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Abstract

Contact interactions between the hand and handle, such as the contact surface softness and contact 

surface curvature, will affect both physical effort and musculoskeletal fatigue, thereby the comfort 

and safety of power tool operations. Previous models of hand gripping can be categorized into two 

groups: multi-body dynamic models and finite element (FE) models. The goal of the current study 

is to develop a hybrid FE hand gripping model, which combines the features of conventional FE 

models and multi-body dynamic models. The proposed model is applied to simulate hand-gripping 

on a cylindrical handle with covering materials of different softness levels. The model included 

three finger segments (distal, middle, and proximal phalanxes), three finger joints (the distal 

interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joint), 

and major anatomical substructures. The model was driven by joint moments, which are the net 

effects of all passive and active muscular forces acting about the joints. The finger model was first 

calibrated by using experimental data of human subject tests, and then applied to investigate the 

effects of surface softness on contact interactions between a finger and a cylindrical handle. Our 

results show that the maximal compressive stress and strain in the soft tissues of the fingers can be 

effectively reduced by reducing the stiffness of the covering material.
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1. Introduction

Musculoskeletal disorders of the hand and fingers are associated with occupational activities 

across all industrial sectors [1]. Since the handle serves as an interface between an operator 

and a machine or a tool, it is well accepted that an optimized design of the handle can reduce 

both physical effort and musculoskeletal fatigue, thereby improving comfort and reducing 

the risk of musculoskeletal disorders. Previous experimental studies indicate that grip 

strength, operator's comfort, and safety depend on the handle diameter [2–6], the properties 

of the surface materials [7,8], the handle shape [9,10], the friction of the contact surface 

[11], the stiffness of the contact surface [12], and also the posture of the operator [13]. It is 

difficult to objectively evaluate the biomechanical responses of the hand-arm system to the 

variations of the operating conditions in experiments because the forces in the 

musculoskeletal system cannot be easily measured in vivo. Therefore, biomechanical 

models of the system become essential tools for exploring the mechanical loading 

environment associated with injury mechanisms.

Researchers have developed multiple models of the hand and fingers for simulating different 

problems. Brook et al. [14] developed a biomechanical model of the dynamics of the index 

finger and applied their model to simulate the muscle forces in pinch grip and disc rotation. 

Biggs and Horch [15] proposed a three-dimensional (3D) kinematic long finger model and 

qualitatively validated their model via experimental data of tendon/muscle excursions for the 

motion of the MCP joint. Valero-Cuevas et al.'s [16] finger models included anatomically 

realistic tendon/muscle connections and musculoskeletal parameters. The whole-hand 

models proposed by Sancho-Bru et al. [17,18] were used to simulate the muscle loading for 

static gripping and free movements. Freund et al. [19] developed a hand model to investigate 

the dependence of the fingertip contact force on the gripping force, handle diameter, and 

hand size. All these hand models are multi-body dynamical models, in which the fingers are 

simulated using linkage systems composed of rigid finger segments linked by joints and 

connected by muscle/tendon units. Since these models do not contain passive soft tissues 

(i.e., skin and subcutaneous tissues), they cannot be applied to simulate the contact 

interactions between the fingers and objects, which are important for some practical 

problems.

For ergonomic designs of tool handles, it is important to understand the contact mechanics 

between the hand and handle, such as the effects of the contact surface softness and contact 

surface curvature on the comfort of the operators. The contact condition is known to be one 

of the essential factors that determine vibration resonance characteristics [20]. Therefore, 

hand contact mechanics are also important for understanding the biodynamic responses of 

the hand-arm system and to explore the mechanisms of hand-arm vibration syndrome 

[20,21]. Although contact pressures between the hand and a hard surface can be measured 

reliably using pressure sensor film, the same technique cannot be applied to evaluate the 
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mechanics of the hand/handle contact. Since handles are typically covered with soft 

materials, which are usually much softer than the pressure sensor film, inserting the pressure 

sensor film between the hand and the handle will substantially alter the contact mechanics. 

Consequently, finite element (FE) models have been developed to examine contact 

conditions for such problems. Previously, we have proposed FE models to study the 

dynamic contact between a fingertip and a flat plate [22], the effects of the curvature of the 

contact surface on contact pressures [23], and the contact interactions between a fingertip 

and a vibrating plate [24]. In all these previous FE models, only one fingertip segment was 

included, and the simulations were driven by directly applying contact force or 

displacement. The contact force was prescribed as a model input and it was not related to the 

joint torques or muscle forces of the hand-arm in these models.

The goal of the current study is to develop a hybrid finger model to simulate hand gripping 

on a cylindrical handle with soft covering materials. The hybrid finger model will combine 

the features of the conventional FE models and the multi-body dynamic models; it includes 

three finger segments (distal, middle, and proximal phalanges), three joints [the distal 

interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) 

joint], and contains the major anatomical substructures of the finger (i.e., soft tissues, nail, 

and bone). The model will be driven by the joint moments, which are net effects of passive 

and active forces (due to the effects of the connective tissues, ligaments, tendons, and 

muscles) acting about the joints. In this study, the proposed model is applied to investigate 

the effects of the softness of the contact surface on the contact interactions between a finger 

and a cylindrical handle.

2. Methods

2.1. Finite element model

The proposed 3D FE model of the grip features a finger and a cylindrical handle, as 

illustrated in Fig. 1. The FE model was developed to simulate a middle finger, which 

consists of a distal, a middle, and a proximal phalanx (Fig. 1B). The finger model included 

soft tissues, bone, and nail. External shapes of all three finger segments were considered to 

be rotationally symmetrical. The middle and proximal phalanges were conical frustums, 

whereas the distal pha-lange was a conical frustum connected with a hemispherical-like 

fingertip. The dimensions of the finger segments were adjusted to match the average of all 

subjects. The dimensions of the bony cross-sections were determined based on published 

experimental measurements [25].

The DIP and PIP joints were modeled as hinges with one degree of freedom (DOF, flexsion/

extension). The MCP joint was modeled as a universal joint with two DOFs (flexsion/

extension and adduction/abduction) (Fig. 1B); however, the DOF in adduction/abduction has 

been constrained in the study. The proximal phalanx is linked to ground via the MCP joint. 

The system is mechanically equivalent to the case where a metacarpal bone is fixed in space. 

In the current problem, all finger joints exhibited rotational motions only around the z-axis 

(the motion of adduction/abduction in the MCP joint was constrained). The finger joints 

were built on the apexes of the bony segments. Each apex was constrained by the end 

surface of the corresponding bony segment.
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The soft tissues were considered to be connected to the side surfaces of the bony segments. 

The effects of the passive stiffness due to the deformation of the soft tissues around the joint 

creases were neglected, i.e., the ends the finger segments could penetrate into each other 

without resistance. The contact pairs were built between the external surface of the cylinder 

covering and the external side surfaces of the finger segments. The friction coefficient 

between the skin/cylinder contact interface was considered to be 0.30 [26,27]. The FE model 

is geometrically nonlinear to cope with large deformation. The FE model was developed 

using a commercial software package ABAQUS.

For all simulations of cylinders with or without soft covering materials, the external 

diameter of the cylinder was 40 mm. The cylinder was of aluminium and was considered to 

be covered with three different materials (thickness 1.5 mm): synthetic viscoelastic urethane 

polymers of three different levels of stiffness (Sorbothane with three different hardness: 30, 

50, and 70 on an OO durometer scale), which are labeled as “Soft”, “Medium”, and “Hard”, 

respectively. The material properties of the Sorbothanes were evaluated in unconfined 

compressive tests, as described in detail in Appendix. The obtained stress–strain curves have 

been fitted to two-term Mooney–Rivlin constitutive models. The bone and nail are assumed 

to be linearly elastic whereas the soft tissues were considered as nonlinearly elastic. The 

mechanical properties of the bone, nail, and soft tissues have been described in our previous 

studies [28,29].

2.2. Experimental set-up and test procedure

Grip tests were accomplished by using an instrumented cylindrical handle (external diameter 

40 mm and length 200 mm), as illustrated in Fig. 2A. To eliminate the effects of pushing or 

pulling forces, the handle was suspended vertically with a string. The height of the handle 

was adjusted to approximately the height of each subject's waist, facilitating a comfortable 

grip.

The instrumented handle was made of aluminium and featured two built-in force transducers 

(Interface, SML-50) to measure the grip force (FN) (Fig. 2B). The grip force was displayed 

on a monitor, helping subjects maintain the desired force level. The distributions of the 

contact pressure between the fingers and handle were measured by using a pressure sensor 

film (TekScan Model 5076, 345 kPa range) that was wrapped around the surface of the 

handle (Fig. 2A). The pressure sensor film (dimension of 80 mm × 80 mm) contained a 42 × 

42 array of sensors, such that it resulted in a spatial resolution of 1.9 mm × 1.9 mm. We only 

measured the contact pressure on four fingers due to the size limitation of the pressure 

sensor film. The gripping position of the hand on the cylinder was carefully checked to keep 

the fingertips about three to four cells (about 6–8 mm) from the boundary of the pressure 

sensor film for the unloaded state, such that the finger/cylinder contact region was at least 

one cell away from the mat boundary under the maximal grip condition (Fig. 2A and B). 

Subjects’ fingers were approximately perpendicular to the cylinder axis, and the subjects’ 

wrists maintained a neutral posture during the gripping test (Fig. 2A). The location of the 

fingertips was aligned with the edge of the handle segment (Fig. 2B).

The pressure sensor film was calibrated by comparing the contact pressure measurements 

with those obtained via the force transducers built in the handle. The grip force (FN) is 
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mechanically equivalent to the mathematical integration of contact pressure over half of the 

cylinder surface:  (Fig. 2B), with p, L, r, θ, and z being the 

contact pressure, cylinder length, cylinder radius, and integration variables, respectively.

A total of ten subjects (5 male and 5 female; age 25 SD 7 years) participated in the tests, 

following informed consent approved by the NIOSH Human Subjects Review Board. The 

subjects were either students or office workers. All subjects were right-handed and only the 

right hands were used in the tests. The subjects were instructed to first gently grip the handle 

and slowly increase the grip force until it (FN) reached a specified loading level (5 N, 10 N, 

20 N, 40 N, 60 N, and 80 N). The tests were performed using only the handle without soft 

covering materials. At each of the loading levels, the subjects were instructed to keep the 

grip force constant for 10 s and then to completely release. The subjects relaxed for about 30 

s before they performed tests at the next, randomized grip force level. The test protocol was 

designed to minimize the “memory” effects of the pressure sensor film. All test trials were 

repeated three times. The contact pressure and the grip force data were collected at a rate of 

10 Hz. In order to eliminate noise and fluctuations, the measured data were averaged over a 

time period of 10 s, during which the subjects maintained a constant grip force.

2.3. Model calibration and simulation

In this study, we applied a dynamic FE model to simulate the quasi-static gripping. The FE 

simulations were performed in a forward dynamic scheme – the joint moments were applied, 

whereas the finger joint angular motions and the deformation and stress/strain of the soft 

tissues are predicted. The joint moments were assumed to increase gradually from zero, such 

that the effects of the mass inertia of the finger segments will be negligible. In order for the 

modeling to be comparable to the experiments, which were performed under static 

conditions, the simulations have to be performed in such a manner that the dynamic forces 

associated with the effects of the mass inertia are negligible. The magnitude ratio of the 

moments in the three joints was assumed to be constant during loading. The joint moments 

were applied in small increments; the entire loading was accomplished over 200 incremental 

steps. The model variables were output for every incremental step during the loading 

process such that the entire grip force range of the experiments was simulated.

The purpose of the model calibration calculations was to determine an optimized joint 

moment ratio such that the predicted contact pressure distributions achieve the best fit to the 

experimental measurements. Based on our previous analysis [30], the ratio of the moments 

applied at the DIP, PIP, and MCP joints was initially assumed to be 1.00:3.75:5.52. The DIP 

joint moment was held constant, whereas the PIP and MCP joint moments were varied by 

±30% in steps of 10% around the initial values, until the predicted contact pressures 

matched the average of the data obtained from all subjects. The ratio of the joint moments 

was kept constant, as the joint moments increased as a function of time during each of the 

individual numerical tests. In the calibration computations, the cylinder was assumed to be 

covered with a thin, hard plastic material, which mimicked the experimental conditions.

In the model predictions, the cylinder was considered to be wrapped with materials of three 

different levels of stiffness, and the effects of the covering materials on the contact 
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mechanics were calculated. It was further assumed that the gripping effort was independent 

of the cylinder covering, and the joint moment ratio was the same as for the case of gripping 

on the bare cylinder handle. The optimized ratio of the moments in the DIP, PIP, and MCP 

joints was applied in the calculations. The effects of the covering materials were evaluated 

by comparing the contact pressures and the stress/strain in the soft tissues when gripping the 

cylinders covered with different materials. The joint moments were increased to the 

magnitudes to reproduce the representative contact pressures observed in our experiments.

3. Results

3.1. Experimental data and model calibrations

The average contact pressure distributions on the cylinder surface for four different grip 

force levels (5 N, 10 N, 20 N, and 40 N), as observed in the experiments, are shown on the 

left column of Fig. 3. These measurements were utilized for the model calibrations.

The contact pressure on four fingers is illustrated in Fig. 3. It is seen that the majority of the 

grip force was contributed by the index, middle, and ring fingers (Fig. 3, left column); and 

the contact force distributions on these three fingers varied with the increase in grip force. 

The measured contact pressures on the middle finger were more reliable (framed by red 

boxes in Fig. 3, left column), because they were less affected by conditions of the pressure 

sensor's boundary.

The ratio of the maximal contact pressure at the distal, middle, and proximal segment of the 

middle finger is 1:0.89 (SD 0.27):0.72 (SD 0.30) (Fig. 4). Although the pattern of the 

contact pressure distributions of the fingers was different from subject to subject, general 

trends of the pressure distribution on each segment of a finger were consistent: the contact 

pressure on the distal segment was substantially greater than those of the middle and 

proximal segments.

Our analysis indicated that the best fit of the predicted contact pressure distributions (i.e., the 

peak contact pressure values at the distal, middle, and proximal segments) to the 

experimental data was achieved by applying an optimized moment ratio of 1.00:2.63:5.52 at 

the DIP, PIP, and MCP joints. The calculated contact pressure distributions are shown in 

Fig. 3 (right column) in comparison with the corresponding experimental data (Fig. 3, left 

column). The calculated maximal contact pressures at the distal, middle, and proximal finger 

segments for different contact force levels are listed in Table 1. Our results show that 

calculated pressure distributions match approximately the experimental data for the entire 

observed grip force range. The resolution for the contact pressure values at the middle and 

proximal regions of the experimental data (Fig. 3, left) was poor, and the values were 

estimated.

The model shows distinct contact areas for the distal, middle, and proximal regions for all 

grip force levels, while the contact areas cannot be determined clearly in the measured data. 

The simulation results show that the increase of the grip force from 5 N to 40 N causes 

increases in the contact pressure by about six times, but results in little increase in the 

contact area (<2 %) (Fig. 3, right).
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The variations of the joint moment as a function of time are illustrated in Fig. 5. The joint 

loadings were applied within a time period of 0.5 s; and the ratio of the joint moments was 

kept constant during the loading. The distributions of the maximal tissue compressive stress 

on the finger skin surface and the maximal compressive tissue strains are shown in the left 

and right columns of Fig. 6, respectively. The compressive and tensile stress (strain) values 

are represented by negative and positive signs, respectively.

3.2. Model prediction

The maximal contact pressure was approximately proportional to the grip force for FN ≥ 10 

N (Fig. 3, right column): the maximal contact pressure at the distal fingertip increased from 

100 kPa to 390 kPa when the grip force increased from 10 N to 40 N. The magnitude of the 

maximal compressive stress increased about four times from –0.10 MPa to –0.43 MPa (Fig. 

6, left column), while the magnitude of the maximal compressive strain increased only about 

38% from –0.64 to –0.88 (Fig. 6, right column), when the grip force increased from 10 N to 

40 N. This is due to the nonlinearity of the soft tissue materials and the three-dimensional 

constrain conditions of the tissues in the contact regions. The magnitude of the maximal 

compressive stress in the fingertip soft tissue (Fig. 6, left) was slightly greater than the 

corresponding maximal contact pressure (Fig. 3, right), as expected. The maximal 

compressive tissue stress/strain was observed in the distal segment, whereas the minimal 

compressive stress/strain was in the middle segment (Fig. 6). The distribution of the 

maximal compressive strain across the tissue thickness tended to become more uniform with 

increasing grip force.

For a given gripping effort, which approximately corresponds to grip force level of 20 N, the 

contact pressure decreased with decreasing stiffness of the covering material (Fig. 7). The 

maximal contact pressure decreased from 200 kPa to 170 kPa, a reduction of 15% when the 

covering material varied from “Hard” to “Soft”. The change in material stiffness did not 

alter the pattern of the contact pressure distributions. The optimized joint moment ratio 

obtained in the model calibrations was used in the prediction.

The effects of the covering stiffness on the contact conditions between the fingers and the 

cylinder were manifested more clearly in tissues’ strain and stress in each finger segment, as 

shown in Figs. 8 and 9, respectively. Our results show that the maximal compressive stress 

on the skin surface of the distal, middle, and proximal segments decreased from 220 kPa, 96 

kPa, and 110 kPa to 180 kPa, 88 kPa, and 95 kPa, respectively, when the stiffness of the 

covering material decreased from “Hard” to “Soft” (Fig. 8). The corresponding distributions 

of the maximal compressive strains on the skin surfaces of the finger segments are shown in 

Fig. 9. When the stiffness of the covering material decreased from “Hard” to “Soft” (Fig. 9), 

the magnitude of the maximal compressive strain on the distal, middle and proximal 

segments decreased from 0.76, 0.59, and 0.62 to 0.71, 0.57, and 0.59, respectively.

Furthermore, we have quantified the contact areas on the distal, middle, and proximal finger 

segments for different contact stiffness for the simulations, as shown in Figs. 8 and 9, and 

found that the contact area increased by 8% and 14%, when the covering material is changed 

from “Hard” to “Medium” and from “Hard” to “Soft” (Fig. 9), respectively. The greatest 

increase in the contact area was observed at the middle and proximal finger segments, where 
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the contact area increased by around 20% and 16%, respectively, whereas the contact area at 

the distal segment increased by only 6% when the stiffness of the covering material 

decreased from “Hard” to “Soft”.

4. Discussion

Our study suggests that the maximal compressive stress on the skin surface of the middle 

finger can be reduced by reducing the stiffness of the material covering a cylindrical handle. 

The current simulation results indicate that the maximal compressive stresses on the distal, 

middle, and proximal segments were reduced by 18.2%, 8.3%, and 13.6%, respectively, 

when the stiffness of the covering material decreased from “Hard” to “Soft” (Fig. 8). Our 

results suggest that an operator's comfort may be effectively modulated by varying the 

stiffness of the covering materials, since the comfort of a finger may be associated with the 

responses of the mechanoreceptors that sense stress/strain states in their surrounding tissues 

[31,32]. Our observations may generally support the practice whereby tool handles are often 

wrapped with a layer of soft materials to improve comfort.

In the current study, we demonstrated that decreasing the stiffness of the materials covering 

a cylindrical handle will generally decrease the stresses and strains in the soft tissues. For 

practical applications, however, the stiffness of the covering materials can only be varied 

within a certain range. A covering material that is too soft could make a power tool difficult 

to control, especially for a vibrating tool [33,34]. Consequently, the operators may need to 

apply more force to grasp the tool, resulting in an increase of the musculoskeletal load in the 

hand. This is similar to scenarios of power tool operations while wearing thick gloves [35]. 

From a dynamical point-of-view, a reduction of the contact stiffness may change the 

resonant frequencies of the fingers and the hand-arm system and reduce the transmitted 

vibration at frequencies above the resonant frequencies [20]. This may increase the hand's 

exposure to vibration, if the altered resonances fall within the range of the tools’ dominant 

vibration frequencies. Therefore, there should exist an optimized contact stiffness for a tool 

handle, which is dependent on the functions and dynamic characteristics of the tool. The 

model developed in the current study provides a preliminary biomechanical foundation for 

the optimization analysis and design of tool handles.

It is interesting to note that a covering material's stiffness affects tissue strain differently 

than tissue stress. A comparison of the stress (Fig. 8) and strain (Fig. 9) distributions 

indicated that reducing the stiffness of the covering material caused a reduction of tissue 

stress by 8.3–18.2%, whereas it induced a reduction of tissue strain by merely 3.3–6.5%. 

This inconsistency in the dependencies of tissue stress and strain on a covering material's 

stiffness is likely due to the nonlinearity of the soft tissues and the covering materials and 

relative thickness of materials involved. Soft tissues and polymers typically exhibit highly 

nonlinear mechanical behavior; their stiffness typically increases with increasing 

deformation, as illustrated in Fig. A.1. Consequently, very small variations in strain will 

result in very great variations in stress at large deformations. This is best demonstrated at the 

distal segment, where the soft tissues experienced very large deformation (maximal 

compressive strain 71–76%) and the maximal compressive stress varied by as much as 

18.2% whereas the maximal compressive strain varied merely 6.5% (Figs. 8–9).
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The joint angular motions are coupled with the grip force, the finger deformations, and the 

contact stiffness. In the forward dynamic analysis, these coupling effects are considered. The 

joint angular variation due to the variations in the grip force and covering materials was 

observed to be very small and negligible compared to those associated with other variations 

in the experimental condition. In the current study, the maximal joint angular change 

between two extreme scenarios with the largest and smallest tissue deformations (i.e., 40 N 

grip force combined with soft covering material vs. 5 N grip force combined with hard 

covering material) was smaller than 1 °.

The ratio of the maximal contact pressure of the distal, middle, and proximal finger segment 

(Fig. 4) observed in our study is consistent in trend with Chao et al's [36] results, who 

measured the ratio of the contact forces applied on the distal, middle, and proximal segments 

in grip. Because the maximal contact pressure is associated with the contact force on each 

finger segment, the results of these two studies should be comparable, at least in trend.

One limitation of the current simulation is that the ratio of the moments applied in the DIP, 

PIP, and MCP joints is assumed to be constant. The reliable agreement between calculated 

contact pressure and the experimental measurements over the entire grip force range 

suggests that the assumption of the constant joint moment ratio is reasonable. This 

assumption may not be strictly correct physiologically since people may tend to grip in a 

manner to minimize the grip effort for different gripping force levels, resulting in varying 

joint moment ratios as a function of the gripping force [37]. The joint moment ratio in 

fingers is subject specific and may also be dependent on the contact stiffness [38]. In 

addition, the dimensions of the handle may alter a person's gripping behaviors. However, the 

stiffness of the handle covering material is much higher than that of the soft tissues and 

typical handle diameters are around 40 mm, based on previous ergonomic studies [5,8,38]. 

Indeed, the adjustment of the joint moment ratio for different gripping force levels was 

observed to be so minor that they did not produce measurable contact pressure variations, at 

least in the current measurements using a pressure sensor film. The effects of the contact 

stiffness and handle dimensions on the ratio of the joint moments should be more precisely 

analyzed in the future.

One of the limitations of the proposed finger model was that the soft tissues surrounding the 

joints were not included. Consequently, the predicted contact pressure distributions on the 

cylindrical surface show three separate regions that are due to the contacts of the distal, 

middle, and proximal segments. In practical cases, the contact regions of the distal, middle, 

and proximal segments may be interconnected because of the contact between the cylinder 

and the soft tissues surrounding the joints. We observed in the experiments (Fig. 3) that the 

contact pressure of the tissues surrounding the joints on the cylinder is small and is not 

measurable using the pressure sensor film. Therefore, it is reasonable to neglect the 

contribution of the tissues surrounding the joints to the contact interactions.

Because of the technical limitations in measurement, the simulated contact pressure cannot 

be compared precisely with that observed in the experiments. The calculated contact 

pressures are continuous in space at the contact surface, whereas the measured contact 

pressures are discrete at the contact surface. This is because pressure reading within a cell 
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(1.9 mm × 1.9 mm) is constant and it represents the average value at that cell; and there 

exists sudden variation in pressure values between two neighboring cells. Although this type 

of the pressure sensor is the best currently available, the spatial resolution of 1.9 mm is 

pretty large relative to the finger dimension. A further problem is that the sensitive range of 

the sensor is quite narrow; the pressure sensor film will become saturated or not responsive 

if the pressure is above or below the effective range, respectively.

In summary, we developed a novel finger model to simulate a hand gripping a cylindrical 

handle. The proposed model differs from previous finger models in that it combines 

conventional FE models with multi-body dynamic models, such that both detailed stress/

strain distributions in the soft tissues and the global kinetics of the fingers can be simulated. 

We have calibrated the model using experimental data, and applied the model to investigate 

the effects of the stiffness of the contact surface on the contact mechanics between the finger 

and a cylindrical handle.
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Appendix

Three synthetic viscoelastic urethane polymers (Sorbothane Inc., Kent, OH, USA) of 

different stiffness measures (specified as specimens S, M, and H) were selected for the 

handle covering. The mechanical properties of the polymers were tested via unconfined 

compressions. The specimens of the covering materials were compressed between two 

smooth cylindrical platens, while the lateral side of the specimens were free to expand 

during the compressions. The cylindrical probes were cut from raw material sheets using a 

steel punch, which has an outside level and a sharp edge. The probes had a diameter of 

approximately 5.99 mm. The heights of the probes were 4.79, 3.29, and 3.77 mm, 

respectively, for the S (Soft), M (Medium) and H (Hard) specimens. A micro-mechanical 

test machine (Model: Mach-1, Biomomentum Inc., Laval, QC, Canada) was utilized for the 

material testing. The testing machine was equipped with a displacement sensor with a 

resolution of 0.5 μm and a 98 N (10 kg) load cell with a resolution of 2.45 mN (250 mg). 

The compressions were performed at a very slow rate (0.01 mm/s), such that the materials’ 

viscous effects were negligible. The stress–strain curves of these three polymer specimens 

are shown in Fig. A.1. Two-term Mooney–Rivlin models were applied to fit the stress–strain 

curves. The probe dimensions and material parameters are listed in Table A.1.
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Fig. A.1. 
Stress–strain curves of three different covering materials. The covering materials labeled 

with “S” (Soft), “M” (Medium), and “H” (Hard) are synthetic viscoelastic urethane 

polymers (Sorbothane Inc., Kent, OH, USA) with a hardness of 30, 50, and 70, respectively, 

on an OO durometer scale).

Table A.1

Probe dimensions and mechanical parameters for the covering materials “S” (Soft), “M” 

(Medium), and “H” (Hard). Two-term Mooney-Rivlin models were applied to fit the stress-

strain curves shown in Fig. A.1. C01 and C10 are the material parameters of Mooney-Rivlin 

model.

Specimens Dimension Material parameters

Diameter (mm) Height (mm) C10 (Pa) C01 (Pa)

S 5.99 4.79 14800.8 13613.9

M 5.99 3.29 64492.4 12252.5

H 5.99 3.77 448406.8 563.5
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Fig. 1. 
Proposed finger model mimicking a gripping task. (A) Three dimensional sketch of the 

model. (B) Cross-sectional view of the model. The finger model consisted of three 

segments, i.e., distal, middle, and proximal segments. The finger segments contain three 

different materials: bone, soft tissues, and nail. In order to simulate the effects of the contact 

surface stiffness, the cylindrical handle was considered to be covered with different 

materials. The finger was driven by the moments applied at the DIP, PIP, and MCP joints. 

The cylinder was fixed at its axial center, and it can rotate around its axis.
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Fig. 2. 
Experimental tests of the contact pressure. (A) Experimental set-up. (B) Sketch of the 

determination of gripping force. The contact pressure was measured via a pressure sensor 

film wrapped on a cylindrical handle. The grip force was estimated by measuring the force 

via two force transducers built in the handle.
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Fig. 3. 
Comparison of the contact pressure distributions measured experimentally with those 

simulated numerically. Left column: experimental measurements. Right column: model 

predictions. The contact pressures of four fingers (i.e., index, middle, ring, and little finger) 

were measured in the tests. Only the contact pressures on the middle finger, as framed, were 

used in the model calibrations. The contact pressure is defined as positive with RED 

indicating the highest magnitude. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of the article.)
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Fig. 4. 
The ratio of the maximal contact pressure on each segment of the middle finger. The 

maximal contact pressures on the middle and proximal segments are normalized to that on 

the distal segment. The data are the mean of the results of ten human subject tests.
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Fig. 5. 
The moments in the DIP, PIP, and MCP joints as a function of time. FN = 5 N, FN = 10 N, 

FN = 20 N, and FN = 40 N represent the gripping forces applied in the tests (Fig. 3).
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Fig. 6. 
The maximal compressive stress and strain in soft tissues as a function of the gripping force. 

Left column: the distributions of the maximal compressive stress on the skin surface of the 

distal, middle, and proximal segments. Right column: the distributions of the maximal 

compressive strains across the soft tissues of the distal, middle, and proximal segments. The 

compressive stress and strain are defined as negative with BLUE indicating the highest 

magnitude. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of the article.)
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Fig. 7. 
The distributions of the contact pressure on the cylindrical handle covered with materials of 

three different stiffness levels. The contact pressure is defined as positive with RED 

indicating the highest magnitude. The mechanical properties of the covering materials, 

“Soft”, “Medium”, and “Hard”, have been evaluated and described in Appendix (Fig. A.1 

and Table A.1). (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of the article.)
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Fig. 8. 
The comparison of the maximal compressive stresses on the skin surface of the distal, 

middle, and proximal segments for gripping a cylinder covered with materials of three 

different stiffness levels (“Soft”, “Medium”, and “Hard”). The magnitude of the maximal 

compressive stress decreased with decreasing contact stiffness in all three finger segments. 

The compressive stress is defined as negative with BLUE indicating the highest magnitude. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of the article.)
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Fig. 9. 
The comparison of the maximal compressive strains on the skin surface of the distal, middle, 

and proximal segments for gripping a cylinder covered with materials of three different 

stiffness levels (“Soft”, “Medium”, and “Hard”). The magnitude of the maximal 

compressive strain in middle and proximal segments decreased with decreasing cover 

stiffness while that in the distal segment remained nearly constant. The compressive strain is 

defined as negative with BLUE indicating the highest magnitude. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of the 

article.)
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Table 1

The calculated maximal contact pressures at the distal, middle, and proximal finger segments for different 

contact force levels.

Grip force (N) Contact pressure (kPa) Finger segment

Distal Middle Proximal

5 70 30 40

10 100 50 70

20 190 90 100

40 390 190 230
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