correlation between each human rater with the machine rater.

Discussion

In this paper we presented an utterance level measure of open-ended questioning, a major 

component of joining that can be coded computationally. We tested whether a machine 

rating of open-ended questioning could compare with similar human ratings on this same 

utterance level measure. Machine ratings of relevant utterances were reliable when 

compared to human ratings when this measure was dichotomized, but less reliability was 

achieved when distinguishing Improvable versus Good ratings. This lowering of reliability 

between machine and human with the three category outcome is not surprising given that the 

inherent challenges in distinguishing improvable versus good utterances. Reliability was 

much stronger when the utterance level measures were aggregated to the session level. 

Figure 2 (A)provides evidence that human raters agree with each other with respect to the 

number of questions labeled at the session level. Figure 2 (B) demonstrates that the machine 
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rater has the highest recognition of questions than either of the human raters. Figure 3 We 

found high correlation between aggregate scores at the three category and two category 

outcomes (highest .98 between the human rater 1 and rater 2, and .79 and .82 against the 

machine rater). Together, these results suggest that in some instances machine ratings can be 

similar to human ratings, thus providing initial evidence of our proof of concept. We had 

only a few sessions where both human raters provided scores that could be compared 

directly, and in these instances the reliability was high.

In this paper we demonstrated a way to quantify joining using a computational method in a 

complex behavioral intervention that is delivered to families in the home in Spanish and 

English. Our work focused on joining as measured by open-ended questions. We chose only 

to focus on utterances by the facilitator in determining this open-endedness, recognizing that 

some information would be lost by not attending to the family's response. This focus only on 

facilitator verbalizations without attending to the content reflects some, but not all of a 

facilitator's competence on this sub-dimension. In the Familias Unidas intervention, the 

other dimensions of joining include: the facilitator's ability to validate family members; the 

facilitators’ use of humor; facilitators’ encouragement of family members to disclose 

anecdotes; the facilitators’ ability to communicate trust; and the facilitators’ ability to 

address family members' concerns (Prado, Pantin, Schwartz, Lupei, & Szapocznik, 2006). 

Most, if not all behavioral interventions include a component of joining. Our method has the 

potential to be applied to other interventions. We have not yet investigated ways that these 

other dimensions can be rated computationally, and their contribution may improve the 

reliability and validity of the overall joining score. Furthermore, there remain other proxies 

for fidelity that need to be tested. For instance, if facilitators actually do facilitate 

communication between parents and adolescents, such a measure may increase our 

prediction of participation and attendance. Two proxies to this behavior that can be 

automated are the ratio of number of words spoken by the facilitator to family members to 

the number of turns taken between the adolescent, parent, and facilitator. Taken together, 

these features can be processed automatically and be evidence of engagement based on 

multiple dimensions of linguistic behavior. Another future avenue of investigation will 

analyze the valence of the response to the question posed by the facilitator. Future work 

includes the improvement of each critical step, and a model to integrate the output of these 

limitations.

Further, there are clearly major technical challenges left to address in developing an 

automated system, and some of these steps may affect the overall quality. In this first proof 

of concept project, we note that the input was based on human coded transcripts, a 

component that would obviously need to be replaced with an automated system. The success 

of distinguishing different speakers from one another and producing an accurate transcript 

depends on the quality of the audio signal that is available, and improvements in audio 

signals recording beyond the one-source videos that were used here will no doubt increase 

accuracy of these steps.

At the same time, there are reasons to believe that an automated system could ultimately 

exceed the quality of human ratings of fidelity that are now being used. First, a static 

computational system has perfect reliability, since the same input processed by the same 
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program will always produce the same result. Secondly, a computational approach also 

offers a capacity to learn and improve over time (De Cooman & Zaffalon 2004). The field of 

machine learning, which updates its own decision-making as additional data are made 

available, provides an innovative tool to improve the quality of fidelity assessment over 

time. Third, a molecular level rating system, such as the utterance level approach described 

here, can focus supervision on specific instances where fidelity can be improved. Also, more 

work needs to be done to compare the predictive validity of machine generated ratings 

against that of humans. We anticipate that as the computational methods approach to 

understanding fidelity becomes more sophisticated through refinement of rules, inclusion of 

more computational methods and machine learning, this approach will increase our ability to 

monitor fidelity while a prevention or treatment intervention is implemented in the field.

However, we do not believe that an automated system should completely replace the use of 

human fidelity ratings. Indeed, we suggest that fidelity monitoring can be improved through 

a true “mixed method” two-stage approach. An automated system can be used as a first 

stage; it is not only inexpensive, real-time, and reliable, but it can be used to screen audio 

transcripts into three broad categories: one where the automated rating of facilitator fidelity 

is high and we have high confidence of this rating, one where it is low with high confidence, 

and a third, middle category where our confidence about this automated rating is low. We 

can then use statistical sampling techniques, coupled with modeling of these ratings over 

time and client, to select an informative subset of passages, sessions, or facilitators for 

further human assessment. This information would then be used in a feedback loop to 

provide selective supervision of facilitators and around topics that are most challenging. In 

the typology of Palinkas et al. 2011, this computational/human hybrid approach most closely 

resembles an important mixed model approach, which involves a “Sequential collection and 

analysis of quantitative and qualitative data (quant --> Qual)” category.

Ultimately, the success or failure of the current “evidence-based approach” to improving 

mental health and reducing substance abuse and HIV/AIDS will depend in part on our 

ability to monitor and use high quality fidelity information. Schools and community-based 

organizations that are challenged with many other responsibilities besides delivery of these 

prevention programs will require ongoing technical support in order to sustain these 

programs. Taking an important role in this prevention support system (Chinman et al., 2008) 

will be the state's public health, social service, and educational systems, which have strategic 

reasons to partner with researchers in implementation science (Brown et al., 2012). Parent 

prevention programs such as Familias Unidas and Triple P (Herschell 2010; Prinz, Sanders, 

Shapiro, Whitaker, & Lutzker, 2009), as well as elementary schools programs to reduce 

aggressive behavior (Kellam et al., 2011), are already being widely implemented and may 

be good candidates for statewide support.

Prior research on prevention and treatment programs has included different methods for 

identifying fidelity to a particular intervention (Henggeler, Schoenwald, Borduin, Rowland, 

& Cunningham, 1998; Hogue et al., 2008). All of these methods are costly, time consuming, 

and could pose a challenge for a supervisor or rater that does not speak the particular 

language used in a session. In the innovative mixed method approach to fidelity presented 

here, we not only address the cost associated with monitoring fidelity, but also attempt to 
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address the linguistic barrier to implementation fidelity, which could be extremely 

advantageous towards addressing health disparities through broader implementation of 

interventions across groups. One of the notable requisites for large-scale implementation is 

maintaining fidelity (Henggeler, Schoenwald, Liao, Letourneau, & Edwards, 2002; Liddle et 

al., 2006). The computational linguistic model has the ability to rate sessions during which 

two languages are spoken, and provide feedback to a supervisor in the language preference 

of her choice. Thus, this methodology could help conduct fidelity monitoring by allowing 

either a mono or bi-lingual supervisor to provide feedback to intervention facilitators, 

regardless of which language was used in delivering the intervention. While addressing 

health disparities will still require the recruitment of bilingual facilitators, computational 

linguistic methods could potentially help reduce the number of implementation team 

members, particularly fidelity raters, who require bilingual skills, a potential barrier to 

intervention dissemination and multi-site implementation (Suarez-Morales et al., 2007). 

Lacking this, some research teams may be forced to withdraw implementation efforts due to 

an inability to devote adequate resources toward bilingual fidelity monitoring. Such 

flexibility will offer host organization's more autonomy and increased resource capacity to 

monitor and effectively implement programs, while also providing more information that 

can be used to monitor outcomes and inform and encourage future intervention 

dissemination efforts.

The computational method proposed here could enhance the quality of outcomes in 

implementing evidence-based interventions internationally, when a different language is 

spoken. Many facilitators have been trained outside of the U.S. to provide empirically 

validated programs such as Brief Strategic Family Therapy (BSFT; Szapocznik, Hervis, & 

Schwartz, 2003), functional family therapy (Alexander, Pugh, Parsons, & Sexton, 2000), 

multidimensional family therapy (Liddle 2002), and multi-systemic therapy (Henggeler & 

Borduin, 1990). In such cases, the supervision process requires that facilitator's video 

recordings be translated into English before the supervisor conducts the review of those 

translated tapes. This process is extremely costly and time consuming. It could potentially 

create a barrier in the way the process can be lost in translation and interpreted by the 

supervisor in order to provide good quality feedback of the session and improve clinical 

outcomes (Rowe et al., 2013).

In this paper we presented a mixed method, proof of concept approach to measure fidelity of 

an effective behavior intervention. The use of computational linguistics to develop an 

automated rating system for fidelity presents a viable path for addressing implementation 

challenges in host organizations (i.e. state level agencies, community organizations). As an 

implementation tool, an automated fidelity rater may eventually be paired with an effective 

behavioral intervention, such as Familias Unidas, allowing measurement of fidelity in host 

organizations.
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Figure 1. 
Decision tree algorithm for the rating utterances according to joining sub-dimension of 

open-ended questions

*utt = utterance
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Figure 2. 
Number of questions scored by human and machine raters.
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Figure 3. 
Total quality score for human and machine raters
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Table 1

Pearson correlations based on the total number of utterances in each category at the session level. The 

categories are binary, improvable, and good questions.

Rater Binary Questions Improvable Questions Good Questions Sum All Questions 
(Binary plus 
Improvable plus 
Good)

Sum of Relevant 
Questions 
(Improvable plus 
Good)

Rater 1 & 2 (n=10) .70 .36 .74 .95 .98

Rater 1 & Machine 
(n=19)

.45 .68 .45 .77 .79

Rater 2 & Machine 
(n=23)

.68 .27 .75 .91 .82
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Table 2

Correlations between quality scores. Total quality score is defined as the sum of utterances that scores 

improvable 1 and good 2. The average quality score is the total quality score divided by the number of 

utterances that are questions (33 sessions).

Rater Total Quality Score Average Quality Score

Rater 1 & 2 (n=10) .95 .76

Rater 1 & Machine (n=19) .69 .35

Rater 2 & Machine (n=23) .81 .32
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