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Abstract

A simulation study was conducted to provide a more thorough account of measurement error 

associated with interval sampling methods. A computer program simulated the application of 

momentary time sampling, partial-interval recording, and whole-interval recording methods on 

target events randomly distributed across an observation period. The simulation yielded measures 

of error for multiple combinations of observation period, interval duration, event duration, and 

cumulative event duration. The simulations were conducted up to 100 times to yield measures of 

error variability. Although the present simulation confirmed some previously reported 

characteristics of interval sampling methods, it also revealed many new findings that pertain to 

each method’s inherent strengths and weaknesses. The analysis and resulting error tables can help 

guide the selection of the most appropriate sampling method for observation-based behavioral 

assessments.
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Observers often use interval-based sampling methods to obtain duration estimates of 

behavior or other target events when continuous recording methods are not suitable. 

Interval-based sampling methods commonly found in applied behavior analysis studies 

include momentary time sampling (MTS), partial-interval recording (PIR), and whole-

interval recording (WIR) (Cooper, Heron, & Heward, 2007). All three methods involve 

dividing an observation period into many brief intervals in which an observer determines 

whether a target event occurs (Barlow, Nock, & Hersen, 2009). The total number of 

intervals in which the target event occurs is then counted to derive an estimate of cumulative 

event duration in the entire observation period. The rule for determining whether an interval 

is counted towards the estimate varies by method (Mayer, Sulzer-Azaroff, & Wallace, 

2012). With MTS, also known as instantaneous sampling or point sampling, an interval is 

counted when the target event is observed at the exact moment the interval ends, regardless 

of whether the event occurs during any other portion of the interval. With PIR, also known 

as one-zero sampling, an interval is counted if the target event, regardless of its duration, is 
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observed in any portion of the interval. With WIR, an interval is counted only if a target 

event is observed throughout the entire interval. Because interval sampling methods do not 

record frequency and duration of every event, these methods are inherently prone to 

measurement error (Gardenier, MacDonald, & Green, 2004). The major aim of the present 

study is to assess the magnitude and pattern of measurement error associated with these 

methods and describe the influence of procedural variations and external factors.

Measurement error, in the context of observation-based interval sampling, is inaccuracy in 

the recorded data caused by the sampling strategy or other features of the observational 

method (G. Murphy & Goodall, 1980). Many studies have revealed consistently that the 

magnitude and direction of measurement error are influenced by several procedural 

variables, such as the sampling method (Alvero, Struss, & Rappaport, 2007; Gardenier et al., 

2004; Devine, Rapp, Testa, Henrickson, & Schnerch, 2011; Green, McCoy, Burns, & Smith, 

1982; G. Murphy & Goodall, 1980; Powell, Martindale, Kulp, Martindale, & Bauman, 1977; 

Rapp, Colby-Dirksen, Michalski, Carroll, & Lindenberg, 2008; Simpson & Simpson, 1977), 

the number or duration of observation intervals (Alvero, Rappaport, & Taylor, 2011; Alvero 

et al., 2007; Brittle & Repp, 1984; Devine et al., 2011; Dunbar, 1976; Leger, 1977; Powell et 

al., 1977; Rapp et al., 2008), and the duration of the observation period (Devine et al., 2011; 

Mansell, 1985; Mudford, Beale, & Singh, 1990) and some event-related factors, such as 

frequency (Alvero et al., 2007, 2011; Gardenier et al., 2004; Green et al., 1982; McDowell, 

1973; G. Murphy & Goodall, 1980; Powell et al., 1977) and duration (Green et al., 1982; G. 

Murphy & Goodall, 1980; Sanson-Fisher, Poole, & Dunn, 1980).

Many studies of interval sampling methods have consisted of computer-based simulations 

(Ary & Suen, 1983; Engel, 1996; Harrop & Daniels, 1986; Jacobsen & Wiggins, 1982; 

Kearns, Edwards, & Tingstrom, 1990; Milar & Hawkins, 1976; Powell, 1984; Powell & 

Rockinson, 1978; Repp, Roberts, Slack, Repp, & Berkler, 1976; Rhine & Ender, 1983; 

Rojahn & Kanoy, 1985; Tyler, 1979; Wilson, Jansen, & Krausman, 2008). Simulations offer 

researchers several advantages over analyses of observational records obtained from real-life 

events in the field. For instance, simulations give researchers control over event-related 

parameters throughout the observation period, such as frequency, duration, rate, and 

distribution. In a simulation, the occurrence of events can be precisely programmed to allow 

parametric and factorial analyses of their effects on measurement error. Furthermore, an 

evaluation of sampling methods with a simulation removes error attributable to the human 

observer. Observer error is inaccuracy in the data that is introduced by the observer and can 

be indirectly attributed to a range of variables, such as age, training, history, vigilance, 

reaction time, motivation, and stimulus discriminability (Green et al., 1982; Mudford et al., 

1990; M. J. Murphy & Harrop, 1994; Repp et al., 1976; Saudargas & Zanolli, 1990; Taylor, 

Skourides, & Alvero, 2012; Tyler, 1979). Measurement error is studied more efficiently 

when it is disentangled from the confounding effects of observer error.

Simulation studies of interval sampling methods have provided several consistent findings 

that are well known by applied behavior analysts. For instance, it is widely believed that 

MTS yields small error magnitudes and no consistent or systematic bias towards either 

overestimation or underestimation of event occurrences, whereas PIR yields greater error 

and a consistent bias towards overestimation of event occurrences (Harrop & Daniels, 1986; 
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Tyler, 1979). Simulation studies have also revealed with either MTS or PIR that 

measurement error increases when the duration of sampling intervals increases (Kearns et 

al., 1990; Rhine & Ender, 1983; Tyler, 1979), whereas error decreases when the duration of 

target events increase (Harrop & Daniels, 1986; Rhine & Ender, 1983). Although no 

simulation studies have directly assessed measurement error associated with WIR, it is 

reported that WIR yields a consistent bias towards underestimation of event occurrence that 

increases with interval duration (Alvero et al., 2007; Powell et al., 1977).

Simulation studies of interval sampling methods also have produced several inconsistent or 

discrepant findings. For example, PIR can be biased towards underestimation of event 

occurrences by approximately 35% (Repp et al., 1976), whereas MTS can be biased towards 

overestimation (G. Murphy & Goodall, 1980). Some findings suggest that the direction of 

MTS error depends on cumulative event duration, which is usually quantified as a 

percentage of the observation period. For example, Tyler (1979) reported that MTS error is 

biased towards underestimations when cumulative event duration is low and overestimations 

when cumulative event duration is high. On the other hand, Kearns et al. (1990) reported 

that MTS error does not vary systematically across a wide range of cumulative event 

durations, whereas Wilson et al. (2008) reported that MTS error decreases as cumulative 

event duration increases. MTS also was shown to produce low levels of unbiased error no 

matter the interval or event duration in one study (Ary & Suen, 1983) and decreased error 

with shorter event durations in another study (Rhine & Ender, 1983).

Procedural variations also hinder comparisons across studies, further clouding our 

understanding of measurement error. For example, it is difficult to compare and contrast 

results of studies that used atypical sampling procedures, such as the insertion of intermittent 

recording intervals with PIR (Harrop & Daniels, 1986; Repp et al., 1976) or different ranges 

of sampling intervals, such as 5 s to 60 s in one study (Tyler, 1979) and 30 s to 1,200 s in 

another (Kearns et al., 1990). In other studies, cumulative event durations, event durations, 

and event rates were either confounded or not reported (Kearns et al., 1990; Rhine & Ender, 

1983; Tyler, 1979; Wilson et al., 2008). Finally, measurement error was quantified 

differently across several studies, with some reporting absolute error values (i.e., difference 

between estimated and actual event durations) and some reporting relative error values (i.e., 

difference expressed as a percentage of actual event durations).

A more thorough review of the relevant research literature would reveal additional 

discrepant findings that pertain to interval sampling methods and measurement error, but a 

consistent conclusion will emerge nevertheless: No study has sufficiently taken into account 

the multifactorial nature of measurement error. Although results of a few studies hint at the 

magnitude and direction of error being dependent on the levels of other factors, in most 

studies measurement error was evaluated across a narrow range of parameters or without a 

sufficient account of possible interaction effects. As a result, limitations remain in our 

understanding of the error produced by interval sampling methods.

The purpose of the present study was to conduct a more thorough computer-based 

simulation study of measurement error associated with MTS, PIR, and WIR. A computer 

program was written to simulate the application of these different sampling methods under a 
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wider range of procedural and event-related parameters, including interval duration, duration 

of the observation period, event duration, and cumulative event duration. The reliability of 

the results was also assessed across up to 100 iterations of simulation. We hypothesized that 

the general magnitude and direction of measurement error would be a direct function of the 

sampling method, consistent with previous studies. We also hypothesized that the specific 

patterns of measurement error across the wide range of procedural and event-related 

parameters would reveal the effects of these parameters to be highly interdependent.

METHOD

Variables and Parameters

Table 1 shows the tested procedural and event-related parameters. All combinations of the 

variables and parameters were tested with three different sampling methods: MTS, PIR, and 

WIR. MTS sampled events only during the last second of each interval, and PIR and WIR 

sampled events continuously throughout each interval without additional recording intervals. 

Other procedural parameters included a wide range of interval durations (15 s to 450 s) and 

observation periods (1 hr to 8 hr). Cumulative event duration was chosen as a variable, 

rather than event frequency, to be consistent with previous simulation studies. Cumulative 

event durations from 1% to 100% of the observation period were tested, except when it was 

not possible. For example, with 256-s events and a 3,600-s observation period, cumulative 

event durations below 8% were not tested because the lowest possible percentage, rounded 

to the nearest whole number, is 8% (3,600 s ÷ 256 s × 100 = 7.11%). Event durations ranged 

from 1 s to 256 s.

Procedure

To simulate the application of the different interval sampling methods under different 

combinations of procedural and event-related parameters, a computer program was written 

using Microsoft Visual Basic. The basic structure of the program consisted of nested for 

next loops in which every combination of observation period, event duration, and 

cumulative event duration was passed to a subroutine to generate an array of randomly 

distributed target events. Elements of each event array consisted of ones, depicting the 

occurrence of a target event, and zeros, depicting the absence of the target event. Each 

element of the array represented 1 s of an observation period. Thus, for example, an event 

array for a 1-hr observation period consisted of 3,600 elements.

The location and distribution of target events were determined by using the random number 

generator in Visual Basic. For each level of cumulative event duration from 1% to 100%, the 

appropriate number of events was added to the array. For example, if given an observation 

period of 3,600 s, an event duration of 4 s each, and a cumulative event duration of 30% of 

the observation period, then it would be necessary to add at least 270 events to the event 

array (3,600 s × 30% ÷ 4 s = 270). Each event was assigned to the array at a randomly 

determined location. When an event was assigned, the zeros in that portion of the array, 

starting with the first element of the location, were replaced with ones; however, an event 

was assigned to a location only if the starting element did not already contain an existing 

event. If the selected location already contained an event, then another location was 
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randomly selected. This iterative procedure was repeated as many times as necessary to 

assign all events and yield the desired cumulative event duration as a percentage of the 

observation period. With this procedure, it was possible that two or more events could 

partially overlap leaving a succession of ones in the array that exceeded the desired event 

duration. As expected, overlapping events occurred more often as the actual cumulative 

event duration increased; however, events were never less than the desired event duration, 

except in two conditions: (a) when the desired cumulative event duration was achieved after 

only a portion of the final event had been assigned, or (b) when events were assigned near 

the end of the array. In the latter condition, for example, if a 16-s event was assigned to start 

at the 3,595th element of a 3,600-element array, then only 6 s of the event would be 

assigned to the array. This strategy of event assignment, instead of a more random strategy, 

resulted in better control over event duration by maximizing the discreteness of each event.

After the event array was generated, it was passed to a subroutine that simulated the 

application of the MTS, PIR, and WIR sampling methods. The same event array was used 

for every level of interval duration to ensure that the duration estimates and error measures 

obtained for every combination of sampling method and interval duration were based on the 

same distribution of events; this requirement is an improvement over past simulation studies 

in which comparisons between sampling methods were made across different event 

distributions (e.g., Powell, Martindale, & Kulp, 1975). This procedure was repeated once for 

every level of observation period from 1 hr to 8 hr. Finally, the entire simulation was 

conducted 100 times to yield measures of error variability across multiple iterations.

Dependent Measures

The simulation program yielded four measures for every combination of procedural and 

event-related parameters. The actual cumulative event duration was expressed as a 

percentage of the total observation period. The estimated cumulative event duration was 

obtained following each application of the sampling method and was expressed as a 

percentage of the total observation period. Absolute error was calculated by subtracting the 

actual cumulative event duration from the estimated cumulative event duration. Relative 

error was calculated by dividing the absolute error by the actual cumulative event duration, 

and then converting the result to a percentage. Positive error values represented 

overestimates of event duration, and negative error values represented underestimates of 

event duration.

RESULTS

Comparison of Actual and Estimated Cumulative Event Durations

Figures 1 and 2 show the duration estimates and relative error obtained from the simulation 

of MTS within a 1-hr observation period. Estimated cumulative event duration is plotted as a 

function of the actual cumulative event duration for each interval duration and event 

duration; results are presented from one iteration of the simulation. In general, Figures 1 and 

2 show that MTS yielded both underestimates and overestimates of actual cumulative event 

duration. The difference between estimated cumulative event duration and actual cumulative 

event duration (i.e., absolute error) tended to increase with increasing interval durations 
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across all levels of actual cumulative event duration. Absolute error appeared to be small or 

negligible when interval duration was nearly equal to or less than the event duration. The 

actual cumulative event durations had a much greater effect on the relative errors of 

estimates. As shown on the right axes of Figures 1 and 2, the magnitude of relative error 

tended to decrease with increasing actual cumulative event durations; however, the 

magnitude of this decrease appeared to be dependent on event duration and interval 

duration. For instance, relative error appeared to be either small or negligible when interval 

duration was similar to or less than the event duration. Conversely, relative error appeared to 

be large when interval duration exceeded event duration, especially at lower levels of actual 

cumulative event duration.

Figure 3 shows the duration estimates and relative error obtained from the simulation of PIR 

within a 1-hr observation period. In general, the results reveal the characteristic tendency of 

PIR to overestimate cumulative event durations systematically. In addition, the magnitude of 

overestimation appears to be a direct function of interval duration and event duration. For 

instance, the magnitude of overestimation increased when interval duration increased and 

event duration decreased. Across actual cumulative event durations of 1% to 100%, the 

patterns of duration estimates tended to be curvilinear. In general, as interval duration 

increased, the curvilinear pattern appeared to be more pronounced. Furthermore, increases in 

event duration tended to shift the patterns of duration estimates from curvilinear to more 

linear (or toward actual cumulative event durations).

Relative error of duration estimates with the PIR method showed a systematic pattern across 

actual cumulative event durations, event durations, and interval durations. In general, 

relative error decreased with increasing cumulative event durations and event durations, and 

it increased with increasing interval duration. In some cases, relative error was large (up to 

10,000% of the observation period), especially when event durations were short and interval 

durations were long.

Figure 4 shows the duration estimates and relative error obtained from the simulation of 

WIR within a 1-hr observation period. The results show a systematic pattern of error similar 

to PIR, except that event durations were underestimated and the magnitude of error was 

slightly greater. Similar to PIR error patterns, the magnitude of underestimation with WIR 

appears to depend on interval duration, actual cumulative event duration, and event duration. 

As interval duration increased and event duration decreased, the magnitude of 

underestimation increased. The curvilinear patterns of underestimation between 1% and 

100% of the actual cumulative event durations were consistent across the interval durations 

and event durations, except when event duration far exceeded interval duration. The overall 

patterns of relative error associated with the WIR method were similar to those with PIR; 

however, unlike the PIR method, the WIR method imposes a floor effect on the magnitude 

of relative error. Because the maximum magnitude of absolute error cannot be greater than 

the actual event duration, relative error varied from 100% to 0%. (Note the different y-axis 

scale on the right side of Figure 3.) In general, relative error decreased with increasing 

cumulative event durations and event durations and increased with increasing interval 

duration.
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Duration of Observation Period

Figure 5 shows how different observation periods affected estimates of cumulative event 

durations when event duration was held constant at 32 s. Increasing the duration of the 

observation period from 1 hr to 8 hr systematically reduced the variability of error with all 

three methods. This reduction in error variability was also associated with a reduction in the 

overall magnitude of error with MTS but not with PIR and WIR. Increasing the observation 

period had similar effects with other event durations not shown.

Repeated Sampling across Multiple Iterations

Figure 6 shows the effects of averaging the estimates obtained across 100 different iterations 

of the simulation in a 1-hr observation period. Results for only 32-s event durations are 

presented, but they are representative of the effects seen with other event durations. In 

general, the results demonstrate the reliability of the duration estimates across multiple 

repetitions of the simulation, each with a different random distribution of events. The small 

standard deviations associated with the duration estimates after 100 iterations further support 

the general conclusion that the duration estimates derived from the MTS, PIR, and WIR 

methods are highly repeatable, particularly with shorter interval durations.

Absolute Error

Because the duration estimates derived from MTS, PIR, and WIR methods were systematic, 

tables were generated to show the range of absolute errors obtained in the present simulation 

across the many combinations of procedural and event-related parameters. These tables, one 

for each method, can be obtained from the first author or by accessing the Supporting 

Information for this article on the Wiley Online Library. These tables could serve as a 

reference for researchers and practitioners who rely on interval sampling methods. They 

show the median, minimum, and maximum absolute error obtained from the present 

simulation, given different levels of estimated or actual cumulative event durations. Given 

the expected actual cumulative event duration, one set of tables can be consulted in advance 

of designing or implementing an interval-based observation study to better understand and 

account for variables that might affect error in cumulative duration estimates. Accordingly, 

researchers will be able to determine a priori the possible magnitude and direction of error 

that can be expected for a given set of parameters that most closely approximates their own 

application. Because error is highly dependent on event-related parameters, the selection of 

an interval method should also take into account any anticipated changes in the occurrence 

of events after an intervention. The sensitivity of a method to detect a change would be 

substantiated if the range of possible duration estimates derived from the method across the 

study phases neither exceed nor overlap the intervention’s anticipated effect size. Another 

set of tables can be consulted for post hoc analysis of estimated cumulative event durations 

after obtaining observational data or to evaluate empirical results of an already published 

study.

Our analysis revealed an unexpected finding with MTS. Examination of the median error 

values across different categories of actual cumulative event durations showed that MTS is 

somewhat biased towards underestimation (negative medians) with low cumulative event 
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durations and overestimation (positive medians) with high cumulative event durations. This 

bias is most evident with longer interval durations and shorter event durations.

DISCUSSION

Consistent with many previous investigations of interval sampling methods, the present 

simulation study showed that measurement error associated with MTS, PIR, and WIR was 

highly systematic and dependent on interactions among interval duration, event duration, 

and cumulative event duration. The key findings can be summarized as follows: (a) PIR 

consistently overestimates and WIR consistently underestimates cumulative event duration; 

(b) MTS sometimes overestimates and sometimes underestimates cumulative event duration 

(error is not biased in either direction); (c) absolute error magnitude tends to be smaller with 

MTS and greater with PIR and WIR; (d) absolute error variability tends to be greater with 

MTS and smaller with PIR and WIR; (e) in general, absolute and relative error decrease 

when interval duration decreases; (f) absolute and relative error are minimal when interval 

duration is less than or equal to event duration; (g) absolute error decreases when 

observation period increases; and (h) assuming a random distribution of target events, 

patterns of error in a given measurement system are highly systematic, which makes it 

possible to estimate expected error a priori or obtained error post hoc.

The general hypothesis, that the magnitude and direction of measurement error are 

dependent on the sampling method used, was well supported. PIR and WIR produced, in 

general, greater magnitudes of error than MTS, consisted with previous studies (Alvero et 

al., 2007; Harrop & Daniels, 1986; Tyler, 1979). Also consistent was the finding that MTS 

produced mostly unbiased estimates of cumulative duration, whereas PIR tended to 

overestimate cumulative event duration and WIR tended to underestimate cumulative event 

duration. Similar effects with interval duration and event duration were also revealed. For 

example, regardless of the method used, error decreased when interval duration was 

decreased (Alvero et al., 2007; Kearns et al., 1990; Rhine & Ender, 1983; Tyler, 1979) and 

event duration was increased (Harrop & Daniels, 1986; Rhine & Ender, 1983). Error was 

reduced especially when event duration approached or exceeded interval duration, as 

reported by Ary and Suen (1983).

Some effects of sampling method, interval duration, event duration, and cumulative event 

duration differ from previous findings. However, instead of finding discrepant results, the 

present simulation study provides a more complete account of each variable’s influence on 

error by assessing all factorial combinations of the variables. Furthermore, the present 

findings expand our current understanding of the relative strengths and weaknesses of MTS, 

PIR, and WIR.

Perhaps the most widely reported conclusion from previous studies of interval sampling 

methods is that MTS is preferred over either PIR or WIR because it produces unbiased or 

unsystematic patterns of error (G. Murphy & Goodall, 1980; Powell et al., 1977; Suen, Ary, 

& Covalt, 1991). The present study provided evidence that MTS is biased towards 

underestimation when cumulative event durations are low and overestimation when 
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cumulative event durations are high. The magnitude of underestimation or overestimation 

with MTS sometimes exceeded 50% of the observation period.

Another reported conclusion from previous studies is that PIR and WIR produce excessive 

and inconsistent error (Powell, 1984; Powell et al., 1977). Indeed, Powell (1984) once 

described PIR as “equivalent to using a yardstick that aperiodically expands and contracts, 

and does so without the user’s awareness” (p. 218). For similar reasons, many experts do not 

recommend PIR or WIR at all (Alvero et al., 2007; G. Murphy & Goodall, 1980; Saudargas 

& Zanolli, 1990). Contrary to these sentiments, the present findings reveal some respectable 

characteristics of PIR and WIR. For example, unlike previous characterizations of PIR, the 

error associated with both PIR and WIR was found to be systematic and, in many instances, 

predictable across different interval durations, event durations, and cumulative event 

durations. For instance, the present study revealed that when PIR (or WIR) estimates of 

cumulative event duration were values other than 0% and 100%, then there was little 

variability in the estimates, even though the magnitude of overestimation (or 

underestimation) tended to be great. Thus, with some combinations of factors, clinicians and 

researchers can expect to obtain reliable estimates with PIR and WIR, and, if the obtained 

estimates are adjusted to take into account the expected magnitude of error, the results can 

be accurate. Such adjustments are not possible with MTS because of the notable amount of 

variability in error. In summary, using Powell’s (1984) analogy, our results suggest that it is 

MTS that is equivalent to using a yardstick that aperiodically expands and contracts because 

it can yield overestimations and underestimations, whereas PIR is equivalent to a yardstick 

that is consistently longer than standard because it almost always yields overestimations. 

Conversely, WIR is equivalent to a yardstick that is consistently shorter than standard 

because it consistently yields underestimations.

Regarding the influence of interval duration, many researchers have offered general but 

often disparate recommendations. For instance, several researchers advised caution when 

using MTS with interval durations greater than 60 s (Brittle & Repp, 1984), 120 s (Rhine & 

Ender, 1983), and 240 s (Gunter, Venn, Patrick, Miller, & Kelly, 2003). Many researchers 

have acknowledged that, in practice, the selection of interval duration is often arbitrary 

(Rojahn & Kanoy, 1985; Sanson-Fisher et al., 1980), based on convenience of the observer 

(Mansell, 1985), or otherwise rarely based on achieving a specific level of accuracy 

(Mansell, 1985; Rojahn & Kanoy, 1985; Sanson-Fisher et al., 1980). The present simulation 

results seem to shed more light on these confusing recommendations by demonstrating 

robustly that error was dependent on the relation between interval duration and event 

duration. When interval duration was less than or closely approximated event duration, error 

magnitude and variability were minimal, even when interval duration was either short and 

frequent or long and infrequent. Conversely, when interval duration exceeded event 

duration, error magnitude and variability increased appreciably. This relation between 

interval and event duration was seen consistently across all three sampling methods. 

Therefore, it seems reasonable to conclude any one-dimensional rule of thumb for selecting 

interval duration will be misleading. This conclusion is not entirely new; many researchers 

have concluded that error is problematic when interval durations are long and event 

durations are short (Ary, 1984; Ary & Suen, 1986; Choi, Nam, & Lee, 2007; G. Murphy & 

Goodall, 1980; Rhine & Ender, 1983; Saudargas & Zanolli, 1990; Suen & Ary, 1986); 
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however, results of the analyses reported herein and in the accompanying error tables reveal 

the nature of this interaction more precisely and comprehensively across a wide range of 

parameters.

Although there is a dearth of evidence regarding the effects of observation period on error 

(Mudford et al., 1990), the findings from the present analysis with MTS are consistent with 

those of Devine et al. (2011) by showing that an increase of observation period reduced the 

magnitude and variability of error. The present analysis showed that the impact of 

observation period differed across sampling method. With PIR and WIR, increasing the 

observation period reduced the variability of error for any given set of parameters; however, 

it did not affect the magnitude of error. The overall pattern of error magnitude and 

variability can be expected to extend to observation periods that are less than 60 min. For 

example, observation periods of 10 to 15 min, commonly used in behavior-analytic research, 

would be expected to generate greater error variability than shown here with 60-min periods 

and all three methods, but error magnitude would be expected to be greater only with MTS.

The calculation and reporting of error statistics obtained from multiple iterations of the 

simulation were useful for demonstrating the reliability of the error patterns across the 

multiple combinations of the procedural and event-related parameters. The present findings 

show that statistical averaging of estimates obtained from multiple iterations of PIR and 

WIR did not change the magnitude or pattern of error but, instead, showed the error patterns 

to be highly reliable across the various parameters. To demonstrate a reliable pattern of 

error, the present study used 100 iterations, but fewer may have been adequate. Similar 

studies reported that iterations of 10, 15, and 20 generated data with marginal differences 

(Wilson et al., 2008) and no significant differences with iterations of 20, 50 and 100 (Rhine 

& Ender, 1983); therefore, iterations above 20 appear to have diminishing returns.

Despite several advantages, simulation studies have some disadvantages. First, generality of 

the results to real-world settings is limited. The controlled manipulation of variables 

removed variability that would be encountered in the field. Second, the evaluation of event 

duration was confounded with cumulative event duration; as cumulative event duration 

increased, average event durations also increased because many events tended to overlap or 

run in series. Third, the distribution of events in real-world settings can vary widely, but the 

present study evaluated only a random distribution. It is unclear how other distributions 

would affect the patterns of error.

Several important topics remain to be studied. For example, variable or random sampling 

strategies have not been thoroughly evaluated. These strategies can be more user-friendly 

and still provide levels of error similar to fixed-interval methods (Test & Heward, 1984). 

More research also is needed to understand how cyclical and irregular temporal patterns of 

events and non-events affect the accuracy of interval sampling methods, especially with 

shorter observation periods that are commonly used by applied behavior analysts. 

Furthermore, future research should take into account duration of both occurrences and 

nonoccurrences of events, because studies have shown that error can be exacerbated when 

interval duration exceeds the duration of nonoccurrences (Ary & Suen, 1986; Suen & Ary, 

1986).
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Also relevant are additional studies to determine the sensitivity of sampling methods for 

detecting changes in duration events (e.g., Bartlett, Rapp, & Henrickson, 2011; Carroll, 

Rapp, Colby-Dirksen, & Lindenberg, 2009; Devine et al., 2011; Meany-Daboul, Roscoe, 

Bourret, & Ahearn, 2007; Rapp et al., 2007, 2008). These studies reveal how various 

combinations of sampling and event-related parameters give rise to either false positives or 

false negatives in experimenter judgments of behavior change and intervention 

effectiveness. A synthesis of these approaches with more direct assessments of measurement 

error will further advance our understanding of the strengths and limitations of sampling 

methods.

Finally, practical tools are needed to help researchers and practitioners determine the 

magnitude and direction of error they can expect to encounter either for a priori or post hoc 

considerations. As argued by others (e.g., Rojahn & Kanoy, 1985), we believe the 

systematic and reliable nature of error patterns supports the feasibility of developing these 

tools. Examples might include a mathematical equation (Wilson et al., 2008), process 

algorithm (Suen & Ary, 1986), decision tree or flow chart (Fiske & Delmolino, 2012), or 

error tables, such as those provided herein. For example, Wilson et al. (2008) derived an 

equation based on sampling theory to identify the number of observations needed to achieve 

a given level of error (see also Scheaffer, Mendenhall, Ott, & Gerow, 2012). Although the 

equation used by Wilson et al. does not take into account the interrelations among interval 

duration, event duration, or interevent duration, it is a good example of mathematical 

modeling that can be applied to this topic.

It was recently reported that 45% of the articles published between 1995 and 2005 in the 

Journal of Applied Behavior Analysis used discontinuous methods of recording (Mudford, 

Taylor, & Martin, 2009). The widespread reliance on these methods to collect behavioral 

data and measure intervention outcomes highlights the importance of efforts to investigate 

the accuracy, reliability, and sensitivity of these measures. Studies that further describe the 

error patterns of observational sampling methods, such as those reported herein, are 

important for the continued refinement of our data-collection methods.
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Figure 1. 
Estimated and actual cumulative event durations (y axis, left) and relative error (y axis, 

right) obtained from one iteration of the MTS method plotted across different actual 

cumulative event durations (x axis), event durations of 1 s, 16 s, and 32 s (left, middle, and 

right), and interval durations (top to bottom). Relative error was the difference between 

estimated and actual cumulative event durations divided by actual cumulative event 

durations. Cumulative event durations and relative error are expressed as the percentage of a 

1-hr observation period. Positive error values represent overestimates, and negative values 

represent underestimates.
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Figure 2. 
Continued from Figure 1. Estimated and actual cumulative event durations (y axis, left) and 

relative error (y axis, right) obtained from one iteration of the MTS method plotted across 

different actual cumulative event durations (x axis), event durations of 64 s, 128 s, and 256 s 

(left, middle, and right), and interval durations (top to bottom). Other details are the same as 

in Figure 1.
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Figure 3. 
Estimated and actual cumulative event durations (y axis, left) and relative error (y axis, 

right) obtained from one iteration of the PIR method plotted across different actual 

cumulative event durations (x axis) and different event durations (top to bottom). Multiple 

plots in each panel show the effects of different interval durations and the actual cumulative 

event durations. Other details are the same as in Figure 1.
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Figure 4. 
Estimated and actual cumulative event durations (y axis, left) and relative error (y axis, 

right) obtained from one iteration of the WIR method. Other details are the same as in 

Figure 3.
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Figure 5. 
Estimated and actual cumulative event durations obtained from one iteration of the MTS, 

PIR, and WIR methods plotted in each panel. The effects of 1-hr, 4-hr, and 8-hr observation 

periods are shown from left to right. The effects of 30-s to 450-s interval durations are 

shown from top to bottom. Event duration was 32 s.
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Figure 6. 
Estimated and actual cumulative event durations obtained from 1 and 100 iterations of the 

MTS, PIR, and WIR methods plotted in each panel. The effects of increasing the number of 

iterations from 1 to 100 are shown from left to right. The effects of 30-s to 450-s interval 

durations are shown from top to bottom. Event duration was 32 s. Estimates in the right 

panels are means and standard deviations (error bars) across the 100 iterations.
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Table 1

Procedural and Event-Related Parameters That Were Tested in the Simulation

Parameters Levels tested

Sampling method MTS, PIR, WIR

Interval duration (s) 15, 30, 60, 120, 240, and 450

Observation period (hr) 1, 4, and 8

Cumulative event duration (%) 1 to 100 (in 1% increments)

Event duration (s) 1, 2, 4, 8, 16, 32, 64, 128, and 256
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