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Abstract

Determination of the size of the gas emission zone, the locations of gas sources within, and 

especially the amount of gas retained in those zones is one of the most important steps for 

designing a successful methane control strategy and an efficient ventilation system in longwall 

coal mining. The formation of the gas emission zone and the potential amount of gas-in-place 

(GIP) that might be available for migration into a mine are factors of local geology and rock 

properties that usually show spatial variability in continuity and may also show geometric 

anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and 

for assessing their associated uncertainty in gas emission zones of longwall mines for methane 

control.

This study used core data obtained from 276 vertical exploration boreholes drilled from the 

surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian 

basin. After identifying important coal and non-coal layers for the gas emission zone, univariate 

statistical and semivariogram analyses were conducted for data from different formations to define 

the distribution and continuity of various attributes. Sequential simulations performed stochastic 

assessment of these attributes, such as gas content, strata thickness, and strata displacement. These 

analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh 

seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was 

used to isolate the volume over the actual panels from the entire modeled district and to calculate 

gas amounts that were directly related to the emissions in longwall mines.

Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured 

zone, as well as displacements in major rock units, showed spatial correlations that could be 

modeled and estimated using geostatistical methods. This study showed that GIP volumes may 

change up to 3 MMscf per acre and, in a multi-panel district, may total 9 Bcf of methane within 

the gas emission zone. Therefore, ventilation and gas capture systems should be designed 

accordingly. In addition, rock displacements within the gas emission zone are spatially distributed. 
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From an engineering and practical point of view, spatial distributions of GIP and distributions of 

rock displacements should be correlated with in-mine emissions and gob gas venthole productions.
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Geostatistical modeling; Sequential Gaussian simulation; Northern Appalachian Basin; Gas 
emission zone; Methane emission; Longwall mining

1. Introduction

Drilling vertical gob gas ventholes (GGVs) from the surface ahead of mining is a common 

technique used in the U.S. to capture methane emissions within the overlying fractured strata 

before this gas enters the work environment. Cross-measure boreholes are drilled using 

various design principles for the purpose of draining roof and floor rock strata as they relax 

during mining. In Europe, due to the greater depths of the longwall mines, cross-measure 

boreholes are preferred over GGVs. For each of these methane control measures, placement 

of boreholes and operational parameters play important roles in controlling methane 

emissions before they enter the working space (Karacan, 2009a; Karacan and Luxbacher, 

2010; Karacan et al., 2011).

In addition to controllable factors such as borehole placement and operational parameters, 

reservoir and geomechanical characteristics of the overlying (and in some cases underlying) 

strata that are affected by mining disturbances can control both the productivity and stability 

of these boreholes (Karacan et al., 2011; Whittles et al., 2006, 2007). This zone of 

deformation, known as the “gas emission zone” of a longwall mine, hosts the sources of 

longwall gas providing gas to the boreholes, leads to in-mine emissions (Karacan and 

Goodman, 2011a; Noack, 1998; Thakur, 2006), and interferes with the stability of boreholes.

Existing and mining-induced fractures may expand within the gas emission zone as a 

consequence of the mining. The generation and propagation of the fractures depend on the 

type and composition of the rocks overlying the mined seam. Methane emissions can occur 

as sudden and unstable releases, provided that there is enough gas contained within the 

emission zone sources. This can lead to potentially dangerous underground conditions if not 

prevented with a properly designed ventilation system or with effective gas capture 

measures.

Fractures and methane emissions above a coal mine are closely related to the geology of 

coal and coal-measure rocks, their properties, and their distances from mining activity. 

However, there must be sufficient gas within the gas emission zone, in combination with 

strata deformation, to create a threat to mining safety. The common gas sources in the 

overlying formations are caved or fractured coal seams. Strata below the mined seam may 

also be a major gas source if they contain gassy seams or gassy sandstones.

Three important considerations are necessary in order to make an assessment of gas 

emissions: a) the ability to predict the size of the gas emission zone, b) knowledge of the 

properties of coal seams and rock layers, and c) how much gas these strata contain within 
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the gas emission zone. This information can help in predicting the likelihood of sudden gas 

releases and changes in emission rates, as well as in designing surface methane control 

systems.

Different researchers have described gas emission zone sizes and emission potentials at 

various heights above the coal seam (Noack, 1998; Thakur, 2006). These studies show the 

degree of gas emissions as a function of varying distances from the mined coal bed in 

overlying and underlying formations. Considering that there is always some uncertainty 

associated with overlying and underlying formations and with how they may react to mining 

disturbances, a site-specific and probabilistic approach to define the gas emission zone is 

always better for estimating and controlling emissions. Karacan and Goodman (2011a) have 

conducted a probabilistic study for a mining district in Southwestern Pennsylvania in the 

Northern Appalachian basin based on the displacements measured in GGVs to define the 

size of the gas emission zone during mining of the Pittsburgh coal seam. This study showed 

that the deformed zone may extend as high as 350–100 ft above the Pittsburgh seam, and 

that the probability of obtaining specific strata displacements may vary based on the 

proximity of the formation to the Pittsburgh seam, although it did not consider spatial 

distribution due to lack of sufficient data. In all studies exploring the gas emission zone and 

its size, three major zones were considered: a caved zone, a highly fractured zone, and a 

composite beam zone. These zones are important for gas emissions and transport into the 

mining environment, provided that there are sources with high methane amounts within 

these intervals.

Even if the size (height) of the gas emission zone can be estimated globally using various 

methods or assumptions, it is not uncommon that gas emission predictions may be under- or 

over-estimated due to the lack of sufficient spatial information defining the quantity and 

location of the gas sources in the overlying strata. Core analyses and geophysical logging 

techniques are two of the important data sources for characterizing the geological formations 

and their gas contents in the gas emission zone (Karacan and Diamond, 2006). 

Determinations of reservoir and geomechanical properties of the formations are important 

because they affect fluid flow and storage in the overburden before and after coal extraction, 

with the stress and strain states changing as a result of longwall operations. Thus, laboratory 

analyses of available core materials from boreholes and accurate borehole logs of coal 

measure rocks are necessary for any emission prediction (Karacan, 2009b). However, 

laboratory analysis on cores of sampled locations, although beneficial, provides data only 

from point locations. This method provides data that are non-continuous and also does not 

specify a sampling count or spacing of the data, with the goal of obtaining a continuous 

picture of a geological attributes in the gas emission zone of a continuous operation, i.e. 

longwall mining. Even if the mining area is drilled by exploration boreholes for exhaustive 

sampling of cores, at the expense of cost and time, the data in intervening spaces is 

unknown. In this regard, geostatistics and geostatistical modeling are unique methods to 

establish spatial correlations in sampled data to form continuity, to enable precision, and to 

assess the uncertainty of the attributes that are being investigated (e.g. Webster and Oliver, 

2009).
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Geostatistical analyses and modeling techniques, some of which are described in detail in 

Deutsch and Journel (1998), Olea (2009), Remy et al. (2009), and Wackernagel (2010), have 

been widely used for geological, environmental, mining, and petroleum engineering. For 

instance, Hohn and Neal (1986) used geostatistical analysis to estimate the gas potential in 

Devonian shales of West Virginia. Watson et al. (2001) used a geostatistical approach to 

predict sulfur content in the Pittsburgh coal seam. Olea et al. (2011) presented a 

methodology using geostatistical approaches to quantify the uncertainty in coal resource 

assessments, applying the technique to a Texas lignite deposit. Heriawan and Koike (2008) 

identified spatial heterogeneity and resource quality of a coal deposit in Indonesia using 

geostatistics. They also correlated the distribution of various elements within the coal using 

multivariate geostatistics. Hindistan et al. (2010) used kriging as a tool to predict and control 

coal quality during longwall mining so that produced coal would comply with certain 

product specifications. Falivene et al. (2007) used geostatistical techniques to develop 

optimum and robust interpolation strategies in a heterogeneous coal zone in Spain. They 

concluded that optimum gridding, spatial correlation, and modeling can generate more 

accurate and realistic fades and coal property reconstructions. In addition to coal research, 

geostatistics have been used to assess spatial uncertainty of soil water content (Delbari et al., 

2009), to explore the spatial relations between soil physical properties and electrical 

conductivity (Carroll and Oliver, 2005), and to conduct spatial analyses of metal contents in 

sediments of the Yangtze River basin (Zhang and Selinus, 1997).

These studies are only selected examples and there are many others in the literature that 

document the use of different geostatistical techniques, such as semivariogram analyses, 

kriging, and stochastic simulation methods, on spatially correlated data in various disciplines 

related to the earth sciences. Geostatistics can be used to account for a wide range of data of 

varying resolutions, quality, and uncertainty for reconciling data types at different scales and 

for constructing models of geological heterogeneity (Leuangthong et al., 2008). These data 

and models can later be used as inputs for solving dynamic problems such as flow models.

Section contains a list of abbreviations and unit conversion factors.

1.1. Statement of problem

This paper quantifies gas-in-place, its uncertainty, and the displacements of major non-coal 

layers in the gas emission zones of longwall mines in a mining district in the Northern 

Appalachian Basin. These analyses will lead to improved design and application of methane 

capture and control systems.

In this study, the probabilistic gas emission zone prediction method presented in Karacan 

and Goodman (2011a) was combined with core data, including thickness and depth of major 

coal and non-coal formations, obtained from 276 exploration boreholes. Semivariogram 

analyses followed by sequential simulations were conducted to predict displacements in 

major non-coal layers and to predict gas-in-place in coals on a district-wide scale (in 

MMscf). Gas amounts were later specifically computed for a mined coal seam (Pittsburgh 

coal), in the caved zone, and in the fractured zone of the longwalls.
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The results of simulations will be emphasized and analyzed in the Results and discussion 

section, although both kriging and simulations were performed and their results compared 

for variances and distributions. This preference is due to the inherent differences between 

these two techniques. Simulation differs from kriging in its superior ability to reproduce 

patterns of spatial continuity and produce realistic uncertainty modeling. Although there are 

no clear rules to exclude either kriging or simulation from a geostatistical analysis (Olea, 

2009), kriging is recommended if the ultimate criterion is individual minimization of 

prediction error or the development of a smooth exploratory mapping of an unknown 

attribute. However, if the main objective is the correct assessment of confidence intervals or 

the correct modeling of spatial continuity, then simulation is the appropriate tool (Olea, 

2009). Therefore, sequential Gaussian simulation was used as the preferred analysis 

technique in this study.

The geostatistical analyses used in this work gave not only the spatial correlations of 

thickness and gas content of coals (in scf/ton) that were used to calculate gas-in-place, but 

also enabled uncertainty analyses using the results of realizations at 5%, 50%, and 95% 

quantiles. Furthermore, grid blanking was used to isolate the volumes over the actual panels 

from the entire district to calculate gas-in-place and regions of higher rock displacement.

2. Studied mining district and its geology that is important for the gas 

emission zone

2.1. Coal seams as methane sources and major non-coal strata within the gas emission 
zone of longwall mines in the studied district

The studied longwall mining district is located in the southwestern Pennsylvania (in Greene 

County) section of the Northern Appalachian Basin (Fig. 1). The southwestern Pennsylvania 

section of the basin is a very important area for coal mining and for coalbed and coal mine 

methane capture and production. Markowski (1998) reported that 11 of the 24 intervals with 

coalbed methane in Pennsylvania are located in Greene County, Pennsylvania. Due to 

extensive coal mining in this area, these 11 gassy intervals (mostly coals) are closely 

associated with the mines operating in different coal seams and with their gas emission 

zones. Thus, these 11 coal intervals are potentially the major contributors to emissions in 

these mines.

The Monongahela Group of formations is within the gas emission zone when mining the 

Pittsburgh coal seam (Karacan, 2009b; Karacan and Goodman, 2011a). There are five main 

coals in the Monongahela Group of coal measures: the Pittsburgh coals, Redstone coal, 

Sewickley coal, Uniontown coal, and Waynesburg coals. The Pittsburgh coals consist of the 

main Pittsburgh seam and the Pittsburgh rider, which is usually located 1–3 ft above the 

Pittsburgh main coal. Overlying the Pittsburgh coal by 18–45 ft is the Redstone coal, which 

is not as extensive as the Pittsburgh. In general, the Redstone coal is 1–3 ft thick where 

present. The Sewickley coals include the Sewickley coal itself and any riders and splits of 

the main bench when it occurs. The deepest Sewickley coals are found in SW Pennsylvania 

at a depth of nearly 1170 ft. The Sewickley coal is laterally persistent and generally 1–6 ft 

thick. The Uniontown coal is not usually continuous, and when present, it is approximately 
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270–300 ft above the Pittsburgh coal with a thickness varying between 0.1 and 0.5 ft. The 

Waynesburg coals are made up of the Waynesburg coal, the Waynesburg A coal, and the 

Waynesburg B coal. The Waynesburg is laterally persistent and is usually multiple-bedded. 

These coal seams are shown in Fig. 1.

Pittsburgh coal is the main coal bed that is mined in the southwestern part of Pennsylvania. 

Due to their proximity to Pittsburgh coal, Pittsburgh riders and Redstone coals are usually 

within the caved volume and their gas is handled either by the ventilation system or by gob 

gas ventholes. Sewickley, Uniontown, and Waynesburg coals, on the other hand, are far 

enough from the Pittsburgh seam that they are part of the fractured section of the gas 

emission zone, as depicted in Fig. 1. These seams are believed to contribute to the gob gas in 

the fractured system (Karacan et al., 2007) and their gas emissions should be captured using 

gob gas ventholes.

Other non-coal formations of the Monongahela Group that do not contain significant 

amounts of gas but may affect caving and fracturing of the gas emission zone are shales of 

various kinds, limestones, and sandstones. These formations are inter-bedded with the coal 

seams and exist in varying thicknesses depending on the location. Based on the 

identifications given in the exploration boreholes, the thicknesses and their relatively high 

rock strengths compared to other strata, the Fishpot limestone, Sewickley sandstone, and 

Uniontown sandstone were selected for further geostatistical analyses (Fig. 1).

2.2. Setting of the mining district, mined panels, and general methane control

The mining district that was modeled in this work hosted panels N-1 through K (Fig. 2). 

This mining district was selected for study because mining was already completed in this 

area, because of data availability from the exploration boreholes and due to the previous 

reservoir modeling study detailed in Karacan et al. (2007), which evaluated the productions 

of gob gas ventholes in panels G to K and determined those factors affecting their 

performances. The dimensions of the area shown in Fig. 2 are 20,500 ft in the y-direction 

and 18,900 ft in the x-direction.

In this district, overburden depths ranged between 500 and 900 ft. Longwall panels in the 

primary area were initially 830 ft wide and were increased to 1000 ft starting with F Panel. 

Thus, the panels are super-critical—i.e., the panel width is greater than the depth of the 

overburden, which results in a more complete caving of the overburden strata into the mined 

void. Several coal seams presented in the previous section are within the gas emission zone 

of the longwall panels shown in Fig. 2, and are believed to be the primary source of caved 

and fractured strata gases in the area.

Methane control in the study longwall district included the bleeder ventilation system, gob 

gas ventholes, and underground horizontal methane drainage boreholes drilled prior to 

mining. The bleeder ventilation system included the peripheral bleeder entries surrounding 

the panels, the former gateroads between the mined-out panels, and the associated bleeder 

fan shaft(s). The bleeder fans operated in this district were located at the top of 6-ft-diameter 

air shafts. Gob gas ventholes of the panels in this mining area were generally drilled to 
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within 40–45 ft of the top of the Pittsburgh coal seam, cased with 7–8 in. of diameter pipe, 

and finished with 200 ft of slotted pipe on the bottom (Karacan et al., 2007).

Fig. 3 gives methane production rates from longwall bleeders of N–F panels (BF-2) and G–

K panels (BF-3) during mining operation, with a missing period between the 300th and 

700th days of mining. This figure also shows the methane production rates from gob gas 

ventholes drilled over these panels to remove gas from fractured strata. The data show that 

both bleeder rates and gob gas venthole rates differ between mining of these two panel 

districts. During mining of N–F panels, average methane production from GGVs is about 

200 Mscfd, as opposed to 500–600 Mscfd from GGVs of G–K panels. This difference may 

be related to various factors discussed in Karacan (2009a) and differences in properties of 

the gob as a reservoir (Karacan, 2009c; Karacan and Goodman, 2011b). Similarly, methane 

rate from BF-2 averages around 2500–3000 Mscfd, where it is 1500–2000 Mscfd from 

BF-3. This may be related to the capacity of the bleeder fans. However, from both GGVs 

and bleeder fans, methane rates may be related to the availability of methane from various 

horizons and its spatial distribution as well, as explored in following sections.

3. Calculation of gas-in-place for coals within the gas emission zone and 

displacement of non-coal strata

In this study, the first objective was to quantify the gas amounts (gas-in-place) in various 

coal beds in the stratigraphic log shown in Fig. 1 and in the area shown in Fig. 2 using 

geostatistical methods. The second objective is to assess the gas amounts within the gas 

emission zone of panels N-1 to K. This section gives a brief overview of gas-in-place 

calculation prior to the geostatistical analyses. Gas content (gas amount per weight of coal) 

is one of the components of gas-in-place determination.

3.1. Gas content determination of coals

The gas content of coal can be measured or estimated using various techniques. These 

techniques usually fall into two categories: (1) direct methods which actually measure the 

volume of gas released from a coal sample (preferably wire line core samples) sealed in 

desorption canisters, and (2) indirect methods based on empirical correlations or laboratory-

derived gas storage capacity data from sorption isotherms. An extensive review of direct 

techniques for gas content measurement for coal has been published by Diamond and 

Schatzel (1998). Properly conducted direct-method testing of coal cores provides relatively 

accurate estimates of in-place gas contents of coals for most mine planning purposes and 

allows for resource evaluation at a reasonably low cost. A modified direct method (MDM) 

procedure (Ulery and Hyman, 1991) provides an increased level of accuracy, but requires a 

higher level of instrumentation sophistication, procedural complexity, and cost.

Alternatively, regional gas content data on individual coal samples can be used along with 

auxiliary data on coal rank and/or depth to construct curves, as shown in Fig. 4, for 

estimating in-place gas contents for a specific area. Such curves are generated for a 

particular coal seam or closely associated group of coal beds and can be used to estimate gas 

content values only if the rank or depth is known for the coal bed of interest. The graph 
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given in Fig. 4 presents such curves for bituminous coals of the Black Warrior Basin, 

Alabama (McFall et al., 1986). However, in considering Fig. 4, it should be kept in mind 

that lithotype characteristics of coal also affect the methane content. Gas content generally 

varies positively with the amounts of vitrinite and liptinite, which usually offer high 

methane storage capacity. No obvious relationship is observed with inertinite content. 

Therefore, the smooth graphs in Fig. 4 should be interpreted and used with caution.

The geostatistical estimates of gas-in-place presented in this paper relate to coals of the 

Lower Monongahela Group. Site-specific information used to determine gas content of the 

coals and the gas content estimation technique were based on bivariate normal distributions 

presented in Karacan and Goodman (2011a).

In Karacan and Goodman (2011a), the gas contents of all seams given in Diamond et al. 

(1986) in Pennsylvania were compiled in a database, classifying all the coal beds above and 

including the Pittsburgh seam. Means (μ) and standard deviations (σ) of gas content and 

overburden depth for each coal studied in this work and the correlation coefficients (ρ) 

between variable pairs that were used in calculating joint probability distributions for gas 

content and depth are given in Table 1. All coals within the interval of interest in this study 

area are high volatile bituminous-A type coals with the gas content-depth relationship 

generally showing an increasing trend with depth. However, it should also be noted that gas 

contents show significant variations even at the same depth (Fig. 5) to establish a clear 

regression.

The bivariate normal probability calculations and representations of probabilities for 

obtaining gas contents less than or equal to 350 scf/ton with four-parameter logistic 

functions were used to estimate gas contents. These analyses showed that gas content of 

coals, most of which were from southwestern Pennsylvania, could be represented by the 

values of a dependent variable at 50% value of the independent variables (50% quantile—

Q50) of these sigmoid functions, up to an overburden of 1400 ft. The polynomial 

representation of these coefficients gives a Pearson’s correlation coefficient of 0.9969 and is 

also given in Table 1. This relation was later used in this study to calculate the gas content of 

coals at Q50 as a function of depth.

Monte Carlo (MC) simulations were performed in order to determine similar relationships 

for 5% and 95% quantiles (Q5 and Q95) for each coal bed. These simulations were 

conducted on the models that aimed systematically to generate the distribution of original 

gas contents shown in Fig. 5, as well as the distribution of overburden values in a bivariate 

normal distribution. In this process, the correlation coefficient between the data pairs was 

matched, and the values of Q5 and Q95 were determined from the resultant distribution of 

population. After this step, the coefficients of the quadratic equations, which were initially 

arbitrary for Q5 and Q95, were iteratively determined by changing overburden depths and 

by targeting the Q5 and Q95 values in a goal-seek manner to minimize the standard errors of 

predictions. For these runs, 20,000 simulations were performed. The results of these 

analyses and the equations for Q5 and Q95 are also given in Table 2.
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3.2. Gas-in-place (GIP) calculation

One of the key steps in forecasting gas emissions during and after mining is to calculate the 

volume of GIP that will potentially migrate to the underground mining environment. The 

simplest method for calculating the GIP for coal seams is based on commonly available 

geologic mapping data for the mine site and using site-specific gas content data (Diamond, 

1982), as follows:

(1)

where GIP is gas-in-place in coal; ρ is coal density; h is coal thickness; A is the area that 

coal occupies; GC is the gas content of coal (volume-to-mass ratio), in ft3 gas/ton of coal.

A more elaborate approach is a reservoir analysis-based volumetric approach (Karacan and 

Diamond, 2006) given in Eq. (2). Volumetric-based calculations may also be used to 

determine the gas-in-place for coal beds in a specific geographic area. This approach both 

relates the volume of gas in the reservoir at reservoir conditions to the volume at surface 

conditions, treating separately the volume of free gas in fracture porosity and adsorbed gas 

in bulk volume.

(2)

In this work, a pseudo-volumetric method was used to calculate gas-in-place for coal seams. 

The final form of the equation, without including moisture content (fm), which is used after 

geostatistical modeling is:

(3)

In this equation, GC is the gas content of coal (determined as explained in Section 3.1 for 

each coal seam). “A” is the area, “h” is thickness of a particular coal bed of interest at a 

specific point, fa is the ash content of coal and ρ is its bulk density.

3.3. Ash content and density of coals

Ash in coal is a combination of all non-organic matter including clays and minerals. Ash 

content is strongly dependent on the primary paleo-depositional environment, the changes in 

the climate and various precipitations during the peat-forming process, and the present 

hydrogeology of the area at a particular depth. Although there is no a priori reason that ash 

content of coals should correlate with depth, it has been observed in West Virginia that ash 

content does indeed decrease on average for coals in the Monongahela Group from the 

Waynesburg coal to the Pittsburgh coal (West Virginia Geological and Economic Survey, 

2005), similar to Fig. 6.

Ash is considered as a constituent of coal that does not have a significant methane sorption 

capacity. Therefore, its amount should be determined for GIP calculations (Eqs. (2) and (3)). 
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In addition, ash has a higher density than organic matter (112.4–137.4 lb/ft3; 1.8–2.2 g/cm3) 

and thus ash content is one of the factors that most influences coal density.

Ash contents of coal seams within a thick stratigraphic column usually follow a scattered 

trend, making it difficult to establish a simple correlation (Fig. 6). In addition, there are 

variations within each seam as a function of overburden depth, as observed from scatter of 

the data given in Fig. 6 and from the correlation coefficients presented in Table 2. Therefore, 

a probabilistic approach of uncertainty based on ash-content distributions of the individual 

seams over the depth they exist seems to be the best method to determine ash contents of 

individual coals. This method requires bivariate distribution analyses of two random 

functions for determining joint probabilities of occurrences of different values. In this study, 

these functions were assumed to be normal for distributions of depth and ash contents of 

individual seams.

Data for ash contents for the coals of this study were taken from Diamond et al. (1986). The 

data were partitioned for each seam and was analyzed using bivariate normal distributions to 

determine ash content at Q5, Q50, and Q95. For these analyses, a similar technique 

described in Section 3.1 for gas contents was performed using a combination of bivariate 

distribution analyses and Monte Carlo simulations. These analyses effectively treated for 

each seam such that at each depth ash content had a distribution function, from which 

probable values could be determined at Q5, Q50, and Q95 to generate functional 

relationships. The values of ash at Q5, Q50, and Q95, as well as their standard errors from 

MC simulations and the equations that represent ash values as a function of depth, are given 

in Tables 3 and 4.

Ash content values calculated for individual seams at different quantiles were later 

converted to their bulk densities using the correlation that was established for these same 

coals from the data given in Fig. 7. The correlation between ash content and bulk density is 

given in Eq. (4). Ash and density correlations were built and used in the absence of spatial 

data of these attributes from analyses of cores of the exploration boreholes.

(4)

3.4. Displacements of major non-coal strata during mining

As discussed in Section 2, major non-coal strata within the possible gas emission zone in the 

area of study are the Fishpot limestone (FPLS), Sewickley sandstone (SWSS) and 

Uniontown sandstone (UNSS). Properties of these rock units are important for movement of 

gas within the gas emission zone. If these strata subside and fracture vertically and 

horizontally (termed “displacement” collectively in this paper), then all sources of gas-in-

place will be in communication with each other, and potentially will be in communication 

with the mine as well. If these strata do not displace significantly, then gas sources may be 

isolated from each other. Correlating maximum displacement locations of major non-coal 

strata with high gas-in-place locations in the gas emission zone helps in predicting those 

locations of high gas inflows into the mines and can best locate gas capture boreholes.
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Displacements were globally described in accordance with Karacan and Goodman (2011a) 

using the field data presented in Mazza and Mlinar (1977) for southwestern Pennsylvania. 

These data, which show that strata displacements are a function of distance from the top of 

the mined coal seam (the Pittsburgh seam in this case) are given in Fig. 8. This figure shows 

that displacements are at a maximum of ~2–3 ft close to the mining zone and decrease with 

increasing distance from the mined seam. Eventually, fracturing and separations cease 

around 350 ft above the mining horizon.

Strata displacements and their probabilities were described in Karacan and Goodman 

(2011a). Means (μ) and standard deviations (σ) of displacements and distances from the 

Pittsburgh seam and the correlation coefficients (ρ) between these variable pairs that were 

used in calculating joint probability distributions for these variables are given in Table 5.

The bivariate normal probability calculations and representations of probabilities of 

observing displacements ≤4 ft with four-parameter logistic functions were used to quantify 

displacements. Results showed that displacements in southwestern Pennsylvania, as a result 

of mining of the Pittsburgh seam, could be represented by the values of the dependent 

variable at 50% value of the independent variable up to distances of 350 ft. The polynomial 

representation of these coefficients gives a Pearson’s correlation coefficient of 0.9952 

(Table 5). This relation was used to calculate displacements of FPLS, SWSS, and UNSS as a 

function of their distances from the Pittsburgh seam at exploration borehole locations, which 

later were used for geostatistical modeling of strata displacements in these three major rock 

layers.

4. Data preparation and modeling methodology

4.1. Data extraction and preparation

The data used in geostatistical modeling were obtained from 276 vertical exploration 

boreholes drilled over the mining area shown in Fig. 2. These boreholes and their spatial 

locations are shown in Fig. 9. For modeling that will be discussed in detail in the 

forthcoming sections, these data were assigned to a 100 × 100 Cartesian grid in which each 

grid was 189 ft in the x-direction and 205 ft in the y-direction. In preparing the data, the 

thicknesses of each identified layers of each of the coal and non-coal units were combined, 

so that each unit would be represented as a single layer. Accordingly, the average of the 

depths of these layers was taken as the representative depth of each unit, as were their depth-

dependent attributes.

All empirical data from the boreholes had identified coal and non-coal formations drilled 

along the entire length of the boreholes. Since the top of the gas emission zone for mines 

operating in the Pittsburgh seam was around 350 ft above the top of the Pittsburgh coal 

(Karacan and Goodman, 2011a; Mazza and Mlinar, 1977), the data beyond this interval 

were excluded from further analyses. Thus, Fig. 9 shows only the coal and non-coal layers 

within the expected gas emission zone. In this figure, each data point represents an identified 

formation, with different colors representing their elevation using the top of the Pittsburgh 

seam as a reference datum.
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To calculate gas-in-place in coals and in different sections of the gas emission zone, the coal 

beds within the 350-ft interval above the Pittsburgh seam, and including the Pittsburgh 

seam, were identified and isolated from the rest of the data as separate datasets. These coal 

beds were the Pittsburgh seam (main bench—PCMB), Pittsburgh rider seams (PCR), 

Redstone coal (RDC), Sewickley coal (SWC), Uniontown coal (UNC), and Waynesburg 

coals (both upper and lower—WBC). These data were further analyzed carefully to extract 

erroneous data points and to see whether they appeared as a single layer or as splits. In case 

of splits or multiple layers of the same seam, data were combined as noted before. 

Therefore, the maximum number of data points for each unit was equal to the number of 

boreholes when a particular seam was present in all boreholes, and the number of data points 

was less than the number of boreholes when the seam was missing at a particular location 

(Table 6).

For coal seams of interest, three attributes were determined at each spatial position for 

geostatistical modeling and for calculation of gas-in-place using Eq. (3). These attributes 

were overburden depth, thickness of coal, and gas content. Results of univariate statistical 

analyses of these data for each coal seam are given in Table 6.

A similar data extraction and preparation procedure was also performed for non-coal layers 

as well. For these layers, two attributes were determined at each spatial position for 

geostatistical modeling. These attributes were overburden depth and displacements, 

calculated using distance from the Pittsburgh seam at each borehole location. Results of 

univariate statistical analyses of these data for each of the non-coal layers are given in Table 

7.

The frequency distributions of the data (histograms) of each of these attributes for both coal 

seams and non-coal layers were also checked for their Gaussian behavior. Olea (2009) and 

Remy et al. (2009) state that for some of the geostatistical modeling and simulation 

techniques to be applicable without the need of transformation of the data, the data should 

follow a Gaussian (normal) distribution. Plotting histograms of depth, thickness, and gas 

content data for coals and of depth and displacements for rock layers showed that the data 

were not exactly Gaussian in all cases. Therefore, automatically, all distributions in this 

work were transformed to normal scores by targeting a Gaussian distribution with mean 0 

and variance 1. Semivariograms were then modeled on the normal-score data. However, the 

values of the attributes were transformed back to the original space during simulations by 

targeting the original distribution.

Examples of these histograms for thickness data of Waynesburg (WBC) and depth of 

Sewickley (SWC) coals, and normal-score transformation of these attributes are shown in 

Fig. 10.

4.2. Geostatistical modeling of target attributes of coal and non-coal layers

The Stanford University Geostatistical Modeling Software (SGeMS) was used for spatial 

correlation analyses and for stochastic (sequential Gaussian) simulations. SGeMS 

implements several geostatistics algorithms for modeling of earth systems and phenomena 

that exhibit space-time distributions (Remy et al., 2009). The software also has a graphical 
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user interface and a script compiler that gives the user ease and flexibility to implement 

complex problems. It includes several of the algorithms that are in the GSLIB—

Geostatistical Software Library (Deutsch and Journel, 1998) in its platform.

4.2.1. Spatial correlation analyses using semivariograms—Semivariogram 

analysis, which allows for the examination of whether the data are correlated with distance, 

was done for all coal properties used to calculate GIP (thickness, gas content, and 

overburden depth) and displacement of rock layers. If a spatial correlation emerges in the 

dataset, directional semivariograms should start from low values and increase up to the 

variance of the sample data. The knowledge of spatial correlations and the ranges over 

which such correlations are observed, along with the knowledge of the mean of the data, are 

also taken into consideration when estimating the spatial distribution of parameters and their 

uncertainty within the Cartesian grid domain. This consideration is achieved by 

implementing kriging or stochastic methods such as sequential Gaussian simulations.

The semivariogram, γ (h), measures the average dissimilarity between two variables—for 

example between the values of a parameter (x) at location u and at a location u + h. 

Assuming stationarity, the semivariogram γ (Z(u), Z(u + h)) depends on a lag vector h: γ 

(h). Thus, the experimental semivariogram is computed by, e.g., Remy et al. (2009):

(5)

In this description, z (u) is the value of the parameter at location u and N (h) is the number 

of data pairs separated by vector h. Semivariograms established using this approach on field 

or spatially distributed experimental data are generally called empirical or, more 

conventionally, experimental semivariograms.

Experimental semivariograms, whose data are usually scattered, are modeled with analytical 

functions (called analytical semivariograms), which serve three main purposes. Above all, 

they ensure unique solutions. Secondly, they allow for the computation of a semivariogram 

value, γ (h), for any given lag vector, h. Finally, they allow for filtering of the noise, which 

is usually a result of either imperfect measurements or lack of data, from experimental 

semivariograms. The general semivariogram model is

(6)

In this general model, the first part of the equation is “nugget” effect, with c0≥0. “P” is the 

number of nested structures (the second part of the equation), each of which is defined by 

specific analytical models with a variance contribution, cp≥0. Thus, a linear combination of 

analytical semivariograms can be used to describe possible nested structures in an 

experimental semivariogram. The most common analytical semivariograms that can either 
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be used by themselves or as nested structures to describe more complicated experimental 

semivariograms are

1. Spherical model with range “a”:

(7)

2. Exponential model with practical range “a”:

(8)

3. Gaussian model with practical range “a”:

(9)

The upper bound of an analytical model is called the “sill.” The range is the lowest lag at 

which the semivariogram reaches the sill. The sill is reached asymptotically in the case of 

exponential and Gaussian models. The distance at which 95% of the sill is reached is called 

the “practical range.”

Data in the earth sciences often display some degree of anisotropy both areally and with 

depth. Therefore, it is always beneficial to assess the possible effect of anisotropy on 

semivariograms in multiple directions. In this study, semivariogram modeling was 

performed on the normal-score distribution of each of the attributes, as offered earlier, and 

based on the approach described in Olea (2006). Directional experimental semivariograms 

of normal scores were searched in each case with 0°, 45°, 90°, and 135° starting from the 

north and changing toward the east direction of lag vectors. In addition, an omni-directional 

semivariogram was modeled in each case.

Attention was given to find a model that would best fit each of the above semivariograms. 

Lag separation distances, the number of lags, and lag tolerance were different in each case, 

depending on the nature of data and the spatial correlations they showed. The lag separation 

distances were generally between 150 and 500 ft, with 75–250-ft lag tolerances, as described 

in Olea (2006). In accordance with the selection of lag distances, usually 30–50 lags were 

enough to define the ranges. A tolerance of azimuth was defined as 22.5° in each case, and 

bandwidths of approximately 2500 ft were used.

Modeling of semivariograms showed that there was not a significant anisotropy arising from 

the spatial locations, directions, and the magnitudes of the attributes. Therefore, the isotropic 

modeling approach was adopted in defining the plane rotation angles of search ellipsoid and 

in simulations. Due to isotropy, the rotation angles of the search ellipsoid, i.e. azimuth, dip, 

and rake, were taken as 0, whereas the three radii of the ellipsoid were taken as the ranges of 

the semivariogram in all cases.
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Example experimental semivariograms for the normal-score data of WBC thickness and 

SWC depth and the analytical functions representing those are shown in Fig. 11A and B, 

respectively. The analytical semivariogram models of the variables for the six coal seams 

(PCMB, PCR, RDC, SWC, UNC and WBC) and three non-coal layers (FPLS, SWSS, 

UNSS) are summarized in Tables 8 and 9, respectively. Please note that the types of the 

models, their nugget parameters, and sills, as well as geometric ranges, depend on the 

geological unit and the attributes.

4.2.2. Sequential Gaussian simulations and analyses of data—Sequential 

Gaussian simulation (SGSIM) is a semivariogram-based simulation technique and a special 

case that takes advantage of convenient properties of Gaussian random functions (e.g. 

Gómez-Hernández and Cassiraga, 1994; Remy et al., 2009). Simulated results, or so-called 

realizations, render spatial patterns consistent with the input data and semivariograms. 

Realizations can be seen as numerical models of possible distribution of the simulated 

property in space. In this work, 100 realizations for each attribute of interest were generated 

by using a different seed number for every attribute to ensure the randomness. This set of 

simulations was used for analyses of uncertainty and distribution of properties in the study 

area.

Simulation is superior compared to kriging particularly in assessing uncertainty. Although 

both SGSIM and simple kriging (SK) were performed in this study, SGSIM results will be 

discussed in more detail in forthcoming sections. In practice, the realizations take the form 

of a finite number of simulated maps, with equal probability to represent the unknown true 

map. Therefore, each grid in each of these realizations, or simulated maps, generates a 

distribution of the particular attribute. These distributions can be used to analyze the data 

statistically for variances and to evaluate the uncertainty associated with various values in a 

probabilistic sense. Furthermore, since the “L” number of simulated realizations of a 

property “zl(u)” all have equal probability, the cell-by-cell averaging of these realizations 

provides a single estimated value with a least squares error according to

(10)

where  is called the E-type estimated value, or conditional expectation (e.g. Deutsch 

and Journel, 1998), resulting in a map with local accuracy similar to that of a kriging map, 

which provides only an estimation mean and the variance. In a similar way, all values at the 

same cell for all L realizations can be used to calculate the cell mean. It is also possible to 

calculate the cell variance and prepare a map with the values resulting for all cells in the 

grid.

Fig. 12 shows the cell variance for SGSIM (A) and the SK variance (B) resulting from 

modeling the depth of the Pittsburgh seam. It should be noted that the SGSIM variance is 

more irregular than the SK variance. More importantly, experiments conducted using 

censored exhaustive samples have demonstrated that confidence intervals associated with 

kriging may be biased—too narrow for high values, and too wide for low values—especially 
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for skewed distributions. Thus, the use of stochastic simulation is a better option if proper 

modeling of confident intervals and quantiles is an important objective of a study.

In this study, for an initial assessment, E-type maps of simulated attributes were compared 

with maps of simple kriging (SK) in relation to some general properties that describe the 

distribution of random functions generated by these two techniques. However, for detailed 

analyses and for evaluating and discussing the results, SGSIM simulations were preferred 

over kriging due to reasons mentioned above and will be discussed for the rest of this paper.

5. Results and discussion

5.1. Elementary data analyses on results of simulations

All modeling studies and their results require some level of verification. In this study, the 

results of sequential Gaussian simulations of modeled attributes were compared with the 

original data before proceeding with calculations of GIP and the associated uncertainties. 

These comparisons required development of histograms and Q–Q plots of hard data, along 

with SGSIM realizations and calculation of elementary descriptive analyses. The analysis 

procedure is schematically shown in Fig. 13 for thickness of the Pittsburgh seam and was 

applied to each of the simulated parameters for evaluations of results.

Basic statistical analyses of the data obtained from E-maps of simulated attributes of coals 

and non-coal units, with the hard data given in Tables 6 and 7, showed that almost all of the 

basic statistical parameters are similar. This indicates that average results from simulations 

have similar properties in relation to the ranges and limits of the hard data. However, it 

should be recognized that the variances obtained from E-data are less because the point-wise 

averages of simulated data in E-maps have less dispersion compared to both hard data and to 

individual realizations. For instance, Fig. 14 shows example histograms of Waynesburg coal 

thickness and Sewickley coal depth plotted from the 50th realization and from the E-type 

maps (point-wise average of 100 realizations). Histograms of the hard data for the same 

properties and formations are given in Fig. 10. Comparison of distributions from the 

presented realizations and E-type maps with the hard data shows that the histograms of 

individual realizations are very similar to the hard data, since they are generated to closely 

match the cumulative probability distribution of the original data. On the other hand, E-type 

data have less dispersion due to averaging of results from a large number of realizations 

compared to the original data and to individual realizations, as expected. This was the case 

for all modeled attributes. Therefore, individual realizations and properties derived from 

those attributes were used to calculate gas-in-place and uncertainties.

In addition to comparisons of basic statistical parameters outlined above, Q–Q plots were 

prepared for each modeled attribute for their hard data versus E-type data quantiles and for 

hard data versus individual realizations. Q–Q plots are used to compare probability 

distributions. A straight line is an indication of equality between the distributions being 

compared and that the data in both axes have similar quantile values (Krishnamoorthy, 

2006).
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The Q–Q plot analyses conducted in this work gave acceptable linear trends between hard 

data and realizations, as well as between E-type maps. Fig. 15 shows, as an example, this 

comparison for thickness of the Waynesburg coal. This figure shows that comparisons of 

both types of SGSIM data give nearly linear relations with the hard data from which they are 

generated, and thus the probability distributions of all data are almost the same. Note the 

smoothing in the E-type map, revealed by higher modeled values when the empirical values 

are low, and lower modeled values when the empirical values are high. An E-type map 

shares a similar smoothing effect as a kriging map.

5.2. Gas-in-place and displacement results in the emission zone and their uncertainties

Since spatial features and uncertainty play an important role in predictions of GIP and 

methane emissions that result from the gas emission zone, individual realizations, rather 

than E-type maps, of modeled attributes from SGSIM were used to create realizations of 

GIP for further analyses and computations.

GIP and displacement calculations for the gas emission zone and the uncertainty evaluation 

strategy were as described below.

1. GIP in various sections of the gas emission zone that are important for longwall 

mines were calculated for:

• The Pittsburgh seam (PCMB)—mined coal whose emissions during mining 

directly enter the ventilation system. This emission is usually controlled by 

effective design of the ventilation system.

• Caved zone—combination of gas-in-place of lower seams in close proximity 

to the mined coal bed. These seams are the Pittsburgh rider (PCR) and 

Redstone coal (RDC). The emissions from this zone potentially enter the 

ventilation system directly after caving or continue to release within the gob. 

The hazard of these emissions is that they may build up in the gob and may 

enter the mine environment with leakages due to fluctuations of atmospheric 

pressure.

• Fractured zone—methane emissions that result from the coal beds and other 

gas sources that are within the fractured area of gas emission zone. These 

sources are usually sufficiently above the mined coal bed so that they are 

only fractured, not caved. The methane from these sources may combine 

through the fractures within interlayer non-coal rock units and may act as a 

single source from a GIP point of view. The emissions from these 

formations are usually captured with gob gas ventholes. If these boreholes 

do not operate effectively, methane within the fracture zone may migrate 

into the caved zone and eventually into the working areas. In the study area, 

the Sewickley coal, Uniontown coal, and Waynesburg coal are considered to 

be the main sources of methane in the fractured zone.

In addition to assessing these three distinct zones of deformation for the entire model area, 

GIP in the following longwall panel series was also calculated for N–F panels, and G–K 
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panels. The reason why these two panel series were evaluated separately is that the methane 

from the ventilation system was controlled with two separate bleeder fans (Figs. 2 and 3).

The values of GIP for individual coals and longwall gob zones, as well as displacements 

from realizations, were calculated at 5%, 50%, and 95% quantiles (Q5, Q50, Q95). These 

quantiles represent the values where each estimated value is ranked at 5%, 50%, and 95% in 

the distribution of results, and the probability of the estimated values is lower than the actual 

unknown values. Therefore, the data of any attribute at 5% quantile are the estimated values 

at 5% probability, and can be considered as the lower limit. Similarly, Q95 is the data with 

95% chance of being higher than the actual value and is considered as the upper limit. 

Between these, Q50 has a special meaning, representing the median of the possible 

population distribution. Q50 is called M-type where each estimated value has a 50% chance 

to be higher than the actual value.

5.2.1. Gas-in-place assessment—Eq. (3) and the ancillary correlations given in Eq. (4) 

and in Tables 1–4 were used for calculation of GIP. The terms of Eq. (3) were obtained from 

simulations over the simulation area “A” as realizations having 100×100 grids. Therefore, 

100 realizations of GIP, each of which had 10,000 values, were generated by using 100 

different realizations of each of the terms that were simulated or built using the correlations.

It is important to document GIP of various coals that are within the gas emission zone from 

gas emissions in longwall-mines and from an uncertainty quantification point of view. 

Therefore, before cumulative GIP values for different zones of longwall gobs and their 

uncertainties are presented, GIP values calculated for each of the coal seams are given in 

Fig. 16, which presents the 50th GIP realization for PCMB, PCR, RDC, SWC, UNC and 

WBC.

The realizations given in Fig. 16 show that each coal seam has different GIP within the 

8900-acre area shown in Fig. 2. The distributions of the amount of gas per acre of these 

seams, which are computed from each realization using 10,000 data points, are given in Fig. 

17. These plots are in terms of relative and cumulative relative frequencies of per-acre GIPs. 

As these data show, PCMB, SWC, and WBC have the highest methane amounts per acre, 

respectively. Within the gas emission zone, these seams are followed by PCR. Although 

PCR has high ash content and consists of relatively thin seams, the combined thickness of 

these seams and their contributions can be a significant methane source in longwall gob. 

Among these six coal seams, RDC and UNC have the least amount of gas per acre due to 

their thickness and discontinuous nature. Basic statistical measures calculated from each of 

these distributions are given in Table 10.

Although the distributions given in Fig. 17 and the values of Table 10 can be helpful to 

obtain a general idea about the gas-in-place in these seams, they are based on only one 

realization (50th realization) randomly selected from 100 different possible solutions for the 

model area. Therefore, a quantile analysis was performed using all 100 GIP realizations to 

find the realizations that represent Q5, Q50, and Q95 of the entire distribution. In other 

words, to assess uncertainty, the realizations and their associated GIP data below which the 

unknown real value will be less were defined, with 5%, 50%, and 95% probabilities.
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In order to determine GIP with Q5, Q50, and Q95 for each seam, cumulative GIPs in the 

model area were determined by summing the GIP of 10,000 cells in each of the 100 

realizations. Next, cumulative GIP values calculated for each realization were ranked to 

determine the GIP values and corresponding realizations that give 5%, 50%, and 95% of the 

distribution. Table 11 shows the Q5, Q50, and Q95 for cumulative GIP, the average GIP per 

acre, and the corresponding realizations for all coal seams.

Table 11 shows that UNC and RDC coals have the least amount of gas per unit of area, 

whereas PCMB, SWC, and WBC coals have the highest amount of in-place methane. These 

amounts relate to the higher thicknesses of these seams and their relatively less ash contents. 

According to estimations, GIP of per acre of PCMB can be ~1.57 MMscf at Q5 and ~1.59 

MMscf at Q95. Therefore, the uncertainty within this quantile interval is 0.02 MMscf per 

acre in the Pittsburgh seam. The PCR seams, on the other hand, are generally thin and have 

high ash contents. However, when there are multiple thin rider seams, their in-place gas 

content may be approximately 0.48 MMscf/acre at Q5 and 0.50 MMscf/acre at Q95. 

Therefore, multiple thin rider seams can be a significant gas resource for the caved zone.

SWC and WBC coals are important seams in the fractured zone of longwall mines. 

According to quantile estimations presented in Table 11, SWC and WBC can have as much 

as 10.3 and 6.2 Bcf of cumulative methane with Q50, respectively, in this model area. These 

cumulative gas-in-place amounts translate to 1.16 MMscf and 0.69 MMscf averages for in-

place methane per acre of these seams, respectively, at Q50.

GIP realizations of the caved zone and fractured zone can be produced and quantile 

estimations can be made once GIP realizations of individual seams over the entire model 

area are generated, For this purpose, individual GIP realizations of PCR and RDC for the 

caved zone, and realizations of SWC, UNC, and WBC for the fractured zone, were summed 

grid by grid. Thus, 100 GIP realizations were generated for both the caved zone and 

fractured zone. After this step, a procedure similar to that described for individual coal 

seams was conducted to find cumulative GIP in each realization and for ranking and 

quantiles estimation.

Fig. 18 shows the relative frequency and cumulative relative frequency distributions of GIP 

amounts of 100 realizations computed for the caved zone (Fig. 18A and B) and fractured 

zone (Fig. 18C and D). These distributions were used in ranking and to determine the 

amounts of GIP and corresponding individual zone realizations at Q5, Q50, and Q95, which 

are given in Table 12.

Table 12 shows that both the caved zone and fractured zone can contain a significant amount 

of gas. The caved zone for the modeled area can have as much as 5.1 Bcf of methane at Q5 

and 5.35 Bcf at Q95. The difference of cumulative GIP in this quantile range is 250 MMscf, 

which can be a significant amount of gas for ventilation purposes. The median GIP for the 

caved zone is 5.21 Bcf. The fractured zone, on the other hand, can have much higher 

amounts of GIP in this area due to the existence of gassier and thicker coal seams with less 

ash content. The cumulative GIP amounts in this zone are 16.8 Bcf and 17.2 Bcf for Q5 and 

Q95, respectively, with a median value of 17.0 Bcf. In light of the individual coal seam data 

Karacan et al. Page 19

Int J Coal Geol. Author manuscript; available in PMC 2015 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



discussed above, the number of layers (thickness) of the PCR has potential to affect the gas-

in-place in the caved zone, whereas the gas-in-place for SWC and WBC should be taken 

into account for the fractured zone.

Fig. 19 shows the distributions of potential GIP in various important zones of the gas 

emission interval per acre of mining in order to summarize gas-in-place evaluation of the 

model area. These distributions represent Q5, Q50, and Q95 from their corresponding 

realizations. This figure shows that the GIP per acre of mining in the Pittsburgh seam can 

vary between 0.25 MMscf and ~1 MMscf in the caved zone, ~1.2 and ~2.1 MMscf in 

PCMB, and 1.25 MMscf and 2.75 MMscf in the fractured zone. Basic statistics of these 

distributions at various quantiles are given in Table 13.

Overall, mines operating in the Pittsburgh seam in this 8900 acre area or in a similar size 

area will have total GIP (PCMB + caved zone + fractured zone) between 35.9 Bcf and 36.6 

Bcf, with 5–95% probability. These GIP quantities will amount to be 4.0 MMscf and 4.2 

MMscf per acre on average for 5% and 95% quantiles, respectively. Therefore, a 

degasification system using gob gas ventholes and the mine’s ventilation system should be 

designed to collectively handle this amount of methane originating from mining 1 acre of 

PCMB. In summary, methane capture and ventilation system design should be based on the 

gas-in-place amounts (for mining per acre of PCMB) given in Tables 12 and 13.

5.2.2. Application of gas-in-place assessments for the panel series within 
study area—The cumulative GIP results and GIP per acre estimations discussed in the 

previous section are based on the entire 8900-acre model area (Fig. 2) and on potential 

emissions if one decides to design a Pittsburgh seam mine.

This section investigates the GIP amounts in typical panel series, such as the ones that were 

mined in the model area. These panels are shown in Fig. 2. Two bleeder fans were used as 

part of the main ventilation system to remove in-mine emissions from panels N–K. Bleeder 

fan 2 (BF-2) was mainly used to remove methane emissions from panels N–F during their 

extraction, while bleeder fan 3 (BF-3) ventilated panels G–K as they were being mined. In 

addition, gob gas ventholes were drilled in an effort to capture methane from the fractured 

zone. Methane production rates of these fan and gob gas venthole systems are given in Fig. 

3.

GIP calculations in different sections of the gas emission zone were also conducted for these 

two main panel areas because general ventilation in these panels was established via two 

main fans and because these two areas can represent typical mining series in the PCMB. For 

this purpose, panel grids N–F and G–K within the model area were blanked for the PCMB, 

the caved zone, and the fractured zone with numerical techniques as shown in Fig. 20. This 

was done to calculate both areas and volumes with integration using the trapezoid rule in 

these panel regions.

The planar areas for N–F panel and G–K panel series were calculated as 1290 acres and 

1740 acres, respectively. These size panel series can be considered as typical of longwall 

mines operating in the Pittsburgh seam. N–F and G–K panel series totals to 3030 acres, 
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which is about 35% of the entire model area. The cumulative gas-in-place amounts within 

PCMB, the caved zone, and the fractured zone of these separate panel areas were calculated 

using realizations corresponding to the Q50 quantile, as an example, and are shown in Table 

14. This table shows that GIP in the N–F series was lower than that in the G–K series in all 

sections of the gas emission zone, mainly due to the differences in mined areas and the 

location of panels in relation to high-gas regions (Fig. 20) of the model area. This table 

shows that cumulative GIP in PCMB was less than ~1.8 Bcf with 50% probability in the N–

F series, and less than 2.5 Bcf in the G–K series. The data in Table 14 further show that GIP 

estimates for the caved zone in these two panel series varied between less than 0.7 Bcf and 

0.8 Bcf in the N–F and G–K, respectively, with 50% probability. On the other hand, the 

highest gas potentials were estimated for the fractured zone where cumulative GIP ranged 

from 2.3 Bcf (for N–F) to 3.1 Bcf (for G–K) at Q50. These GIP values can be considered as 

methane amounts to be released with 50% probability for the Pittsburgh seam longwall 

series, and they can be used for estimating cumulative methane emissions and for properly 

designing methane capture and ventilation systems.

Distribution of GIP potential (Q50) per acre of mining in these panel districts are shown in 

Fig. 21. These distributions show that per-acre estimations for Q50 are very close to the ones 

shown in Fig. 19 for the entire model area. This is due to the absence of major local 

heterogeneities in the model area that would affect the GIP estimations. Basic statistical 

measures of these distributions are given in Table 15. In general, mines operating in the 

Pittsburgh seam may either consider the gas amounts as per-acre of mining values given in 

Tables 13 and 15, or may consider the total gas-in-place volumes given in Table 14 for these 

two panel districts. However, it should be noted that the GIP estimates presented in Tables 

14 and 15 are given only for the 50% quantile.

5.2.3. Non-coal strata displacement considerations for emission zone 
modeling—This last section briefly addresses the displacements of non-coal formations 

within the gas emission zone of longwall mines. Displacements in rock strata, either vertical 

or horizontal, and their magnitudes are particularly important when these formations are 

interbedded between various gas sources (coal seams, free gas pockets, gobs of abandoned 

mines, active mines, etc.), in that they create migration paths between these sources and 

active mines. Therefore, it is generally recommended to evaluate gas-in-place in 

combination with spatial distribution of rock displacements in various horizons within the 

gas emission zone.

Within the stratigraphy of the modeled area, the Fishpot limestone, Sewickley sandstone, 

and Uniontown sandstone were identified as important non-coal strata whose displacements 

at various locations might influence in-mine emissions and the efficiency of gas capture. 

Therefore, displacements of these formations were modeled as explained in previous 

sections.

Displacement amounts were estimated using a similar approach described for gas-in-place 

assessment, i.e. by ranking simulation results of displacements in three non-coal strata to 

find the quantiles and their corresponding realizations. Fig. 22 shows distributions of 

displacements of these three major non-coal formations over the entire model areas for Q5, 
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Q50, and Q95. This figure shows that the displacements calculated, using 10,000 data points 

in each realization at various quartiles, are close to each other. Therefore, quartile values 

may not be as critical as the distribution of the displacement values themselves and their 

locations over the panels. In this regard, FPLS had the largest displacement of all, followed 

by SWSS and UNSS. Average estimated displacements in these formations were about 1.8 

ft, 1.4 ft, and 0.9 ft, for FPLS, SWSS, and UNSS, respectively. Basic statistical values of the 

distributions shown in Fig. 22 are given in Table 16.

Although the information about displacements of rock strata within the gas emission zone 

may be helpful, it is difficult to correlate these with in-mine emissions and methane capture 

designs from fractured strata. Higher GIP at a particular spatial location is more likely to 

move directly toward the mining environment if the rock strata directly below it displace 

more when compared to other locations. Therefore, spatial information of absolute 

displacements is more important than average displacements above mining panels.

Fig. 23 shows the maps of estimated displacements for FPLS, SWSS, and UNSS with Q50 

quantiles. The locations of the N–F and G–K panel series are shown behind these maps as 

well, so that various displacements can be compared to their positions in the panels.

The maps in Fig. 23 show that the FPLS was the rock unit that experienced most 

displacement due to its close proximity to the Pittsburgh seam. Displacements of this unit 

were on the order of 2 ft or larger toward the east and south of the site. SWSS, on the other 

hand, experienced most of the displacement (~1.6 ft) above the N–F panels and at the east 

margin and middle of the G–K panel series. This rock unit is estimated to displace at a lesser 

degree in a channel-like region above the N–K and G–K panel series, where displacements 

are as small as 1 ft. UNSS had more displacement within the gas emission zone above the 

N–F panel series compared to the G–K series, suggesting that there may be more 

communication with UNC and WBC due to their proximity, and thus more emissions into 

the mines as the BF-2 data show in Fig. 3.

6. Summary and conclusions

Successful control of methane gas in the underground coal mine environment requires 

knowledge of the gas emission zone, including its size and the GIP quantity, and the 

displacement of the overlying strata. This work used data from 276 exploration boreholes in 

the Northern Appalachia Basin to identify those coal and non-coal layers deemed important 

for gas emissions into active and inactive longwall mining panels. The coal layers included 

the Pittsburgh Main and Rider coals, the Redstone coal, the Sewickley coal and its splits, the 

Uniontown coal, the Waynesburg coal, and the Waynesburg A and B seams—all comprising 

the Monongahela formation. Non-coal layers included the Fishpot limestone, the Sewickley 

sandstone, and the Uniontown sandstone.

Semivariograms in different directions were constructed on the normal-score data of each 

attribute for exploring spatial correlation of thicknesses, depth, and gas contents of coal 

layers. Similar semivariograms were developed for displacements of the non-coal strata. 

Sequential Gaussian simulations were then performed to obtain spatial distribution 

thickness, gas content, and displacement in the study area. Gas contents were further used, 
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along with the values for coal density and ash content, to estimate GIP for the various coal 

layers and important emission zones of longwall mines.

GIP and displacement estimates were made at the 5%, 50%, and 95% quantiles in the gas 

emission zone for the Pittsburgh coal (main bench), the caved zone, and the fractured zone 

above the two longwall panel groups. For the entire 8900 acre study area, the 50% values for 

GIP in the PCMB, the caved zone, and the fractured zone are approximately 14 Bcf, 5 Bcf, 

and 17 Bcf, respectively. The mine ventilation system and any additional degasification 

system (if used) should be designed to handle these gas quantities.

Longwall panels N to F and G to K totaled 1290 and 1740 acres, respectively. Estimated 

total GIPs at the 50% quantile were 4.8 and 6.4 Bcf, respectively. The N to F panels had 

lower GIP due to the differences in the mined area and the location of the panels in the 

lower gas region of the study area. This study showed that the GIP available for emissions 

for each acre of mined coal in typical longwalls varies between 0.2 MMscf and 2.5 MMscf 

depending on the part of the gas emission zone.

A final analysis showed that displacements of non-coal strata were similar in magnitude for 

the same strata between panel groups N–F and G–K. However, displacements were greatly 

closer to the coal seam. Calculated displacements were 1.9 ft, 1.4 ft, and 0.9 ft for the 

Fishpot limestone, Sewickley sandstone, and Uniontown sandstone, respectively.

Finally, geostatistical modeling and simulation methods are useful in quantitatively 

evaluating GIP amounts within the emission zones of longwall mines. Although, there still 

may be site specific considerations, limitations and uncertainties related to gas emissions, 

spatial distributions of various attributes, including geological heterogeneities, can be 

assessed using these methods to estimate the gas emissions and their potential flow paths 

into the working environment. Geostatistical methods and their estimates can be used to 

improve ventilation design and thus to improve worker safety by considering spatial 

distributions of gas emissions and their uncertainty applied to ventilation and degasification 

design. In this regard, sequential Gaussian simulation is more suited for these applications 

compared to kriging, since the resulting data can be evaluated probabilistically, beyond a 

mean and variance, to assess uncertainty.
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List of abbreviations and units

A Area

Bcf Billion cubic feet

FPLS Fishpot limestone

GC Gas content
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GGV Gob gas venthole

GIP Gas in place

MMscf Million specific cubic feet

Mscfd Thousand specific cubic feet per day

PCMB Pittsburgh main bench seam

PCR Pittsburgh coal rider

RDC Redstone coal

Real. Seq. # Realization sequential number

scf Specific cubic feet

SGSIM Sequential Gaussian simulation

SK Simple kriging

SWC Sewickley coal

SWSS Sewickley sandstone

UNC Uniontown coal

UNSS Uniontown sandstone

WBC Waynesburg coal

Bgi Gas formation volume factor

ρ Correlation coefficient (in Tables 1, 3 and 5)

μ Mean

σ Standard deviation

Øf Fracture porosity

Swfi Water saturation in fracture porosity
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Fig. 1. 
Northern Appalachian Basin and a general stratigraphic column of the Monongahela Group 

above the mining district studied in this paper, including various coal and non-coal layers 

that were modeled for gas emission zone evaluation. Different estimated sections of gas 

emission zone are also shown.
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Fig. 2. 
Mining district selected for this study and layout of the mined longwall panels.
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Fig. 3. 
Methane production rate from longwall bleeders (BF-2 and BF-3) from gob gas ventholes 

drilled over panels.
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Fig. 4. 
Gas content versus depth and coal rank in the Black Warrior Basin, Alabama (McFall et al., 

1986).
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Fig. 5. 
Total gas content-depth data of all coal beds within the interval of interest in the study area.
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Fig. 6. 
Ash content of the seams studied in this work as a function of depth.
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Fig. 7. 
Ash content and bulk density relation established by data from the Pittsburgh, Pittsburgh 

rider, Redstone, Sewickley, and Waynesburg coals.
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Fig. 8. 
Strata displacements (exclusive of surface subsidence) measured in some gas capture 

boreholes drilled in the southwestern Pennsylvania section of the Northern Appalachian 

basin.
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Fig. 9. 
Spatial locations of the boreholes drilled over the area shown in Fig. 2 and differences in 

elevation for all identified formations above the top of the Pittsburgh seam. In this figure. 

“x” direction is Easting and “y” direction is Northing.
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Fig. 10. 
Frequency and cumulative frequency distribution of thickness data of Waynesburg coal (A) 

and depth of Sewickley coal (B), and normal-score transformation of these distributions (C 

and D).
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Fig. 11. 
Example omni-directional experimental semivariograms of normal scores of WBC thickness 

(A) and SWC depth (B), and the analytical exponential semivariograms representing these.
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Fig. 12. 
Variance maps obtained from SGSIM realizations (A) and simple kriging (B) of the 

Pittsburgh seam depth estimated in normal-score space.
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Fig. 13. 
Schematic flow chart showing data generation and comparison of simulation results for the 

thickness of PCMB. The same flowchart of comparison and interpretation procedure was 

performed for each simulated attribute of each coal and non-coal layer after sequential 

simulations.
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Fig. 14. 
Frequency and cumulative frequency distributions of data from 50th realizations of SGSIM 

runs and E-type maps for thickness of Waynesburg coal (A and C) and depth of Sewickley 

coal (B and D). Histograms of hard data are shown in Fig. 10.
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Fig. 15. 
Q–Q plots of thickness of Waynesburg coal against the data of 50th realization from SGSIM 

(A) and E-type map (B).
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Fig. 16. 
50th realization of in-place methane contents within the studied coals.
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Fig. 17. 
GIP-per-acre distributions of the realizations shown in Fig. 16.
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Fig. 18. 
Relative frequency and cumulative relative frequency distributions of GIP amounts of 100 

realizations computed for the caved zone (A and B) and fractured zone (C and D).
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Fig. 19. 
Distributions of gas-in-place estimations per acre of the PCMB, caved zone, and fractured 

zone at Q5, Q50, and Q95.
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Fig. 20. 
Panel series that were blanked within the model area to calculate GIP. The map in the 

background is the total GIP map of the PCMB + caved zone + fractured zone at Q50.
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Fig. 21. 
Distributions of GIP per acre in N–F and G–K panel series at Q50.
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Fig. 22. 
Displacement distributions of FPLS, SWSS, and UNSS over the entire model area at various 

quantiles and corresponding realizations.
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Fig. 23. 
Displacement maps of FPLS, SWSS, and UNSS within the gas emission zone of the mining 

area shown in Fig. 2 at Q50. The locations of the N–F and G–K panel series are provided to 

correlate their positions with higher displacements.
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Table 1

Mean (μ) and standard deviation (σ) of gas content (GC) of different coals and their overburden depth and the 

correlation coefficients (ρ) between variable pairs used in calculating joint probability distributions. The 

polynomial representations of gas content and depth relationships at 50Z coefficient of logistic functions 

(Q50) are also given. In these equations, “x” is the overburden depth.

Coal Data pairs (means and standard deviations) Correlation Gas content (scf/ton) equations for Q50

GC (scf/ton) Overburden (ft)

PCMB μ= 167.8
σ = 47.9

μ=697.1
σ= 139.9

ρ = 0.257 −6E-05x2+0.1416x+95.685

PCR μ= 130.5
σ = 37.2

μ = 612.7
σ= 144.8

ρ = 0.619 −9E-05x2+0.2124x+18.654

RDC μ= 115.75
σ = 34.2

μ = 590.6
σ= 143.8

ρ = 0.558 −7E-05x2+0.1765x+25.120

SWC μ= 142.3
σ = 24.4

μ = 644.2
σ= 145.6

ρ=0.151 −3E-05x2+0.0501x+120.590

UNC μ = 96.2
σ = 22.3

μ = 478.6
σ= 169.5

ρ = 0.143 −1E-05x2+0.027x+88.285

WBC μ = 93.8
σ = 27.1

μ = 483.3
σ= 169.6

ρ = 0.415 −4E-05x2+0.0779x+57.736
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Table 3

Mean (μ) and standard deviation (σ) of ash content of different coals, their overburden depth, and the 

correlation coefficients (ρ) between variable pairs used in calculating joint probability distributions. The 

polynomial representations of ash content and depth relationships at 50% coefficient of logistic functions 

(Q50) are also given. In these equations, “x” is the overburden depth.

Coal Data pairs (means and standard deviations) Correlation Ash content (%) equations for Q50

Ash content (%) Overburden (ft)

PCMB μ = 7.78
σ = 3.03

μ= 702.98
σ= 195.72

ρ = −0.0045 9E-07x2−0.0021x+9.046

PCR μ = 19.55
σ= 6.86

μ= 609.58
σ= 142.42

ρ = −0.1220 4E-06x2−0.0076x+24.06

RDC μ= 18.38
σ=7.41

μ= 710.80
σ=326.24

ρ = −0.3210 8E-06x2−0.0165x+25.118

SWC μ= 12.00
σ = 3.18

μ= 674.72
σ = 168.78

ρ = −0.2610 3E-06x2−0.007x+16.258

UNC μ= 22.72
σ = 5.39

μ= 468.46
σ = 160.94

ρ = − 0.0647 3E-06x2−0.0095x+25.010

WBC μ= 19.62
σ = 4.74

μ= 526.38
σ= 204.21

ρ= −0.1760 8E-07x2−0.0052x+22.038
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Table 5

Mean (μ) and standard deviation (σ) of displacement and distance from the Pittsburgh coal bed and the 

correlation coefficients (ρ) between variable pairs used in calculating joint probability distributions. The 

polynomial expression relating displacement and distance to mined seam at a 50% coefficient of logistic 

function (Q50) is given in the bottom row.

Data pairs Correlation

Displacement (ft) Distance from coal bed (ft) ρ = −0.676

μ = 0.746 μ = 205.22

σ = 0.638 σ = 79.367

Displacement (ft) = 0.000008*x2 − 0.0063*x + 2.0439, where x is distance above mined coal bed.
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Table 7

Univariate statistical parameters of overburden depth and displacement (Q50) of non-coal intervals.

Fishpot limestone (FPLS) Sewickley sandstone (SWSS) Uniontown sandstone (UNSS)

Depth (ft)

Number of data 212 214 189

Maximum 1017.83 940.50 776.42

Upper quartile 779.75 737.5 564.05

Median 655.60 596.08 421.80

Lower quartile 542.00 492.15 310.70

Minimum 394.20 247.68 141.63

Mean 662.79 600.92 429.61

Variance 21,595.10 23,384.50 21,343.00

Displacement (ft)–Q50

Number of data 212 214 189

Maximum 1.96 1.56 1.00

Upper quartile 1.86 1.43 0.93

Median 1.84 1.36 0.91

Lower quartile 1.82 1.31 0.89

Minimum 1.67 0.99 0.84

Mean 1.84 1.35 0.92

Variance 0.001 0.013 0.001
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Table 9

Summary of parameters that describe analytical semivariograms for depth and displacement of FPLS, SWSS, 

and UNSS. All semivariograms were analyzed using normal-score data.

Fishpot limestone (FPLS) Sewickley sandstone (SWSS) Uniontown sandstone (UNSS)

Depth (ft)

Model Gaussian Spherical Spherical

Nugget 0.08 0.05 0.10

Sill 0.78 0.80 0.85

Maximum range 3116 4100 4640

Medium range 2812 4035 4320

Minimum range 2736 4000 4160

Displacement (ft)–Q50

Model Exponential Exponential Exponential

Nugget 0.10 0.01 0.10

Sill 0.70 1.00 0.90

Maximum range 6075 5200 5300

Medium range 6000 4900 5100

Minimum range 5925 4700 4900
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Table 14

Cumulative gas-in-place amounts within the PCMB, caved zone, and fractured zone of N-F and G-K panel 

areas corresponding to the Q50 quantile.

Zones/quantile/panels Cumulative GIP (Bcf)

PCMB-Q50-GK 2.508

PCMB-Q50-NF 1.821

Caved-Q50-GK 0.873

Caved-Q50-NF 0.705

Fractured-Q50-GK 3.156

Fractured-Q50-NF 2.354
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Conversion table (English to SI units)

1 acre 4046.85 m2

1 ft 0.3048 m

1 MMscf 28,316 m3

1 scfm 0.0004719 m3/s

1 scfd 0.6795 m3/day
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