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Abstract

The statistics literature on functional data analysis focuses primarily on flexible black-box 

approaches, which are designed to allow individual curves to have essentially any shape while 

characterizing variability. Such methods typically cannot incorporate mechanistic information, 

which is commonly expressed in terms of differential equations. Motivated by studies of muscle 

activation, we propose a nonparametric Bayesian approach that takes into account mechanistic 

understanding of muscle physiology. A novel class of hierarchical Gaussian processes is defined 

that favors curves consistent with differential equations defined on motor, damper, spring systems. 

A Gibbs sampler is proposed to sample from the posterior distribution and applied to a study of 

rats exposed to non-injurious muscle activation protocols. Although motivated by muscle force 

data, a parallel approach can be used to include mechanistic information in broad functional data 

analysis applications.
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1. INTRODUCTION

Studies of physiologic response to muscle stress are important in developing treatment 

protocols to combat work-, athletic-, and age-related injury. In order to investigate muscle 

adaptation and maladaptation following repetitive resistance-type exercises, scientists often 

obtain a series of functional measures (typically at the beginning and end of a multi-session 

exercise protocol) on the force produced by the muscle as it moves through its range of 

motion. These force curves can be compared to determine the benefit/harm of an exercise 

routine to a population of interest.

†These authors share last author Brent Baker is the senior scientist from the lab that motivated the problem, and Amy Herring is the 
chair of the doctoral research committee that guided this research.
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We investigate one such study conducted in rodents. In this study scientists are interested in 

differences in physiologic response between young (3 month) and old (30 month) rats 

exposed to the same resistive exercise protocol. Here rats underwent 13 training sessions, 

described in table 1, on the dorsiflexor (lower leg) muscle group. At the beginning and end 

of each training session the muscles underwent both isometric (muscle activation without 

movement) and stretch shortening contractions (muscle activation with joint movement). We 

are interested in modeling the last stretch shortening contraction (labeled observation 5 in 

the table) observed in the first (considered pre-exercise) and last (considered post-exercise) 

exercise protocol. When modeling the stretch shortening contraction there is also an 

isometric component to force generation, and modeling should estimate both the isometric 

and stretch shortening components. Our intent is to investigate possible differences in 

responses between groups (young/old), as well as differences in the response pre- and post-

training, for both isometric and stretch shortening components. We are interested in 

comparing the individual and group level force tracings for isometric as well as stretch 

shortening contractions.

Each observation was recorded as a muscle force tracing, as illustrated in figure 1. This 

figure shows the inter-subject variability of 15 muscle force tracings in gray with the mean 

of these measurements shown in black. In this figure there are five sections separated by a 

vertical line. The first and last sections represent force generation when the muscles are not 

contracting. The second and fourth sections represent the force generated during an 

isometric contraction, with the third section denoting the stretch shortening contraction, 

which also contains a isometric component.

We have 84 such force tracings, and wish to model the isometric and stretch shortening 

force generation. The data are defined as follows: for an individual measurement, 565 

evenly spaced functional observations were taken. These measurements were taken twice 

(pre- and post-exercise protocol) resulting in 2 × 565 = 1130 functional measurements per 

animal. All 42 animals (27 old and 15 young) underwent the same resistive exercise protocol 

resulting in 47, 460 total measurements.

As the observed function is thought to be the product of two unknown functions (the 

isometric and stretch shortening components) defined by ordinary differential equations 

(ODEs), the individual components are not directly identifiable using standard functional 

approaches that allow each component to be essentially any continuous function. 

Consequently they must be modeled using simplifying assumptions, but such assumptions 

may not be interpretable in terms of muscle physiology. Our approach allows these 

assumptions to based on scientific considerations while retaining the flexibility of the 

functional approach. Parametric models based upon ODEs do exist but are known to be 

inadequate for characterizing muscle force tracings (Herzog, 2004). We develop Bayesian 

nonparametric methods that favor shapes consistent with these parametric models, while 

being flexible enough to account for deviations from parametric assumptions. As we are 

primarily interested in mean differences between groups, we further extend these methods to 

a hierarchical setting to allow functional ANOVA style comparisons.
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1.1 Skeletal Muscle Force

The force generated by muscle activation, illustrated in Figure 1, is nonlinear (Maffiuletti, 

2010; Parsaei and Stashuk, 2011) and is associated with complex physiology, such as motor 

systems and muscle twitch dynamics. The current lack of accurate statistical models for 

characterizing force tracings has made effective statistical comparisons challenging.

Models for isometric force measurements date back to Hill (1938). A popular approach uses 

first order differential equations relating muscle force output to a series of motor, damper, 

spring systems (Wexler et al., 1997; Ding et al., 1998; Phillips et al., 2004). Such models 

may reasonably describe areas of observed data across the force activation curve but do not 

represent important aspects of the response. Other modeling approaches (Geronilla et al., 

2006) attempt to characterize the response curve using a time-varying combination of basis 

functions, leading to improvements in prediction but a lack of interpretability and 

accommodation of prior mechanistic knowledge.

In an effort to develop better training/rehabilitation protocols tailored to individual needs, 

recent studies have investigated how age affects muscle adaptation and maladaptation 

following specific non-injurious, repetitive, resistance-type loading protocols designed to 

induce increases in performance and muscle mass. Initial investigations (Cutlip et al., 2006; 

Murlasits et al., 2006) and subsequent validations (Ryan et al., 2008; Baker et al., 2010; 

Hollander et al., 2010) have supported the use of supramaximal, electrically-evoked stretch-

shortening contractions precisely prescribed for inducing adaptation (increases in 

performance and muscle mass) in young animals following repetitive exposures of resistive 

muscle contractions. We use such data to study the effects of age on resistive muscle 

training sessions to better understand the benefits/harm of training across age groups.

Complexities arise when modeling the force tracings of a stretch-shortening contraction. The 

force output is a product of the isometric force at time t and a function related to joint 

movement. That is, the total force h(t) measured at time t is thought to be

(1)

where  is the isometric force at time t and  is a function 

representing the increase (1 < Q(t)) or decrease (0 < Q(t) < 1) in isometric muscle force 

generation during a stretch shortening contraction. Scientific interest focuses on differences 

in Q(t) and F(t) across experimental conditions. Interest in F (t) stems from the fact it is the 

‘baseline’ force produced by the muscle. Differences are related to the general health of the 

muscle. Interest in Q(t) is based upon the fact that it represents the potential force that is 

released when the muscle moves; differences here relate to the ability of the muscle to adapt. 

Our focus is on developing nonparametric Bayesian methods that incorporate prior 

information using ODEs that can estimate both Q(t) and F (t) using minimal assumptions.

1.2 Relevant Literature

We are interested in modeling F (t) and Q(t) using scientific information based upon ODEs. 

From a Bayesian perspective there is a growing literature on parameter estimation for 
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models derived from ODEs. We consider parametric and nonparametric approaches that are 

applicable to our problem.

If one assumes muscle force activation is well described by a known ODE there are several 

recent contributions on Bayesian parameter estimation in this context. Lunn et al. (2002) 

develops a framework for pharmacokinetic/pharmocodynamic models. Putter et al. (2002) 

develop methods based on partial differential equations to estimate HIV infection, and 

Huang et al. (2006) develop a hierarchical framework to investigate the antiviral response 

for HIV infection in a population of individuals. To compare different ODEs Vyshemirsky 

and Girolami (2008) investigated Bayes factors between several nonlinear ODE models.

Other parametric work focuses on novel estimation methodologies for non-linear differential 

equations. For example Calderhead and Girolami (2011) use recent advances in Hamiltonian 

Monte Carlo methods on Riemann manifolds (Girolami and Calderhead, 2011) to model 

biochemical processes described by non-linear differential equations. Other authors 

(Ramsay et al., 2007; Calderhead et al., 2009) develop novel techniques for estimating non-

linear differential equations utilizing smoothing based approximations. Though these 

methodologies explore approaches for modeling data using parametric differential 

equations, they still assume the data are well characterized by a fully parametric model, 

which is known to be incorrect for our problem.

From a nonparametric perspective the problem could be approached using a Gaussian 

process (GP) emulator (Kennedy and O’Hagan, 2000, 2001). In the first stage, a solver is 

used to obtain the differential equation solution on a finite grid of points. Then, uncertainty 

and bias are accommodated in the second stage through centering a GP prior on the 

differential equation solution. Though mechanistic information can be included in the mean 

function, it is not included in the covariance of the Gaussian process; hence realizations 

from the GP may be unrealistic and not resemble different ODE solutions. Further the 

variability in the curves may be inadequately represented, with credible intervals around the 

estimated curve being quite unrealistic. Our goal is to develop hierarchical Gaussian 

processes that inherit the behavior of the ODE through the covariance kernel, while also 

allowing variability among individual trajectories across subjects.

Recent work based upon stochastic differential equations uses differential equations to 

model data, like the GP emulator approach, but embeds mechanistic information into a 

stochastic process through stochastic differential equations. In these approaches the forcing 

function for a differential equation is defined by a stochastic process (the forcing function is 

the function r(t) such that Lh(t) = r(t) for some differential operator L). This induces a 

stochastic process over the observed curve that inherits the behavior of the differential 

equation. Golightly and Wilkinson (2006), Golightly and Wilkinson (2011) and Zhu et al. 

(2011) are examples of approaches based on diffusions. These methodologies assume a 

white noise process over the latent forcing function r(t), which is not appropriate as we 

assume a smooth r(t).

Most similar to our approach is the approach of Lawrence et al. (2007); Álvarez et al. 

(2009); Honkela et al. (2010); Álvarez et al. (2013), who develop latent force models that 
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embed mechanistic information into a GP prior while assuming a smooth forcing function. 

The embedding is accomplished by defining a novel covariance kernel specified as the 

double integral product of a squared exponential kernel and the Green’s function 

corresponding to the linear ODE of interest. These models can be extended to allow for a 

limited hierarchical specification by including independent processes for each output. 

Though similar to our approach, the nature of our problem make it difficult to use directly. 

Other authors have considered the case in which mechanistic information is used to define 

stochastic processes over non-linear differential equations (Hartikainen et al., 2012; Titsias 

et al., 2012). These methods develop approximate sampling algorithms specific to the non-

linear case, and do not consider methods for linear ODEs, which is the case we are faced 

with.

By examining the reproducing kernel Hilbert space (RKHS), the latent forcing approach can 

be shown to be similar to the smoothing approach of Heckman and Ramsay (2000) (see 

chapters 20 and 21 of Ramsay (2006)). Here a noise process governs the behavior of the 

latent forcing function, as compared to a squared exponential kernel in the latent forcing 

approach. In this smoothing approach, the equivalent covariance kernel was extremely ill-

conditioned for n as small as 20. In our problem we consider linear ODEs with a smooth 

forcing function, but have observed similar behavior for large n, which may be caused by 

the fineness of the temporal sampling between observations.

Alternatively to finding the analytical solution for the convolution one can use 

approximation methods to solve the ODE. One approach relies on the MAP-Laplace 

approximation (Gao et al., 2008), which finds the maximum a posteriori (MAP) estimate of 

the latent forcing function and then uses a Taylor approximation at that point. We develop 

an alternative approach that relies on accurately approximating solutions to the differential 

equations directly using a Runge-Kutta approximation. We name this process the 

Mechanistic Hierarchical Gaussian process to differentiate it from the latent force 

methodology as it can be used on an arbitrary covariance kernel without further derivation; 

the approximation avoids the quite complex direct analytical solution required when using 

the latent force approach. We also extend this method using the hierarchical Gaussian 

process (Behseta et al., 2005) which allows for information sharing between observations. 

By using the hierarchical Gaussian process we model individual experimental group effects 

as well as individual subject effects.

2. MECHANISTIC GAUSSIAN PROCESS

Consider modeling an unknown functional response , with  and 

data consisting of error-prone measurements (y1, …, yn) of h at locations (t1, …, tn). A 

common approach lets

(2)

where , a zero mean GP with covariance kernel R(·,·)), and 

, with l = 1, …, n. The covariance kernel R(·,·) is frequently chosen as 

squared exponential, exponential, Matérn or some default form that leads to flexible 

Wheeler et al. Page 5

J Am Stat Assoc. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



realizations. Although prior information about h can potentially be incorporated through the 

mean of the Gaussian process and choice of the covariance kernel, it can be difficult to 

choose appropriate values in practice.

We incorporate prior information by defining a covariance kernel favoring shapes consistent 

with mechanistic information specified by differential equations. We assume the information 

is expressible in the form of a linear ODE

(3)

where {a0(t), …, am−1(t)} are known non-zero functions on τ. Under these conditions the 

solution to (3) exists and, given initial values, can be expressed as

(4)

Here G(t, ξ) is Green’s function that is used to explicitly calculate the covariance kernel for 

latent force models (Lawrence et al., 2007; Álvarez et al., 2009; Honkela et al., 2010; 

Álvarez et al., 2013). The integral operator (4), described in shorthand as G, is a linear 

operator, and is the inverse of the differential operator L in (3). As G is linear, if 

, then h(t) is also a Gaussian process with a covariance kernel dependent 

on G and R(·,·). This defines a GP over h whose covariance kernel favors shapes consistent 

with (3).

One can alternatively look at (4) from a process-convolution perspective (Higdon, 1998, 

2002; Álvarez et al., 2012) Here the covariance kernel can be seen to be derived from the 

convolution of the Green’s function related to the ODE of interest and the covariance kernel 

of the latent forcing function. From this perspective it can be viewed as developing a kernel 

specific to the needs of the problem.

In our case, due to the fineness of temporal sampling, the exact solution to the resulting 

covariance matrix is often extremely ill-conditioned resulting in computational instability. 

We tried a wide variety of existing methods for addressing ill-conditioning problems in GP 

regression with no success. The induced covariance of h(t) tends to be substantially more 

subject to ill-conditioning than even the squared exponential covariance. This is because one 

is compounding the ill-conditioning of the covariance matrix defined over r(t) with a ODE, 

which for some initial values may also be extremely ill-conditioned (see chapter 9 pf 

Asaithambi (1995)). We avoid the exact solution and rely on a Runge-Kutta approximation 

(Asaithambi, 1995) that allows direct modeling of r(t) for an arbitrary covariance kernel 

R(·,·). In our experience this aids in computation while bypassing the cumbersome 

calculations necessary to compute the covariance kernel.

2.1 Approximation of the Process

There is a large literature on approximate solutions to differential equations. Given a set of 

initial conditions corresponding to h(t0) as well as the first m−1 derivatives of h evaluated at 

the initial point t0, Runge-Kutta (RK) methods (see chapter 9 of Asaithambi (1995)) offer 
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efficient algorithms that approximate the solution to an mth order ODE. When L is linear, 

RK methods express the numerical solution to the ODE as a linear combination of the 

forcing function r(t) evaluated at a finite set of points, , along with the initial 

conditions . We illustrate the approach using the Euler-Cauchy second 

order approximation, though other RK approximations proceed in much the same way.

The Euler-Cauchy approximation recursively defines a solution to h(t) at , by 

approximating the function as a linear combination of r = (r(t1), …, r(tn))′ and h*. As an 

example, consider a first order differential equation (i.e., m = 1 in (3)) where points are 

equally spaced with Δ = 2(tj − tl−1). The approximate Euler-Cauchy solution is formed 

recursively by:

(5)

(6)

Here g(tl−1, hl−1) is a function of the derivative evaluated at tl−1 and hl−1 for l > 1 (e.g., for 

(3) with m = 1 one has g(tl−1, hl−1) = [r(tl−1) + a0(tl−1)hl−1] where the function a0(·) is a 

known function described in (3)). As long as g(t, f) is linear, the approximation is a linear 

function of r(t) and the initial conditions h*. Consequently the solution can alternatively be 

expressed as a product of a matrix G and a vector of elements r* = (h*, r′)′. We form the 

matrix recursively with row l corresponding directly to each function evaluation described 

above. Continuing with the example, one defines the matrix G as follows: first set row l = 1 

to (1 0 … 0), which corresponds to the initial condition specified by . For l > 1 the 

approximation proceeds by specifying a row vector

Here  is a row vector of zeros except at the entry l, which is set to Δ, and G{l −1,:} is the 

previous row. One then defines row l of G as

where K is a row vector of zeros except at entries l and l + 1, which are set to . Through 

this alternate expression one arrives at the approximation h(t) ≈ Gr*. This can be seen as 

approximating h(t) in the context of a linear regression where r* is unknown and G is a 

known regression matrix.

Though we describe the method using the Euler-Cauchy approximation (an O(Δ2) 

approximation method), a similar G matrix can be constructed using higher order RK 

methods. Higher order methods form better approximations but require more functional 
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evaluations of r(t). This may require r(t) to be evaluated at points on the index set that have 

not been observed, often greatly increasing the computational complexity when sampling 

from the posterior. Before implementation, this trade off between accuracy and 

computational efficiency should be evaluated, as in many situations a lower order 

approximation is adequate.

One should also investigate the appropriate step size Δ, which also controls the accuracy of 

the approximation. Too large a step size may result in unacceptable approximation error, and 

too small step sizes result in unnecessary computational overhead. In our example, with the 

Euler-Cauchy approximation, our step size was Δ = (1/260). Under these conditions 

numerical experiments produced results that had a maximum absolute difference on the 

order of approximately 10−3 between the actual and numerical solution across the entire 

curve.

2.2 Posterior Sampling

For the above approximation, sampling from the mechanistic GP proceeds using a series of 

conditionally conjugate Gibbs steps. The discussion assumes model (2) with Y ~ N(h, τ−1I) 

where I is a (n × n) identity matrix, Y = (y1(t1), …, yn(tn))′ and h = (h(t1), …, h(tn))′, with τ 

~ Ga(a0, b0). From the above discussion we define A = (α1, …, αz)′ to be a z × 1 vector of 

parameters used in the functions {a1(t), …, am−1(t)}. These parameters can be specified to 

be known constants or can be estimated. If the parameters are estimated, in most cases a 

conjugate prior does not exist and a Metropolis within Gibbs step is necessary. 

Consequently, in the algorithms that follow we do not specify an exact prior for A. We 

assume the initial conditions h* are specified as h* ~ N(A0, B0), which are independent of 

r(t).

Sampling algorithm 1

1. Sample r* ~ N(E, W), where W = (τG′G + Ω−1)−1 and E = W(τG′Y + Ω−1ρ), 

where ρ is the prior mean of r*. Further Ω = block-diag(B0, Σ), which is a (n + m) 

× (n + m) block diagonal matrix defined using B0 and Σ. Here B0 is the prior 

variance of h* and Σ is the n × n covariance matrix for r*.

2. Sample τ from Ga(a0 + n/2, b0 + (Y − Gr*′(Y − Gr*)/2).

3. Marginalizing out r*, i.e., Y ~ N(0, GΩG′ + τ−1I) as above I is a (n × n) identity 

matrix, block sample the parameters A using a Metropolis-Hastings step.

Gibbs sampling proceeds by iterating over the above steps. To keep the algorithm general, 

we do not provide an explicit description of sampling of the GP hyperparameters in the 

above algorithm. However, we have observed the best mixing when these hyperparameters 

are block sampled with A.

3. ADAPTATION TO MUSCLE FORCE APPLICATION

The mechanistic GP is not directly applicable to the muscle force application, which has the 

additional complication of decomposing h(t) as
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(7)

where F (t) and Q(t) are describable through first and second order differential equations, 

respectively. Additional constraints are needed to separately identify F (t) and Q(t). For F 

(t), shape constraints are needed that rule out Gaussian processes, so we use restricted 

splines. As Q(t) is known to equal one at the beginning and end of the stretch shortening 

contraction, we modify the GP to include this information. In what follows, we describe the 

individual ODEs governing F (t) and Q(t) and outline an extension of the posterior sampling 

algorithm of Section 2.2.

3.1 Prior Extended to Muscle Force Data

We define an ODE for F (t) and Q(t) using generalizations of models from the muscle force 

literature. The isometric force function F (t) is historically related to the first order 

differential equation (Hill, 1938)

(8)

Here B represents the damping constant of the muscle fibers, and p(t) corresponds to the 

joint action of muscle at time t. We assume that the form of the motor activation function is 

unknown but is linear shortly after activation.

Placing a linearity assumption on p(t) only during the SS contraction, we let

where b0(t) = 1 and βs ~ N(a, b). Also, we let bs(t) for s ≥ 1 be defined as piecewise 

polynomial splines on the interval . For all s ≠ s′, which are defined outside 

of the SS contraction, we use cubic splines defined to be 0 prior to the interval and 1 after 

the interval. For the interval including the SS contraction we let bs′ be a linear spline on the 

interval, 0 prior to, and 1 after the SS contraction, which defines a linear interpolation of the 

function on this range. In order to model a flexible curve we use a large number of evenly 

spaced splines to estimate p(t). This spacing resulted in 35 splines outside of the SS 

contraction, except during the SS contraction where one linear spline is used to interpolate 

the area in this region. Equivalent spline spacing was tested on a large number of isometric 

force tracings (tracings without a SS component) where it was more than adequate in 

modeling all observations.

When the joint is moved through its range of motion, the force on the joint is related to the 

angle of the joint and other factors. Angular motion is often described using a second order 

differential equation, and we follow this approach. As the exact form of the differential 

equation is unknown (damping constant) we model this function through the fully specified 

second order differential equation:
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(9)

where , A > 0, and the damping constant λ ≤ 0. When g(t) = 0 this 

defines a periodic function having a period of .

It is further known that the multiplicative effect of Q(t) should be 1 prior to and after joint 

movement. We add the constraint that at the beginning ta and end tb of the stretch shortening 

contraction, Q(ta) = Q(tb) = 1. One can easily sample from this using the conditional 

properties of the multivariate normal distribution.

3.2 Posterior Sampling Extensions

The RK approximation is used to sample both F (t) and Q(t). Analogous to h* above, we 

define F* = (F0)′ ~ N(A0, B0) and Q* = (Q0, Q1)′ ~ N(A1, B1), initial value vectors for F (t) 

and Q(t), respectively. Similarly let p = (p(t1), …, p(tn))′, and g = (g(t1), …, g(tn))′, which 

are vectors of the latent forcing functions evaluated at a finite set of points for F (t) and Q(t), 

respectively. Finally define P* = (F*′, P′)′ and g* = (Q*′, g′).′ For convenience we refer to 

G as the Euler-Cauchy approximation to either (8) or (9). For all references to F (t), G is the 

solution to (8), and for all references to Q(t), G is the solution to (9).

In sampling F (t) one has p = Xβ, where X is the n × (S + 1) matrix of spline basis functions 

 evaluated at (t1, …, tn) and β = (β0, β1, …, βS)′. Letting β ~ N(0, Σβ), step 1 of 

sampling algorithm 1 is modified as follows:

Sampling algorithm 2

1. Putting the prior F* ~ N(A0, B0) over the initial conditions, define V = GX, 

, and Ω = block-diag(B0, Σβ). Then sample P* ~ N(E, W), where W = 

(τV′V + Ω−1)−1 and E = W(V′Y + Ω−1ρ).

We also modify algorithm 1 to sample g* given Q(ta) = Q(tb) = 1. This is done using the 

conditional properties of the multivariate normal distribution, i.e., for

one has

(10)

In the above approximation Q(ta) = Q0 and Q(tb) = G{n,:}g*, where G{n,:} is the last row of 

G. We modify step one of sampling algorithm 1 as follows:

Sampling algorithm 3

1. Calculating g* ~ N(E, W) as in algorithm 1, define the following quantities
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Then sample g*|Q(ta)Q(tb) from a normal distribution whose mean and covariance 

are derived from E* and W* as in (10).

On the interval [ta, tb], sampling Q(t) and F (t) proceeds conditional on knowledge of the 

other. To sample F (t) one uses algorithm 2 and multiplies each row of G by the 

corresponding value of Q(t) (i.e., for row l one multiplies each element in this row by Q(tl)). 

Similarly we multiply by F (t) when sampling Q(t) and sample from algorithm 3.

4. HIERARCHICAL MECHANISTIC GAUSSIAN PROCESS

We extend the mechanistic GP to hierarchical modeling (Behseta et al., 2005). This allows 

modeling of individual curves as well as population means. The extension is described in 

terms of our application but can be readily used in other settings.

Consider a study in which there is a single factor of interest having I levels. For subject j a 

functional response  is measured K times. In our application the factor is age, I 

= 2, K = 2 and represents measurements pre and post exercise routine, and hijk(t) is the time 

varying force function. Here, for all i, j, k, the n functional measurements are taken at 

equally spaced points on the index set . Data are modeled as:

where , and a mechanistic Gaussian process prior is defined over hijk(t) as 

in (3).

For subject j, in group i, the pre and post functional measurements are modeled as

(11)

where 1(·) is an indicator function that takes the value of 1 if the argument is true, and 0 

otherwise. This additive form allows modeling of the muscle force measurements pre- (k = 

1) and post- (k = 2) exercise protocol, with changes in the muscle force output due to the 

exercise routine modeled through . In terms of the mechanistic GP one models the 

latent forcing function as

(12)

To get an equivalent expression as in (11) one integrates (12) using (4). For interpretability 

between observations and groups we use the same integral operator G across all levels of the 

hierarchy.

Extending (12) to account for variability between factors we define
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with k = 1, 2 as in (12) and . Sampling from this hierarchy 

proceeds in much the same way as algorithm 1. Analogous to the case of the single curve we 

define , and  to be vectors representing the latent forcing function and 

subsequent hierarchies evaluated at sampled points. We define the individual vector of 

observations Yijk = (yijk(t1), …, yijk(tn))′. Sampling from the posterior is specified in terms of 

, and  and proceeds as follows:

Sampling algorithm 4

1. For each i, j, k sample , conditionally on  where k′ = 1 if k = 2 and k′ = 2 

otherwise. Here let  and sample  where 

, . Here, as in sampling algorithm 

1, Ωijk is a subject specific (n+m)×(n+m) covariance matrix.

2. For each i, k pair, sample , where in this case 

 and . Again  is 

an (n + m) × (n + m) covariance matrix as specified above and  is used to 

compute the finite dimensional covariance for the latent forcing function.

3. For  sample as in step 2 replacing  with  etc.

4. For each i, j, sample τj from , 

where .

5. Sample A similarly to algorithm 1.

Inference on the group average curves  and the population average curves 

proceeds using the approximations  and , and as G is the same across all i, j, k, 

the population averages have the same interpretation as other curves in the hierarchy. 

Extending the above framework by adding more hierarchies, is straightforward. Each 

additional hierarchy is sampled as in step 2 noting that the previous level is used as the input 

vector.

4.1 Extensions to the Hierarchical Mechanistic Process

We extend the hierarchical mechanistic process to our application. Here
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where the isometric force function Fijk(t) and the stretch shortening multiplier function 

Qijk(t) are defined using (8) and (9) respectively. For Fijk(t) and Qijk(t) we define the 

hierarchy over the latent forcing function, with the isometric and SS forcing functions pijk(t) 

and gijk(t) specified as in (12). This discussion uses the same notation as above, i.e., the 

latent functions measured pre and post treatment for the SS contraction and isometric 

functions are represented as  and  with the corresponding vectors evaluated at 

sampled points represented as  and .

For Qijk(t), the forcing functions , , and , are defined such that Qijk(ta) = 

Qijk(tb) = 1, etc. and these constraints are implemented in exactly the same way as in 

sampling algorithm 3. To sample , ,  one proceeds by computing E and W as in 

sampling algorithm 4 and then sampling from the conditionally conjugate distribution 

specified in sampling algorithm 3.

Hierarchical extensions in modeling Fijk(t) are direct. Using the same hierarchical notation, 

we place multivariate normal hierarchies over the spline coefficient vector β

which in turn defines , , and . Sampling each , , and 

proceeds by placing the modifications of sampling algorithm 2 into sampling algorithm 4.

5. SIMULATION

We conduct a simulation experiment based upon the model developed in (7). Curves similar 

to those expected in a muscle force application are generated, and the simulated curves are 

compared against posterior estimated curves. Mirroring the muscle force application, the 

hierarchy was generated assuming I = 2, J = 20 and K = 2. The group levels of the hierarchy, 

 and , were simulated to resemble muscle force tracings of isometric and 

stretch shortening contractions based upon (8) and (9). The individual level data were 

generated at 565 equally spaced points, assuming . Here the first 80 observations 

represent the force tracing prior to muscle activation. After activation 120 observations were 

taken of Fijk(t). The next 201 observations were of Fijk(t)Qijk(t) with the 164 remaining 
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observations generated from Fijk(t). Similar to the real data, all data were generated 

assuming little variability between observations; here τj = 300 for all observations.

We chose weakly informative priors for all hyper parameters. We place a GP prior over 

gijk(t), where the covariance kernel is specified using the squared exponential kernel K(t, t′) 

= σ2exp(−ℓ∥t − t′∥2). We set σ−2 ~ Ga(1, 1) and let ℓ ~ Ga(100, 0.1), which reflects the 

assumption that gijk(t) is not expected to be very smooth. The same assumptions are made 

for all other levels of the hierarchy. For pijk(t) we put normal priors over the β coefficients, 

with diffuse priors specified at the topmost level. The precision parameter for all other levels 

was assigned a Ga(0.1, 0.1) prior. Finally the precision parameter τj was specified using a 

Ga(100, 0.1) prior. This is a vague prior on τj centered approximately at the observed error 

found in muscle force tracings. For the parameters in (8) and (9) we defined discrete 

uniform priors over a range of plausible values. Here B is defined to be in [4.1, 7.5], based 

upon analyses of isometric data with a parametric model. Further the parameter A, which 

defines the period of Qijk(t), is put in the range of [−3.5, −0.6]. This choice corresponds to a 

range representing a half a period to a period and a half. Finally the damping constant was 

expected to be negligible, and λ was given a plausible range of [0.01, 2]. Note λ can not take 

on values at 0 due to the identifiability constraints on the ODE.

We collected 50, 000 MCMC samples disregarding the first 5, 000 as a burn-in. 

Examinations of trace plots for the quantities of interest, the individual curves and curves in 

the hierarchy, showed adequate mixing. Geweke’s diagnostic tests on the chains (Geweke, 

1992) indicated convergence. Further the effective sample size was calculated to be 1, 000 

or greater for all quantities of interest (hierarchical means had effective sample sizes greater 

than 30, 000). Hyperparameters for the covariance kernel as well as the parameters specified 

in (8) and (9) converged as evident in trace plots as well as Geweke’s diagnostic, but mixing 

was slow, with effective sample sizes were typically calculated to be around 400.

For the quantities of interest (i.e., the individual level functions and the first level of the 

hierarchy Fijk(t), Qijk(t), , and  respectively, which represents 95 total curves), 

the true curve was within the 95% credible region at the specified level for these curves. 

Figure 2 shows the estimates of  and , for one of the groups. Here the true 

curve is given by the gray line, the estimated curve is shown in solid black, and the 95% 

credible intervals on the central estimate are given by the dotted lines. One can see that the 

true curve is estimated within these regions. This figure is representative of the other 

estimates, where truth is well described by the model.

6. MUSCLE FORCE APPLICATION

With the goal of investigating the effect of non-injurious, repetitive muscle contractions on 

muscle force generation, we apply our approach to data compiled from Cutlip et al. (2006), 

Murlasits et al. (2006), and Baker et al. (2010). In these studies, 15 young (3 months), and 

27 old (30 months), rats’ dorsiflexor muscles were exposed to a resistive muscle contraction 

protocol that included thirteen sessions. At the end of each session the dorsiflexor muscle 

group underwent isometric as well as stretch shortening contraction (as described in Figure 
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1). Individual observations were taken at evenly spaced intervals (  of a second). The 

entire measurement lasted just over 2 seconds, resulting in 565 total functional observations 

as in our above simulation study. Our analysis looks at possible differences between muscle 

force measurements pre- (after the first resistive muscle contraction protocol) and post- 

(after the last protocol) study, between young and old animals. Priors for all parameters as 

well as computational implementation were specified as in the simulation.

Figure 3 shows the individual fits of hijk(t) for one animal’s pre- and post- observations. 

Here the central posterior estimated curve is shown in black, with the observed data shown 

using gray hash marks. The credible intervals are not shown, as they are too close to the 

central estimate to be visible. Figure 4 shows the expected mean isometric contraction for 

the pre- (dashed line) and post-(solid line) exercise protocol in the old animals (top left) and 

the young animals (top right). The difference (solid line) between the pre- and the post- 

training, as well as the 95% pointwise credible interval (dashed line), is shown in the bottom 

row for the old (bottom left) and young (bottom right) animals. Here it is seen that the young 

and the old animals, as a group, displayed increased muscle performance related to stretch 

shortening contractions, and the post exercise increase maximum was approximately 1.5 to 

2.2 times an increase in force output. In contrast there was no difference in the group 

average isometric contraction (i.e.,  for either young or old animals. Figure 5 shows 

the estimated posterior curves (top) and corresponding differences (bottom) for the young 

animals. Here the pre-treatment (dotted line) and post-treatment (solid line) estimated 

isometric contractions are shown in the top row, and, though the central estimates are 

different, the bottom row shows that there is not enough evidence to suggest differences 

between the two groups. Similar results (figure not shown) were observed for the older 

animals.

The model also allows one to look at individual estimates between curves. Though the 

animals showed no significant differences at the group level for isometric force generation, 

individual differences were seen. Figure 6 shows the isometric contraction difference for an 

individual animal. Here the pre-and post-treatment estimates are shown in the top graph with 

the estimated differences being shown in the bottom graph. Here individual differences are 

seen, which is significant as it supports the idea that some some older animals vary in their 

physiology related to the overall muscle health.

Note that there is an additional advantage of modeling the latent forcing function as it may 

be used to generate or support hypotheses. For example, for Fijk(t), the latent forcing 

function pijk(t) represents the muscle motor action at time t. These curves (figure not shown) 

show a steep increase right after activation, a sharp decrease shortly thereafter, and then a 

stabilization to a near constant level. This is supportive of the idea that large amounts of 

calcium influx the cytoplasm and bind rapidly to troponin upon muscle activation (steep 

increase in force tracing), until finally calcium is sequestered from the cytosol upon 

deactivation (return to baseline in force tracing).
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7. DISCUSSION

This article proposes a flexible nonparametric Bayesian method that takes into account prior 

scientific information based upon an ODE. This method relies on a sampling algorithm 

using a Runge-Kutta approximation to the ODE. The nature of the approximation allows for 

a hierarchical specification at the population level estimates by modeling the latent forcing 

function directly. The goal was to develop an inferential framework for muscle force 

tracings, and investigate the effect of non-injurious resistive exercise protocols on muscles 

of different ages (i.e., young and old muscles). It was important to accurately model both the 

overall functional response and the two constituent functions, which themselves have 

scientific interest.

For our specific problem the model is able to show that the dynamic force generated through 

the stretch shortening contraction may be more informative and specific in showing 

adaptation and maladaptation following non-injurious mechanical loading. Both groups of 

rats have an adaptive response in dynamic muscle force produced. Force generated is, at the 

population level, greater after the exercise protocol, but both groups have statistically non-

significant responses in isometric force generation. As maximal isometric force generation, 

which is represented by a single value, has been seen as the gold standard response of 

interest in the muscle force literature in terms of measuring adaptation/maladaptation. The 

models presented here may allow researchers to begin to model more sensitive endpoints 

and look at their data from a functional data perspective. Further, such analyses may lead to 

new insights. For example, the maximal force for older rats appears to occur at a different 

joint angle, suggesting impacts affecting the length=tension curve dynamics as the animals 

age.

The proposed approach can be extended to human muscle force tracings, and may allow for 

in-depth study of human physiologic responses to exercise routine post training. Such an 

analysis, on the entire force output, has previously not been attempted. For such a study, 

age, as well as other variables, can be included in the hierarchical framework. In this manner 

the efficacy of the current ‘one size fits all’ approach across the spectrum of prevention/

intervention including occupational, athletic, physical therapy, strength and conditioning, 

and wellness programs can be studied. If similar results are seen in human populations, this 

might suggest that different treatment protocols are appropriate depending on age or other 

variables of interest.

In domains outside of the muscle force literature, the approximation method allows 

researchers to easily incorporate mechanistic information into analyses, while bypassing the 

cumbersome integrals that are required for direct calculation of the covariance kernel. In 

situations where there are fewer observations that are not evenly spaced, one can still use 

this approach. This can be done either by using our regression based approach directly, or, 

when inference is desired on less closely spaced observations, one can approximate the 

covariance matrix by computing GΣG′. Here, as above, Σ is the finite dimensional 

covariance defined on the latent forcing function. As this matrix will represent a fine grid of 

points across the domain of interest, one needs only to extract the rows and columns that 

correspond to locations where inference is desired. Finally, this method can be used where 
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there is prior knowledge on the approximate shape of the response, but no direct mechanistic 

information is available. Here, one would tailor a covariance kernel to the problem at hand, 

which may result in some gains in efficiency for problems where points are sampled at 

sparse intervals.
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Figure 1. 
Fifteen muscle force measurements (gray lines) made on young rats before training, with the 

mean of these measurements shown in black. The five sections separated by a vertical line 

describe different portions of the muscle activation. The first and last sections represent 

force generation when the muscles are not contracting. The second and fourth sections 

represent the force generated during an isometric contraction; with the third section denoting 

the stretch shortening contraction, which takes place during an isometric contraction.
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Figure 2. 
Estimated group level curves for the dynamic force in a stretch shortening contraction for a 

simulated data set. The black line and corresponding 95% credible region (dotted lines) 

represent the mean estimated curve and credible region. The true curve is given by the gray 

line and can be seen to be well represented by the model.
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Figure 3. 
The estimated mean isometric force generated for a single animal pre- and post-treatment. 

The dark black line represents central estimates of the function h(t) = Q(t)F (t), with the dark 

gray hash marks representing the observed data. Here credible interval estimates are not 

shown as they are very narrow.
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Figure 4. 
The estimated group level dynamic force multiplier generated by old (left column) and 

young (right column) animals. Here the top row represents the average force increase during 

a stretch shortening contraction pre- (black line) and post- (dotted line) exercise protocol. 

The bottom row represents the observed increase (solid black lines) thought to be due to 

exercise along with the 95% pointwise credible interval (dotted line) for this increase due to 

exercise.
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Figure 5. 
Estimated mean isometric muscle force generated for the young animals pre (dashed line) 

and post (solid line). The bottom row gives the estimates, and 95% pointwise credible 

intervals of the difference between the two.
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Figure 6. 
Estimated dynamic muscle force for an old animal. This figure shows the central estimate 

for the pre- (dashed line) and post- (solid line) for the isometric contraction of an individual 

old animal. Credible intervals are not shown as they are indistinguishable from the central 

estimate.
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Table 1

This table presents the steps of a resistive-type exercise protocol administered in a rat model of muscle 

function. Degrees indicate the angle of the joint during application of force. We investigate differences in 

observation 5 from the first and last experiment. Adapted from Cutlip et al. (2007).

Observation Experimental Test Protocol (3 Times/wk for 4.5 weeks)

1 Single Isometric force test conducted at 90°

2 1 Stretch-Shortening Contraction at 70° – 140° – 70°

3 8 sets of 10 Stretch-Shortening Contractions 90° – 140° – 90°

4 Single Isometric test conducted at 90°

5 1 Stretch-Shortening Contraction at 70° − 140° − 70°
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