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Abstract

Increasing silver nanoparticle (AgNP) use in sprays, consumer products and medical devices has 

raised concerns about potential health effects. While previous studies have investigated AgNPs, 

most were limited to a single particle size or surface coating. In this study, we investigated the 

effect of size, surface coating and dose on the persistence of silver in the lung following exposure 

to AgNP. Adult male rats were intratracheally instilled with four different AgNPs: 20 or 110nm in 

size and coated with either citrate or polyvinylpyrrolidone (PVP) at 0.5 or 1.0mg/kg doses. Silver 

retention was assessed in the lung at 1, 7 and 21 days post exposure. ICP-MS quantification 

demonstrated that citrate coated AgNPs persisted in the lung to 21 days with greater than 90% 

retention, while PVP coated AgNP had less than 30% retention. Localization of silver in lung 

tissue at one day post exposure demonstrated decreased silver in proximal airways exposed to 

110nm particles compared with 20nm AgNPs. In terminal bronchioles one day post exposure, 

silver was localized to surface epithelium but was more prominent in the basement membrane at 7 

days. Silver positive macrophages in bronchoalveolar lavage fluid decreased more quickly after 

exposure to particles coated with PVP. We conclude that PVP coated AgNPs had less retention in 

the lung tissue over time and larger particles were more rapidly cleared from large airways than 

smaller particles. The 20nm citrate particles the greatest effect; increasing lung macrophages even 

21days after exposure and resulted in the greatest silver retention in lung tissue.
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INTRODUCTION

Silver nanoparticles (AgNPs) are used as anti-microbial agents in wound dressings, sprays, 

textiles and medical devices (Pelgrift, 2013). The increasing prevalence of AgNPs has led to 

concerns about accumulation in the environment as well as possible health effects (Fabrega, 

2011, Seltenrich, 2013). Further, because AgNPs are small, there is concern about 

persistence of these materials in the body following multiple routes of exposure, including 

exposures to the respiratory system. Inhalation has been proposed as a route of exposure 

during production of these materials but also during use of sprays (Quadros, 2010).

Previous work on the distribution of AgNPs in the respiratory system has been limited to 

studies that examine a single nanoparticle surface coating or size. The bulk of previous 

studies do not describe the distribution of the particles within the lung or measure the 

amount of silver retained in the lungs over time. Studies that compare inhalation versus 

instillation of insoluble particles have shown clearance of instilled particles is slower than 

for inhaled particles (Pritchard, 1985) and that biological effects may be larger for instilled 

particles at the same delivered dose (Baisch, 2014). Instillation enables screening of a large 

number of compounds, at a range of doses including high doses, rapidly and delivery of a 

readily quantifiable, known delivered dose (Driscoll, 2000). All of these features are 

advantageous for measurement of particle retention and eventual clearance from the lungs 

over time, especially when sensitivity of the measurement is required.

One mechanism of removal of particles in the lung is uptake by inflammatory cells. As 

clearance of particles is dependent on both the mucociliary escalator, as well as phagocytes, 

for removal of particles, use of multiple doses to characterize retention and distribution is 

important as these processes may be saturable. Macrophages are the predominant 

inflammatory phagocytic cell type resident and recruited to the lung, often comprising 98% 

or more of the cells obtained in bronchoalveolar lavage. Hence, when studying long term 

clearance of nanoparticles from the lung tissue, assessment of macrophage involvement is 

key to fully understanding the response.

Ag nanomaterials can be stabilized using surface coatings to prevent oxidation and loss of 

Ag ions. Citrate and polyvinylpyrrolidone (PVP) are common surface coatings used to 

stabilize AgNPs in solution (Huynh, 2011). Surface absorbed PVP stabilizes AgNPs by 

steric repulsion (Huynh, 2011). While PVP is generally considered safe by the US Food and 

Drug Administration, there have been documented cases of allergic reaction to PVP 

(Yoshida, 2008, Adachi, 2003, Rönnau, 2000). Previous studies of both citrate and PVP 

stabilized AgNPs administered in vitro, and in mice in vivo, have found that silver 

associated with small (20nm) citrate coated AgNPs were still detected in the lung tissue, 

associated with extracellular matrix, at 40 hours and 21 days after a single instillation 

(Wang, 2014). However, the effect of varying doses on the localization of AgNPs by lung 

region, and within lung cells, was not described.

In the lung, the effect of materials on the respiratory tract is greatly influenced by the lung 

region that receives the highest deposition (local delivered dose). Retention may also be 

very important for AgNPs because the nature of these particles may change over time, 
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potentially releasing silver ions (Wang, 2014). We used two doses and 4 types of AgNPs: 

citrate coated 20 and 100 nm AgNPs and PVP coated 20 and 100 nm AgNPs as well as site 

specific histopathology to evaluate AgNPs effects by lung region. We coupled this 

histologic approach with quantitative analysis of total lung silver burden over time following 

a single acute exposure. The goal was to determine: 1) how size and surface coating 

influence silver retention in the lung 2) where in the lung the silver was retained and 

whether that changed over time and 3) the extent of macrophage involvement in silver 

clearance over time. This data will inform future studies of health effects of AgNPs health 

effects in the lung because biological effects within the lung tissue can be discussed in terms 

of clearance and retention of the initial dose.

METHODS

Silver nanoparticles

Silver nanoparticles (AgNPs) manufactured by nanoComposix, Inc (San Diego, CA) were 

supplied by the National Institute of Environmental Health Sciences Centers for 

Nanotechnology Health Implications Research (NCNHIR) consortium. Preliminary testing 

and characterization of the materials was performed by The Nanotechnology 

Characterization Laboratory (SAIC-Fredrick, Frederick, MD) (Wang, 2014). Two sizes, 20 

nm and 110 nm, were used and were stabilized in two different buffers, citrate and 

polyvinylpyrrolidone (PVP) to yield 4 test particles that were delivered intratracheally (i.t.) 

as 0.5 and 1.0 mg/kg. Doses were chosen to match those used in previous studies performed 

by NCNHIR consortium members to allow comparison across studies (Wang, 2014). Two 

PVP buffers were used as controls for the PVP coated particles: 10kDa PVP (ISP 

Technologies Inc., Texas City, TX) for the 20 nm Ag NPs and 40kDA PVP (Calbiochem, 

San Diego, CA) for the 110 nm AgNPs. Sham controls included use of endotoxin free water 

with the coating material at a similar concentration to that in the AgNP suspensions so that 

effects of the coating could be separated from AgNP effects. The PVP was used at 33 μg/ml 

for the 10 kDa PVP and 62 μg/ml for the 40 kDa PVP. Citrate buffer was prepared using 

trisodium citrate dihydrate (Sigma, St. Louis, MO) in endotoxin free water to a 

concentration of 2 mM and pH 7.5. All AgNPs were supplied at 1mg/ml and dilution of 0.5 

mg/ml was made by mixing the provided AgNP suspensions with the corresponding buffers. 

AgNP stock suspensions were sonicated in a Branson Ultrasonics 8510 bath sonicator 

(Danbury, CT) for five minutes immediately prior to use.

AgNP Characterization

Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) was 

performed to characterize AgNPs prior to use. DLS was performed on samples diluted 1:100 

in milliQ water with a Zetasizer Nanosizer ZEN1690 (Malvern Instruments, UK) equipped 

with a He-Ne 633 nm laser. Diluted sample absorbance was determined using a PharmaSpec 

UV-1700 spectrophotometer (Shimadzu, Santa Clara, CA) and the refractive index of silver 

was obtained from the NIST database (Smith, 1995). TEM sample grids were by prepared 

by drop-coating the sample solution onto the Lacey Carbon Type - A, 300 mesh Cu grids 

(Ted Pella Inc, Redding CA). Briefly, 6 μL of aqueous sample was placed on the TEM grid 

Anderson et al. Page 3

Nanotoxicology. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and allowed to dry for 2 hours. Imaging was performed using Phillips CM12 Transmission 

Electron Microscope at 100kV.

Animals

Twelve week old male Sprague-Dawley rats were obtained from Harlan Laboratories 

(Hayward, CA) and acclimated for one week prior to treatment. Rats were housed two per 

cage and provided Laboratory Rodent Diet (Purina Mills, St Louis, MO) and water ad 

libitum. All animal experiments were performed under protocols approved by the University 

of California Davis IACUC in accordance with National Institutes of Health guidelines. For 

intratracheal instillation, rats were instilled with 1 μl/g body weight of AgNP suspension or 

vehicle control buffer under anesthesia administered via a Quantiflex anesthesia unit 

(Medmark Crop., Versailles, OH). The anesthesia unit was equipped with an isoflurane 

vaporizer using 3% isoflurane in an oxygen flow of 1.0 l/min for 5 to 6 minutes. Biological 

samples were obtained at necropsy 1, 7 and 21 days post instillation following anesthesia 

with Beuthanasia-D at 7.5 ml/Kg and exsanquination. The trachea was cannulated and left 

lung lobe isolated by clamping the left primary bronchus. The right lobes were lavaged 

using 8 ml of 0.9% sterile saline in a 12 ml syringe, washing with the same aliquot three 

times. The resultant bronchoalveolar lavage fluid (BALF) was collected into 15ml round 

bottom tubes and kept on ice until processed. The right lobes were removed and stored at 

−80°C. The left lobe of most animals was perfused with 4% paraformaldehyde at 30 cm of 

pressure for one hour. There were six animals per treatment at each timepoint tested (N= 6/

group and timepoint).

BALF Macrophages

BALF was centrifuged at 2000 rpm and 4°C for 10 minutes to pellet cells. The supernatant 

was removed and the cell pellet was resuspended in 2 ml sterile 0.9% saline and the total 

number of cells and non-viable cells, using Trypan blue assay, were counted. Cytospin 

slides were prepared from the resuspended BALF cells for silver staining and quantitation of 

macrophages as a percentage of the total cells.

Silver Staining

Two 1 mm blocks representing short and long axial path airways of the 4% 

paraformaldehyde fixed left lobe were embedded in paraffin and sectioned onto poly-L-

lysine coated slides. Silver was visualized using a variation of a published method for 

autometallography (Danscher, 2006, Hacker, 1988). A silver enhancement kit for light and 

electron microscopy (Ted Pella Inc, Redding CA) was used (Wang, 2014) and all slides 

were developed under identical conditions to facilitate comparisons across groups and 

timepoints. Paraffin embedded samples were deparafinized, rehydrated and stained with 

equal volumes of enhancer and developer for 15 minutes. Cytospin slides were hydrated in 

PBS, stained for silver as described above and then lightly counter stained with diluted 

1:1000 methylene blue azure II stain.
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BALF macrophage counts

The percentage of silver-positive BALF macrophages was determined in cytospins stained 

by autometallography and counted for silver positive and negative macrophages at 40× 

magnification. A total of 500 cells were counted per slide. To further assess the silver load 

in the macrophage population, a semi-quantitative scoring system was employed. Silver-

positive macrophages were subdivided into light, moderate and heavy staining for silver as 

shown in Figure S1. Two hundred silver positive macrophages were scored per animal; all 

silver positive macrophages were scored if less than 200 macrophages were silver positive. 

The determined fractions of light, moderate and heavy silver content macrophages were 

used to determine a score for each animal using the formula:

where S is the silver score, MT is the total recovered macrophages per ml of BALF, and fL, 

fM and fH are the fractions of silver positive macrophages in the macrophage population.

TEM of BALF Macrophages—Cells recovered from BALF were fixed with Karnovsky’s 

fixative (0.9% glutaraldehyde/0.7% paraformaldehyde in cacodylate buffer, adjusted to pH 

7.4, 330 mOsmol/kgH2O) and suspended in agar blocks. Blocks were embedded in Araldite 

502 resin and osmicated (Van Winkle, 1995). Sections were cut using a Leica Ultracut UCT 

ultramicratome and Diatome diamond knives. TEM images of BALF macrophages were 

obtained using a Philips CM120 electron microscope.

Silver deposition quantification

Concentration of silver in the right middle lobe was determined using ICP-MS on the snap 

frozen right middle lobe stored at −80°C. The lobes were lyophilized using a Labconco 

FreeZone 2.5 (Kansas City, MO) freeze drying system and weighed to determine tissue dry 

weight. Tissue was digested with 70% trace metal grade nitric acid (Fisher, Pittsburg, PA) 

and heated to 70°C for two hours. Samples were cooled to room temperature, an equal 

volume of 30% H2O2 was added. Samples were reheated to 70°C for 2-4 h to break down 

remaining lipids and finally cooled to room temperature and diluted 10:1 with 3% HNO3 for 

analysis by the UC Davis/Interdisciplinary Center for Plasma Mass Spectrometry using an 

Agilent 7500CE ICP-MS (Agilent Technologies, Palo Alto, CA) (Abid, 2013). The samples 

were introduced using a MicroMist Nebulizer (Glass Expansion, Pocasset, MA) into a 

temperature controlled spray chamber with Helium as the collision cell gas. Instrument 

standards were diluted from Certiprep Ag Standard (SPEX CertiPrep, Metuchen, NJ) to 

0.5ppb, 1ppb, 10ppb, 50ppb, 100ppb, 200ppb, and 500ppb respectively in 3% Trace 

Element HNO3 (Fisher) in 18.2 MΩ-cm water. A NIST 1643E Standard (National Institute 

of Standards and Technology, Gaithersburg, MD) was analyzed initially and QC standards 

consisting of a Certiprep Ag Standard at a concentration of 100ppb was analyzed every 12th 

sample as a quality control. Sc, Y, and Bi Certiprep standards (SPEX CertiPrep) were 

diluted to 100ppb in 3% HNO3 and introduced by peripump as an internal standard.
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Semi-quantitative scoring

The level of silver present in the terminal bronchioles of the left lung lobe was assessed 

using a semi-quantitative scoring system (Coppens, 2007). Silver enhanced stained slides 

were blinded and scored on a scale of zero to four using the criteria described in 

Supplemental Table 1. All terminal bronchioles in the two pathway sections were scored and 

the mean was taken to represent that animal. Six animals were counted per group.

Statistics

Data are reported as mean ± standard error of the mean (SEM) unless otherwise stated. 

Statistical outliers were eliminated using the extreme deviate method (Graphpad, La Jolla, 

CA). Multivariate analysis of variance (MANOVA) was applied against particle size, 

surface coating, time-point and dose when appropriate. Multiple comparisons for factors 

containing more than two levels were performed using Fisher’s Protected Least Significant 

Difference (PLSD) method. Pair-wise comparisons were performed individually using a 

one-way ANOVA followed by PLSD post hoc analysis. Non-parametric data analysis was 

performed using a Kruskal-Wallis ANOVA and Median test or a Mann-Whitney test where 

appropriate. p values of < 0.05 were considered statistically significant. Statistics was 

performed using STATISTICA 64 (Tulsa, OK).

RESULTS

Particle Characterization

All AgNPs were supplied by the NIEHS NCNHIR and NCI and were previously 

characterized (Wang, 2014). TEMs of both sizes of particles (Figure S2) in suspension at the 

time of instillation indicate AgNP of the expected sizes. Some particle clumping in 

suspension is expected. DLS confirmed that sonication just prior to instillation results in 

single particles of the expected size. The diameter of the 110 nm citrate AgNP was 108.5 nm 

and the 20 nm citrate was 19.5 nm. These results are in agreement with other studies using 

the same particles and resuspension methods (Wang, 2014). It should be noted that these are 

measures of the core silver particle size and protein corona and surface modifications could 

add to this size.

Macrophage clearance of AgNP

BALF cells were tested for viability and the percentage of non-viable cells was not different 

between the control (range of 1.2-2.2%) and exposed (range of 2.3-3.5%) groups. BALF 

cells were stained for silver content and the predominant BALF cell type that contained 

silver as determined by autometallography was the macrophage population (Figure S1). 

Within this population, there were a variety of macrophage profiles with the majority of 

profiles containing no silver stain (Figure S1B) and the remainder containing various 

amounts of silver (Figure S1A-D). These profiles were similar between all 4 particle types. 

Some macrophages were loaded with silver and had a foamy appearance (Figure S1D). 

When total macrophage cell numbers were examined (Figure 1A, C, E and G), BALF 

macrophages were increased following instillation of AgNPs but the temporal pattern of this 

increase, as well as the percentage of BALF macrophages containing silver (Figure 1B, D, F 
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and H) varied with particle size and coating. The smaller 20 nm AgNPs were more effective 

at increasing macrophage numbers at either 1 or 7 days following exposure than the 110 nm 

particles. Only the 20nm citrate AgNP resulted in statistically significant increases in 

macrophage numbers in lavage that persisted to 21 days post exposure (Figure 1A) as all 

other groups returned to control values by 21 days (Figure 1C, E and G). Only the 110nm 

citrate AgNP was not able to induce an acute increase in macrophage cell numbers at 1 days 

post exposure (Figure 1C). By 24 h, the percentage of macrophages that were positive for 

silver varied from a high of 38% in the 110 nm PVP group to a low of 22% in the 110 nm 

citrate group, but all particle exposures resulted in detection of silver positive macrophages 

(Figure 1B, D, F and H). Instillation of 1.0 mg/kg of the 20 nm citrate coated AgNP 

produced the greatest percentage of silver positive macrophages persisting to 21 days post 

exposure (Figure 1B). Interestingly, this was significantly greater than in the group exposed 

to the same size particles but with a PVP coating (Figure 1F). There was not a difference in 

the percentage of positive macrophages with increasing dose except for the 20nm citrate 

AgNP at 21 day (p = 0.049), where the 1.0 mg/kg dose was significantly higher than the 0.5 

mg dose at that timepoint (Figure 1B).

To assess the differences in internalized silver in the macrophage population, we created a 

silver uptake score (Figure 2). This system gives greater weight to macrophages staining 

heavily for silver resulting in higher scores in treatment groups with a high percentage of 

heavily stained macrophages. This more clearly delineates that the 20nm citrate coated 

particles have the greatest degree of macrophage involvement 21 days post exposure (Figure 

2A). Additionally, uptake of AgNPs was demonstrated in TEM micrographs of macrophages 

containing particles (Figure 3). A 110 nm AgNP located in a vacuole in Figure 3A and 3B 

(open arrow). Figure 3C shows a different macrophage with a silver particle in a lysosome.

Localization of silver in lung tissue

The abundance of silver and distribution of AgNPs was determined in lung tissue using ICP-

MS on the right middle lung lobe and autometallography on tissue sections from the left 

lung lobe of the same animals. Surface coating of the AgNPs had the largest effect on silver 

clearance from the tissue with PVP coated AgNPs showing significant clearance of 20 nm 

AgNP (p = 0.013) and 110 nm AgNP nearly significant (p = 0.078) at 21 days after exposure 

(Figure 4). There was no difference in particle clearance by particle size. Interestingly, there 

was a lack of significant clearance of both citrate coated AgNPs even at 21 days after a 

single acute exposure, although there was quite a bit of variance in these measurements with 

a range from 0 to 1.6 μg/g in the 20 nm citrate and a range of 0 to 2.8 μg/g in the 110 nm 

citrate. The following decreases in measured silver were observed at 21 days when 

compared to lobes containing particles of the same size 1 day after instillation: 2% for the 20 

nm citrate, 91% for the 20 nm PVP, 9% for the 110 nm citrate and 71% for the 110 nm PVP.

Examination of the intrapulmonary lobar bronchus of the left lobe indicated that at 1 day 

post exposure, the 110 nm AgNP were removed from the larger airways more completely 

than the 20nm AgNP (compare Figure 5B and D with Figure 5A and C). The silver was 

heavily localized to the surface epithelium and was found on the cilia as well as within Clara 

cells and this intracellular localization was especially prominent for the citrate coated 
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AgNPs (Figure 5A). At the same time point (1 day post exposure), silver was intensely 

localized to the most distal conducting airways, the terminal bronchioles, and the 

immediately adjacent bronchoalveolar regions in all groups (Figure 6A, C, E and G). Silver 

was localized to the surface epithelial cells including dark intracellular staining in Clara cells 

(Figure 6B, D, F, and H) and was also found in the subepithelial basement membrane zone. 

Subepithelial localization to the basement membrane zone was especially prominent in the 

20nm citrate and 20nm PVP groups (Figure 6B and F). All groups had intense staining of 

tissue macrophages associated with the basement membrane zone, however, the silver 

staining was less abundant for the larger 110 nm AgNPs (Figure 6C and G) compared to the 

20 nm AgNPs (Figure 6A and E).

At 7 days post exposure (Figure 7A-H), silver was heavily localized to the basement 

membrane zone of the terminal bronchioles, alveolar macrophages and immediately adjacent 

alveoli of the bronchoalveolar duct junction. This was the only region of the lung that 

contained heavy staining at this timepoint; the larger airways and more peripheral alveoli did 

not contain detectable silver (Figure S3). Silver was also localized to the vascular 

endothelium in this region (Figure 8F). In contrast to 1 day post exposure, the epithelium of 

the most distal portion of the terminal bronchiole no longer contained large accumulations of 

silver (compare Figure 6 with Figure 7). This staining pattern was similar between AgNPs of 

different sizes and surface coatings. However, some cells in the more proximal portion of 

the terminal bronchiole, contained silver accumulations in the epithelium and this included 

both cytoplasmic and nuclear staining of Clara and ciliated cells (Figure S4). Frank 

epithelial cytotoxicity was not seen in the high resolution histopathology for any timepoint 

or type of AgNPs (data not shown). At 21 days post exposure (Figure S5), silver was still 

detectable in focal areas of some of the terminal bronchioles. The few areas of the terminal 

bronchiole/alveolar duct region that did have localized staining at this timepoint are shown 

in Figure S5. There was not a difference in the abundance of these regions by particle type. 

Silver was also found in tissue macrophages but was greatly diminished in all groups 

compared to the pattern at 1 and 7 days. To give an assessment of the range of staining 

within the tissue, we used a semiquantitative scoring method to illustrate overall tissue 

terminal bronchiole/alveolar duct junction staining intensity by days after exposure (Figure 

8). This illustrates the significant reduction in silver localization in this lung region by 21 

days after exposure in all the exposure groups.

DISCUSSION

We tested AgNPs of two sizes (110 vs 20 nm) and two surface coatings (citrate vs PVP) at 

two doses (0.5 and 1.0 mg/kg) in adult male rats. Our results show that AgNPs and/or silver 

in some form, persists in the lungs as long as 21 days following a single acute i.t. exposure. 

Further, particle size has a modest effect on the amount retained in the lung tissue but 

particle coating heavily influences the retention of silver in the lung at 21 days. The PVP 

coated material cleared more quickly than the citrate coated material. Macrophages were 

heavily involved in clearance of the material, especially the 20 nm citrate coated material, 

even at 21 days following a single acute exposure.
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There is debate about the constituents or chemical state of AgNP that contributes to their 

health effects (Behra, 2013). It is not clear whether it is the silver ions released from the 

AgNP (Wang, 2014), or the AgNP themselves, that cause adverse health effects (Cronholm, 

2013, Beer, 2012, Gliga, 2014). Our study was not designed to define whether the silver in 

the lung was ionic, but rather to probe whether the AgNP we added to the lungs of rats 

persisted in the lung, as any form of silver, over time. Recent work using the same AgNPs 

(Wang, 2014) found that 20 nm particles, regardless of coating, shed a greater amount 

(~4%) of silver ion into BEGM medium in vitro than larger particles. We note that 

measurement of release of silver ions from nanomaterials into tissues in vivo has not been 

accomplished to date and may have different kinetics than in vitro systems. Some inference 

may be made from other studies of silver nanoparticles and soluble silver ions. In a study in 

rats rat study, instilled ionic silver (AgN03) was found to be rapidly cleared in contrast to 

instilled ultrafine silver particles with only 25% of the day one ionic lung dose remaining in 

the lung at 7 days (Takenaka, 2001). Silver ion binding to proteins was thought to be a 

potential mechanism for retention of ions as long as 7 days. A study by Wang et al used the 

same particles as in the current study and found that significant less AgN03 was retained 40 

hours after exposure than either the 20 nm or 110 nm AgNP (Wang, 2014) and that AgN03 

administered silver was undetectable in the mouse lung 21 days after exposure in contrast to 

significant persistence of AgNP silver as measured by ICP-MS. In this study we performed 

autometallography on lung samples 1 day post treatment with AgNO3 (see supplementary 

materials). At 1 day post exposure the pattern of staining in the AgNO3 differed 

considerably, with very diffuse and spotty staining (Figure S6). The autometallographic and 

ICP-MS methods we used do not discriminate between ionic and particle bound silver. 

Autometallography is most likely to detect areas of heavy silver localization and less likely 

to detect diffuse accumulations throughout the tissue. Further, the staining protocol was 

optimized to detect staining at 1 day post exposure and the same development practices were 

used for all the timepoints in this study to facilitate comparisons. This may be why the 

autometallography detects little silver at 21 days post exposure but the ICP-MS 

measurement indicates that significant silver persists in the lung at this timepoint. If the 

smaller particles have higher dissolution rates in vivo, as has been demonstrated in vitro 

(Wang, 2014), this could be related to the observed increased deposition of silver in the 

subepithelial basement membrane zone that was noted for the 20nm particles at 1 day after 

exposure (Figure 7).

Macrophages play a critical role in particle clearance in the lung. A study of 25nm inhaled 

titanium dioxide found that macrophages had sporadic uptake of particles at 24 h after 

exposure (Geiser, 2008), indicating that phagocytosis of nanometer-sized particles is fairly 

inefficient (Geiser, 2010). Other studies have indicated that smaller magnetite (Fe3O4) 

nanoparticles (10nm) are less potent at inducing macrophage influx into the lung than larger 

50 nm particles (Katsnelson, 2010). In addition, studies of gold nanoparticles of 3 sizes (2, 

40 and 100 nm) given by intratracheal instillation found that lung macrophages have very 

rapid uptake of particles with instilled nanoparticles already localized to macrophages 1h 

after a single instillation and localized to macrophage lysosome-like vesicles (Sadauskas, 

2009). Other studies of intratracheally instilled silver have also noted macrophage 

accumulation of silver nanoparticles in phagolysosomes of alveolar macrophages 
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(Takenaka, 2001). Our data indicate similar findings; macrophages are involved in 

scavenging silver or silver NP at all timepoints examined and the intracellular localization of 

the silver was to lysosome-like vesicles. In general, the smaller silver particles induced a 

greater maximal measured macrophage influx than the larger ones. This may be related to 

the composition or number of the particles. A dose of 1.0 mg/kg instilled in the average 

weight rat from this study (359.5 g) would be equal to 1.45×1016 particles/rat for the 20 nm 

AgNP and 8.74×1013 particles/rat for the 110 nm AgNP. The number of 20 nm particles 

instilled in rats is 166 times greater than the 110 nm particles. While particle type did not 

influence macrophage influx into BALF at 1 day post exposure, the 1 mg/kg dose 110 PVP 

AgNP macrophage silver score was significantly higher than the 110 nm citrate AgNP 

indicating a difference by particle coating. We found that the 20nm citrate particles had the 

highest macrophage silver score at 21 days after exposure. This may be due to a higher 

number of smaller particles being present in the sub-alveolar regions, greater bioavailability 

of these particles or differences in particle shedding of ions.

Particles that deposit in the large airway are removed through the mucociliary escalator and 

this is still occurring at 1 day but is diminished at 7 days post exposure (Figure S3). This 

mechanism is an effective the early response for removal of the larger particles. One study 

using insoluble particles of 0.1, 1, 2 and 7 μm found the mucociliary clearance halftime for 

rats is 1.25 h (Hofmann, 2003). In contrast, a study using 15 nm iridium (Ir) particles found 

18% clearance into the gastrointestinal tract after 6 h (Kreyling, 2002). This suggests that 

clearance of smaller nanoparticles is slower. However, a recent study by Kreyling et al 

found that there was large variability in mucociliary cleared AuNP fraction at 24 hours both 

between animals (n=4) and with particles of different sizes with the largest variance noted 

for particles that were 1.4 nm (Kreyling, 2014). However, their variance for the larger 

particles was less and is in good agreement with our current data (n=6). Our current study 

that shows persistence of the smaller (20nm) silver particles in the lung is in agreement with 

other studies that show that smaller particles are more efficiently translocated to interstitial 

spaces and are slower to clear (Kreyling, 2002). Thus, while macrophage numbers are 

increased in response to all four particle types, there is a different temporal pattern by 

particle type with the smaller particles inducing an early increase in BALF macrophages at 

the lower 0.5 mg/kg dose at 1 day post exposure, possibly due to their larger surface area. 

However, we note that due to the 6 day period between our first two sampling points we 

cannot rule out that other exposure groups may have had a peak macrophage influx that we 

did not detect.

Macrophages have a substantial role in scavenging the silver present in the distal lung even 

21 days following the initial particle exposure. This is evident from the detectable levels of 

silver containing macrophages in the BALF of all exposure groups. However, only one of 

the particle types tested, the 20nm citrate coated AgNP, still induced a significant increase in 

BALF macrophages at 21 days after exposure. Notably this was also the exposure group 

with the highest percentage of silver positive macrophages at 21 days. Interestingly there 

were not large differences in macrophage numbers or numbers of positive macrophages by 

dose, with the exception of the 20nm citrate AgNP at 21 days post exposure, possibly 

indicating a maximum for macrophage mediated removal at these two doses in the lung.

Anderson et al. Page 10

Nanotoxicology. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our study found that instilled AgNPs result in silver accumulation in the lung tissue itself 

both within the epithelium acutely as well as within macrophages and in the subepithelial 

basement membrane zone. The accumulation at 1 day followed by clearance of the silver 

from Clara cells at 7 days may indicate an active role for Clara cells in nanoparticle 

processing. Clara cells have previously been reported to endocytose surfactant protein D into 

secretory granules located at the apex of the cell (Voorhout, 1992). This is in agreement with 

in vitro studies of other lung epithelial cells (BEAS-2B) that showed accumulation of 

AgNPs over 24 h (Wang, 2014, Gliga, 2014) and preferential accumulation of AgNPs versus 

a soluble silver salt in vitro (Cronholm, 2013, Wang, 2014). This raises several interesting 

questions: why does the silver accumulate in the subepithelial basement membrane zone at 7 

days post exposure and is it still confined to AgNPs at this time? There are several 

possibilities: the epithelial cells could secrete the particles or the silver ions basolaterally, 

the components of the basement membrane zone could preferentially sequester the silver or 

the particles, or possibly the AgNP distribution is fairly uniform throughout the lung initially 

but the basement membrane zone is a difficult area to clear of nanosilver or its ions. A 

similar staining pattern was found in the parallel mouse studies and correlated with the 

expression of basement membrane collagen (Wang, 2014). In contrast to Wang et al, the 

subepithelial silver staining in the current rat study resolved by 21 days post exposure. This 

may indicate removal by macrophages or turnover of the molecules binding silver. Other 

studies report silver sequestration to supepithelial basement membranes in the skin 

following silver dietary supplement intake (Bowden, 2011). A study of silver ion release 

from implanted silver surfaces noted accumulation of silver in lysosome-like organelles and 

associated with collagen fibers in the basement membrane of multiple organs (Danscher, 

2010). It remains to be determined which molecules preferentially bind either AgNP or Ag 

ions in the basement membrane zone of the lung and the precise subcellular localization of 

the silver.

The doses used in this study are comparable to a similar study using the same particles in 

mice (Wang, 2014). These doses were selected to model an environmental exposure (5-289 

ug/m3) that occurred in a manufacturing facility (Lee, 2012) and to facilitate cross species 

comparisons. In Wang et al both sizes of the citrate coated AgNPs cleared similarly 

(approximately 60%) over the period of 2-21 days post a single acute exposure in mice. Our 

measured clearance rate for the same particles between 1 and 21 days post exposure in rats 

was clearly less (25-50%) and also did not show a significant decrease with time post 

exposure, indicating a possible species difference in response for the citrate coated particles. 

This may be partially due to the fact that the right middle lung lobe was lavaged before 

freezing and so our measurements of silver retention only account for that which was still 

incorporated in the tissue itself. However, the fraction of lavagable particles is likely to be 

small, as demonstrated in a study of 20 nm 192Ir particles that found only 14% of the 

particles were in the lavage 24 h after exposure (Semmler-Behnke, 2007). This supports the 

thought that particles rapidly associate with lung tissue. Interestingly, our measured PVP 

clearance data found greater than 75% clearance between 1 and 21 days post exposure, on 

par with the data reported by Wang et al for citrate particles in mice (they did not report 

PVP clearance). Clearly there is preferential clearance of PVP coated particles compared to 

citrate coated particles in our rat model. Further, we can relate our clearance from the lung 
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tissue for all 4 particle types in terms of the percentage of the initial delivered dose of each 

particle size with 2% and 91% clearance of 20 nm citrate and PVP AgNPs respectively and 

9% and 71% for citrate and PVP 110 nm AgNPs respectively. Previous studies of 

fluorescent 20 nm and 100nm polystyrene spheres found that the 20 nm spheres have a 

greater propensity to stay in the body (Sarlo, 2009). A study of aerosolized and instilled 

ultrafine 192Ir particles at either 15 or 80 nm in rats showed that most particles stayed in the 

lung at 7 days (Kreyling, 2002) in agreement with our current study.

It is important to keep in mind that, while useful for directly comparing doses of compound 

and screening large numbers of compounds quickly, instillation exposure of AgNP in liquid 

has limitations in regards to health assessment of possible environmental exposure to an 

aerosol of dry or aqueous material. The retention pattern could be different because 

deposition pattern is different; other studies show that clearance of instilled particles is 

slower than that of comparable particles that are inhaled (Driscoll, 2000). Whether retention 

of inhaled AgNP is similar needs to be determined in future studies of inhaled particles of 

the same type. Instillation can result in a non-uniform distribution between lung lobes. Our 

staining studies using autometallography for the left lung lobe support a uniform distribution 

of the silver within the lobe with consistent deposition in similar regions, including 

bronchiolar alveolar duct junctions, throughout the lung regardless of particle type. 

However, the distribution to other lobes, especially those such as the right middle lung lobe, 

which we used for the ICP-MS measurements, may be less uniform. This is supported by the 

amount of variance in the ICP-MS data from this lobe (Figure 4). We note that, even with 

the measured variance, there was sufficient power to detect a decrease in silver content of 

the lung for the PVP coated particles at 21 days post exposure.

CONCLUSION

In conclusion our study shows that silver associated with PVP coated particles is most 

efficiently cleared from the lung at 21 days following acute exposure and that the 20nm 

citrate coated AgNP result in the greatest amount of silver still present in the lungs at 21 

days. In general, persistence of silver in the lung correlated with increased BALF 

macrophages and higher percentages of silver positive BALF macrophages. As early as 1 

day following exposure, differences in particle removal were apparent with the 110 nm 

particles more efficiently removed from the larger airways. The current study supports a 

large effect of particle surface coating on both persistence and biological effect (macrophage 

recruitment and involvement), with a lesser effect of particle size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Total macrophages (A, C, E and G) and percentage of silver positive macrophages (B, D, F 

and H). in BALF 1, 7 or 21 days after i.t. instillation of 4 types of silver nanoparticles of two 

doses (0.5 and 1.0 mg/kg). (A, B) 20nm citrate, (C, D) 110nm citrate, (E, F) 20nm PVP and 

(G, H) 110nm PVP. * significantly greater than control at same time-point (p < 0.05). † 

significantly different from same dose at 1 day time point (p < 0.05) (n = 6) NT = not tested.
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Figure 2. 
BALF Macrophage silver uptake scores. Macrophages were scored based on intensity of 

silver staining (light, moderate or heavy) as shown in Figure S1 and adjusted for the total 

number of silver positive macrophages that were recovered from BALF to generate a 

macrophage silver uptake score for each treatment group and timepoint. * significantly 

different than 1 d time-point for same AgNP size, coating and dose, † significantly 

difference between citrate and PVP coated AgNP at same timepoint, AgNP size and dose, ‡ 

significantly difference between 20nm and 110nm AgNP at same timepoint, AgNP coating 

and dose (p < 0.05) (n = 5-6).
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Figure 3. 
TEM image of macrophages containing silver particles. An (A) overview and (B) detail of a 

AgNP (open arrow) in a vacuole of a macrophage recovered from BALF. (C) An example of 

a AgNP (open arrow) in the lysosome of a BALF recovered macrophage.
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Figure 4. 
Silver quantification in the right middle lung lobe by ICP-MS following 1.0 mg/kg dose of 

AgNPs. (A) is 20nm AgNPs treated animals and (B) is 110nm treated animals. Black bars 

are PVP coated AgNPs and grey bars are citrate coated AgNPs. * significantly different than 

1 d time-point for same AgNP size and coating (p <0.05) (n = 6).
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Figure 5. 
Autometallography (dark staining) of silver localization on and within the epithelium of the 

proximal airways (intrapulmonary lobar bronchus) 1 day post exposure to 1.0 mg/kg 

AgNPs. (A) 20nm citrate, (B) 110nm citrate, (C) 20nm PVP and (D) 110nm PVP. Note the 

staining on the ciliated cell (arrows) as well as within Clara cells (arrowheads) Bars = 50μm.
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Figure 6. 
Autometallography (dark staining) of silver localization in the terminal bronchiole alveolar 

duct junction at 1 days post exposure to 1.0 mg/kg AgNPs. (A, B) 20nm citrate, (C, D) 

110nm citrate, (E, F) 20nm PVP and (G, H) 110nm PVP. Clara cells (arrowheads) and 

macrophages (arrows) as well as the subepithelial basement membrane zone (open arrows) 

contained silver. Bars = 50μm.
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Figure 7. 
Autometallography (dark staining) of silver localization to the terminal bronchiole alveolar 

duct junction at 7 day post exposure to 1.0 mg/kg AgNPs. (A, B) 20nm citrate, (C, D) 

110nm citrate, (E, F) 20nm PVP and (G, H) 110nm PVP. Macrophages (arrows), basement 

membrane zone (open arrows), alveolar walls (arrowheads) and vessels (V) contained heavy 

localization of silver. Clara cells were not stained. Bars = 50μm.
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Figure 8. 
Semi-quantitative scoring of silver distribution in the terminal bronchiole region. (A) 20 nm 

citrate, (B) 110 nm citrate, (C) 20 nm PVP and (D) 11 0nm PVP. * significantly less than 1 

Day post treatment (p < 0.05), † significantly less than 7 days post treatment (p < 0.05) (n = 

6).
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