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Abstract

Video-based posture analysis employing a biomechanical model is gaining a growing popularity 

for ergonomic assessments. A human posture simulation method of estimating multiple body 

postural angles and spinal loads from a video record was developed to expedite ergonomic 

assessments. The method was evaluated by a repeated measures study design with three trunk 

flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as 

experimental factors. The study comprised two phases evaluating the accuracy of simulating self 

and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values 

of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The 

repeatability of the method for the same lifting condition was excellent (~2°). The least simulation 

error was associated with side viewing angle. The estimated back compressive force and moment, 

calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. 

The posture simulation method enables researchers to simultaneously quantify body posture 

angles and spinal loading variables with accuracy and precision comparable to on-screen posture 

matching methods.
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INTRODUCTION

As indicated by several review studies summarizing a significant relationship between poor 

working posture and the development of musculoskeletal disorders (MSDs) (Bernard et al. 

1997; Ferguson & Marras, 1997; Hoogendoorn et al. 1999, National Research Council, 

2001; da Costa et al., 2010), body posture has been a main focus of ergonomic assessments. 

In particular, trunk flexion and twisting/asymmetry have been demonstrated to be significant 

risk factors for low back disorders (LBDs) (Punnett et al., 1991; Marras et al., 1995; 

Hoogendoorn et al., 2000; Jorgenson et al., 2003). In most epidemiological studies, working 

posture is typically recorded by self-administered questionnaire or pencil/paper 
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observational methods (Burdorf, 1992; Li & Buckle, 1999). Due to the nature of the 

methods, assessments of body posture have been mostly described in gross categorical 

terms, resulting in relatively moderate associations with LBDs (Marras et al., 2010). 

Misclassification of the gross terms as physical risk factors for LBDs raise questions about 

their validity and relationship with LBDs (Punnett & Wegman, 2004). Epidemiological 

evidence associated with LBDs may be identified when the physical risk factors are properly 

addressed by biomechanical factors, such as the load location and weight magnitude relative 

to the worker and three dimensional movements during lifting (Burdorf, 1992; National 

Research Council, 2001; Sutherland et al. 2008; Marras et al., 2010; Boda, et al., 2010).

In lieu of field-friendly direct-reading measurement methods for body posture, computerized 

video-based posture analysis has been favored by many researchers as a practical alternative 

(Keyserling, 1986; Yen & Radwin, 1995; Callaghan et al., 2001; Bao et al., 2007). The 

validity of a video-based posture analysis primarily depends on the assessed body angle 

(Ericson, 1991; Genaidy, 1993; Burt & Punnett, 1999; Lowe, 2004; Lau et al., 2010; Bao et 

al., 2011; Lu et al., 2011; Xu et al., 2011) and posture viewing angle (Bao et al., 2011; Lu et 

al., 2009, 2011; Xu et al., 2011). The main advantage of this analysis method is minimal 

disruption to workers’ job performance during field surveillance with a permanent record for 

future analyses at a very low cost (Genaidy, 1993; Li & Bukle, 1999; Bao, 2011). Recorded 

posture or movement data can be further used for biomechanical modeling (i.e. inverse 

dynamics) to obtain joint loading variables (Chaffin 1969; Kromodihardjo & Mital. 1986; de 

Looze at al., 1992; Kingma et al., 1996) and cumulative spinal loads (Kumar, 1990; Norman 

et al, 1998; Jager et al., 2000; Callaghan et al., 2001; Sutherland et al., 2008; Lu et al., 

2011). However, quantifications of cumulative spinal loading variables involve laborious 

manual mannequin/stick figure manipulation or manual screen digitization of body joints to 

match the posture on the computer screen, which is time consuming and prone to errors (Liu 

et al., 1997; Callaghan et al., 2001; Lu et al., 2011). It was found that it could take 11 min to 

manipulate the posture on the computer screen to match a working posture in a photograph 

(Chaffin, 1997).

To expedite this biomechanical modeling process, we developed a human posture simulation 

method that could simultaneously estimate multiple body posture angles from field recorded 

video (Waters et al., 2011). The biomechanical model used in this method was the 

University of Michigan 3-dimensional static strength prediction program (3DSSPP) (Garg & 

Chaffin, 1975; Chaffin et al. 1999). Using anthropometry, hand load, and posture data, this 

biomechanical model has the capability of predicting spinal compressive force acting at the 

L4/L5 intervertebral disc for a static working posture in the three dimensional directions 

(Chaffin, 1969; Chaffin & Baker, 1970; Garg & Chaffin, 1975; Chaffin & Erig, 1991). The 

model has been widely used in many studies as design criteria for manual materials handling 

jobs or a risk assessment tool for LBDs (Chaffin, 1997; Waters et al. 1998, Lavender et al. 

1999; Marras et al., 1999; Garg & Kapellusch 2009).

This paper describes the development of this human posture simulation method with a goal 

to answer the following research questions:
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1. Can human subjects simulate or mimic their own and others’ posture accurately 

and precisely?

2. How efficient is the human posture simulation method?

3. How accurate is the human posture simulation method in estimating the back 

compressive force and moment in the lumbosacral region?

2. METHODS

2.1. Description of human posture simulation

The human posture simulation method we developed involved acquisition of body posture 

data with an electromagnetic motion capture system (Ascension Flock of Birds MotionStar® 

with Motion Monitor software, Innovative Sport Training Inc., Chicago, 2003). The system 

was calibrated and adjusted to minimize metal distortion in an approximately 3×3×3 m 

working space on a raised wooden platform. Thirteen sensors were attached to various body 

segments to track whole body movement. The sensors’ anatomical locations included back 

of skull, thoracic vertebrae 1, lumbar vertebrae 1, left and right deltoid tuberosity of 

humerus, dorsal radius, mid anterior femur, mid anterior border of tibia, intermediate 

cuneiforms. Each sensor measured 2.5 × 2.5 × 2 cm, and was placed in a plastic pocket 

attached to a Velcro strap. The Velcro straps were securely wrapped around the anatomical 

locations to protect the sensors from motion artifacts. The cables connected to the sensors 

were also securely wrapped around the body segments to eliminate any tension that might 

cause motion artifacts. The body position and orientation data for each posed working 

posture were collected with the system. The data collection sampling rate and duration for 

each trial were set at 45 Hz and 3 seconds, respectively. Detailed information on the 

procedure and steps for using the human posture simulation method is described in a 

previous paper (Waters et al. 2011).

2.2. Calibration and accuracy of data collection system

The calibration method involved manually measuring a variety of positions in the working 

environment and comparing them to manual measurements using an anthropometer. A 2.4 × 

2.4 m computer generated grid paper with grid spacing of 0.2 m was used to precisely lay 

out the marked calibration points in x and y directions on the platform. The numbers of the 

calibration points in x, y and z directions in the working environment were 11, 12 and 10, 

respectively, which resulted in a total of 1,320 calibration points for testing the accuracy of 

the measurement system. An anthropometer was used to locate the actual position and 

orientation of the calibration points. A sensor was securely positioned on a 7.5 × 7.5 cm 

square of plexiglass that was used as a mounting surface to the anthropometer for 

adjustments of various heights (i.e. z direction) for the calibration points. Two line levels 

were attached to the surface of the plexiglass to assure that the sensor was level in both x 

and y directions while taking measurements. A linear regression analysis was performed to 

calculate the root mean square (RMS) values between the measured x, y and z coordinates 

and the actual calibration points. The mean of the RMS values (i.e. average accuracy value) 

for position data in x, y and z was 1.05 cm. The mean of the RMS values for the three 

orientations of the sensor rotating around x, y and z axes was 0.3°(Lu et al., 2011).
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2.3. Overview of the study

To answer the research questions previously mentioned in the introduction section, two 

phases of experiments were conducted. Phase 1 experiment was to investigate the accuracy 

of estimating subjects’ own posture angles of 6 lifting activities using the human posture 

simulation method, while Phase 2 experiment was to assess the accuracy of estimating other 

people’s posture of the same lifting activities via computer-generated mannequins as a 

proxy. In phase 2 experiment, the compressive force and total moment at the L4/L5 

intervertebral disc for the lifting activities were also calculated for comparisons using the 

3DSSPP. Moreover, the efficiency of the human posture simulation method was evaluated 

by a comparison with an on-screen posture estimation method in Phase 2. Detailed 

description of the experiments follows.

2.4. Phase 1 experiment

Eight healthy subjects (3 females, 5 males) within the Greater Cincinnati, Ohio area, were 

recruited to participate in the accuracy test for the human posture simulation. The means and 

standard deviations of their age, height and weight were 36±11 years, 174.6±9.5 cm and 

75.8±13.4 kg, respectively. The consent documents signed by the subjects were reviewed 

and approved by the NIOSH human subjects review board. Prior to posture simulation, the 

subjects were informed of the risks involving simulation. They also received a training 

session for simulating a variety of postures to assure that they were able to simulate postures 

themselves in confidence. The training is documented in a previous paper (Waters et al., 

2011)

The experimental design for the phase 1 experiment employed a 6 × 3 × 3 within-subject 

design with posture, viewing angle and trial repetition as experimental factors. The three 

viewing angles of each posture consisted of front (frontal view), rear (180° from frontal 

view) and side (sagittal view) views. Six two-handed lifting tasks were selected from 

recorded video in a previous field surveillance study to cover a range of vertical height and 

horizontal distances as well as various levels of trunk flexion (0–75°) and lift asymmetry (0 

and 45°). For trunk flexion angle greater than 60°, these realistically recorded lifting 

postures inadvertently excluded 60° angle with 45° lift asymmetry. It was a natural choice to 

select a 75° trunk flexion angle that approximated 60° for comparisons. The characteristics 

of the six postures are presented in Table 1.

The subjects reviewed the six postures projected approximately full-scale onto a large screen 

(1.5 × 2.1 m) about three meters in front of them. They were asked to pose and match the 

postures as accurately as possible. These posed postures were photographed approximately 

at each subject’s shoulder height from the back, front and side viewing angles, resulting in 

18 reference views. The subjects’ assumed postures were measured with the motion capture 

system and used as reference postures for evaluating the accuracy of simulating self-posture, 

which was conducted in a separate simulation session.

The separate simulation session was performed one week after the initial session for posing 

the reference postures to avoid learning effects. In the separate session, the 18 reference 

postures were simulated 3 times, resulting in a total of 54 trials. During each trial, the 
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subjects were asked to pose and match one of the 54 randomly presented postures as 

accurately as possible. Once each posture was posed by the subjects in confidence (signaled 

by an audio cue from them), the computer operator started data collection. The subjects were 

asked to maintain the posture until data collection was completed.

2.5. Phase 2 experiment

The testing and consent procedure for the phase 2 experiment was almost identical to that 

for the phase 1 experiment, except the reference postures. In the phase 2 experiment, the 

reference postures (Table 1) were created using the built-in mannequin in the 50th percentile 

male body size in the 3DSSPP software as a proxy for the simulated persons. Five healthy 

subjects (3 females, 2 males) within the National Institute for Occupational Safety and 

Health (NIOSH) were recruited to participate in the experiment. The means and standard 

deviations of the subject’s age, height and weight were 33.8±10.2 years, 171.6±7.9 cm and 

70.4±8.1 kg, respectively. Similar to the phase 1 experiment, a total of 54 trials were 

assigned in a random order to the subjects during a separate simulation session.

2.6 Efficiency of the posture simulation method

The efficiency of the posture simulation method was evaluated by a comparison between the 

time spent on each simulation trial collected during the phase 2 experiment and time spent 

on manual posture specification on the computer screen for the same test condition. One 

male university graduate student (separated from the recruited subjects) in the ergonomics 

field was used to estimate the 15 body angles of photographed postures of one male subject 

from Phase 2 experiment. The student used the 3DSSPP software program to estimate the 

body angles on the computer screen. Similar to the simulation trials, the 54 photographed 

postures was given to the student in a random order to avoid any learning effect during 

posture specification on the computer screen. The starting and ending times for the posture 

specification on the computer screen were recorded manually by the student. The time spent 

on each simulation trial was recorded by the internal clock of the computer used for the 

posture data collection. All five subjects’ simulation data were used for the comparison.

2.7 Posture data and validation measures

The posture data acquired from the data collection system were processed and calculated 

with the Motion Monitor software program to determine the 15 body angles (trunk flexion, 

trunk lateral bending, trunk axial rotation, left and right upper arm vertical and horizontal 

angles, left and right lower arm vertical and horizontal angles, left and right upper and lower 

leg vertical angles) defined by the 3DSSPP (The Regents of University of Michigan, 2001). 

The mean values of the body angles over the 3-second trial period were calculated as the 

posture data for each trial and used in the statistical analysis. The subjects’ calculated 

posture data during the phase 1 and 2 experiments were compared with the reference posture 

data and mannequin’s posture data, respectively. The absolute value of the difference was 

used as the accuracy measure (i.e. simulation error) for each body angle. The mean of the 15 

posture simulation errors was used as the average posture simulation error and used in 

statistical comparisons. The choice of using the absolute difference was primarily based on 

the comparability with existing data in the literature (Liu et al. 1997). For evaluating the 
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repeatability or precision of the human posture simulation method, the standard deviation of 

the three trials for the same test condition was used as the precision measure.

2.8 Back compressive force and total moment

To further assess the accuracy of the posture simulation method in predicting biomechanical 

measures, back compression force at the L4/L5 intervertebral disc and the total moment at 

the L5/S1 were used. The total moment was the resultant moment of the moment data in the 

x, y, and z directions. Calculations of the two biomechanical measures require not only 

posture data, but also hand force, direction of the force and some anthropometric data. To 

control for the effects of the non-posture variables, the 50th percentile male anthropometric 

data and three hypothetical levels of hand load (1.8, 14.6 and 27.2 kg) equally distributed to 

each hand in the downward direction (i.e. lifting) were used.

2.9 Statistical analyses

A repeated measures analysis of variance (ANOVA) was employed to investigate the effects 

of trunk flexion, lift asymmetry and viewing angle on simulation accuracy for both Phase 1 

and 2 experiments. Five dependent variables were used respectively for the ANOVA 

including the average simulation error of the 15 body angles, three trunk posture variables 

(trunk flexion, lateral bending and axial rotation) and the precision measure. For generation 

of a balanced ANOVA, trunk flexion and lift asymmetry were grouped into three (see Table 

1, A: postures 1 and 2; B: postures 3 and 4; C: postures 5 and 6) and two (Yes: postures 1, 4 

and 6; No: postures 2, 3 and 5) groups, respectively. Within-subject variables, including 

three levels of trunk flexion, two levels of lift asymmetry and three levels of viewing angle, 

were used as the independent variables in the ANOVA models. Post hoc Fisher’s least-

significant-difference test (p<0.05) was performed to determine the effects of the within-

subjects variables. The mean value of the three repeated trials for each test condition was 

used as the data element of the ANOVA models to increase the accuracy of each test 

condition. The posture variables were log-transformed to achieve a proximate normality for 

ANOVAs. The ANOVA models are expressed in the following mathematical form.

Where

Xmijkl: randomly selected data element l in the test population for targeted dependent 

variable m (average simulation error, trunk lateral bending error, trunk flexion error, 

and trunk axial rotation, or average precision measure) for 5 separate models

μm: grand mean of the test population for targeted variable m

αmi: effect of trunk flexion group (i=3) - μm

βmj: effect of lift asymmetry (j=2) - μm

γmk: effect of viewing angle (k=3) - μm

εmijkl: experimental error for targeted variable m
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To assess the correlation between simulation- and mannequin-based back compressive 

force/moment, a linear regression analysis was performed. The Personal Statistical Analysis 

Software (SAS) version 9.1 (SAS Institute Inc, Cary, NC) was used for all the statistical 

analyses.

3 RESULTS

3.1. Accuracy of simulating self postures (Phase 1 experiment)

The mean and standard deviation of the average posture simulation error across all different 

test conditions were about 12° and 5°. Table 2 shows the ANOVA results for the two 

significant main effects for the phase 1 experiment. As compared to the rear and front 

viewing angles, the side viewing angle resulted in a statistically significant but small 

decrease (1–2°) in the average posture simulation error. The viewing angles, however, did 

not significantly affect the simulation errors for estimating trunk flexion, trunk lateral 

bending and trunk axial rotation angles. As compared with two other trunk flexion groups B 

and C (flexion<30°), trunk flexion group A (flexion>60°) caused a significant increase in the 

average posture simulation error and trunk lateral bending error by approximately 5° and 7°, 

respectively. The mean of the precision measure for posture simulation across all test 

conditions was 2.2°. This small precision measure indicates that the subjects appeared to be 

capable of simulating the same posture repetitively without generating a large posture 

variation.

3.2. Accuracy of simulating mannequin postures (Phase 2 experiment)

Table 3 shows the ANOVA results for the phase 2 experiment. The mean and standard 

deviation of the overall posture simulation error across all test conditions were about 15° 

and 5°. Both viewing angle and simulated trunk flexion group had a statistically significant 

effect on the average posture simulation error. Simulating the neutral trunk posture (group 

C) resulted in the least amount of error (12.8°), as compared with those for simulating trunk 

flexion angles 30°, 60° and 75° (i.e. groups A and B). Among the three viewing angles, the 

side viewing angle caused the least amount of error (13.6°). The neutral trunk angle (group 

C) resulted in the least trunk lateral bending error (4.1°) and trunk flexion error, as compared 

with the two other trunk flexion angle groups. Conversely, the trunk flexion angle group > 

60° (group A) caused the least trunk axial rotation error. The mean of the precision measure 

for simulating the mannequin postures across all test conditions were 1.8°. This finding 

supports the excellent repeatability of human posture simulation found in the phase 1 

experiment.

3.3. Correlation between simulation and mannequin back compressive force and moment 
data

To demonstrate the variation of the accuracy of estimating back compressive force and 

moment with simulation data in different test conditions, one subject’s data were shown in 

Figure 1. A linear regression equation for predicting back compressive force (Figure 1 a) 

and moment (Figure 1b) using the simulation data was constructed, respectively. The 

regression coefficients for compressive force and moment were about 0.96 and 0.98, 

respectively. The high R-square values (0.93 and 0.88 for back compressive and moment, 
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respectively) suggest the variances of the prediction models were explained well by this 

subject’s simulation data. The remaining subjects exhibited a comparably good 

predictability. For back compressive force, their regression coefficient ranged from 0.95–1.1 

with a R-square value varying from 0.82–0.93. Similarly for moment, their regression 

coefficient ranged from 0.96–1.0 with a R-square value varying from 0.8–0.9. The findings 

indicate an excellent estimation of back compressive force and moment using the human 

posture simulation method for a wide range of lifting postures.

Table 4 summarizes the mean values of the correlation coefficients (r’s) for the back 

compressive force and moment across the subjects as a function of the three levels of 

viewing angle and hand load. In each specific test condition, the correlation coefficient 

ranged from 0.6 to 0.95. The grand mean of the r’s for the test conditions was 0.82. As the 

level of hand load increased, the correlation decreased. The side viewing angle had the 

strongest correlation (r=0.9), as compared with the rear and front viewing angles. Similarly, 

the correlation of the moment between simulation and mannequin data demonstrated the 

same trend as the back compressive force with the same grand mean value of r=0.82.

3.4. Efficiency of human posture simulation method

The efficiency of the human posture simulation method in comparison with the manual 

posture specification on the computer screen is shown in Figure 2. On average, the time 

required for completing the manual posture specification was about 4 times longer than 

simulating both self and mannequin postures. The human posture simulation method clearly 

demonstrated a significant advantage in time saving over the manual posture specification 

method.

4. DISCUSSION

To validate the posture simulation method, we started with the best case scenario by 

simulating the subjects’ self postures followed by simulating computer-generated 

mannequin postures as a proxy for other people’s postures. Finally, the posture simulation 

errors and some non-posture variables (i.e. hand load and 50th percentile male 

anthropometrics) were taken into account and evaluated together during the estimation of 

the back compressive force and moment.

Findings from the two phases of this study suggest that humans have a great potential for 

simulating their own and other people’s posture with reasonable accuracy and precision. The 

subjects demonstrated an average 12° error for simulating their own posture and an average 

15° error for simulating mannequin postures for the same variety of postures in different 

viewing angles. The small ~2° mean value of the precision measure from both experiments 

indicates that an excellent repeatability of the posture simulation method for simulating the 

same working condition, which agrees with the majority of the observational methods for 

posture specification (Takala et al., 2010). In a study using a manual observational method 

to estimate the same body angles for 3DSSPP, the average posture specification error 

(calculated with the same method used in the present study) for a similar setting (i.e. one 

photograph) was about 9° (Liu et al., 1997). It is difficult to have a direct comparison in the 

posture specification errors between the current study and Liu’s study, which involved four 
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different working postures of four different university students. We conducted a mini study 

to allow a direct comparison between the observation and posture simulation methods.

In the mini study (Lu et al., 2009), the simulators’ self photographed postures were 

presented to five certified professional ergonomists for specifying the trunk flexion angle on 

a computer screen. Results showed that the average errors in simulating and manually 

specifying the trunk flexion angle were about 6° and 13°, respectively. This previous study 

also showed an improved inter-rater correlation coefficient (ICC=0.82 for simulation vs. 

0.65 for expert rating) for estimating the trunk flexion angle (Lu et al., 2009). Figure 3 

shows posture specification errors between the simulation and observational methods. As 

seen in Figure 3, the accuracy levels of simulating mannequin postures and expert rating are 

comparable, while the accuracy of simulating self postures increases by an average 5°. The 

finding suggests that simulating self posture or a worker’s posture in similar type may result 

in a significant decrease in posture specification errors by approximately 50%. A recent 

study has shown an average 9° error in estimating workers’ trunk flexion angle on the 

sagittal plane (i.e. side view) for a variety of lifting tasks using the manual posture 

specification on the computer screen (Xu et al., 2011). It is worth noting that the 9° error 

falls in between the 6° and 12° errors in simulating self and mannequin postures in our 

studies.

Results from three experiments in Figure 3 (simulating self-posture, mannequin posture and 

rating by professional ergonomists) suggest the same trend that estimating an increased 

trunk flexion angle was associated with an increased estimation error. The finding is in line 

with several studies where increased errors in estimating shoulder and wrist posture were 

associated with an increased targeted angle (Genaidy, 1993; Lowe, 2008). Table 2 and 3 

indicate that for the posture simulation method, the error trend applied to both trunk lateral 

bending and flexion. The reason that the trunk axial rotation error was not associated with 

the increased trunk flexion angle might be attributed to the relatively smaller trunk axial 

rotation angles for the trunk flexion group A (increased trunk flexion group). The trunk axial 

rotation angles for trunk flexion group A were 3° –27°, while the angles for the other two 

groups ranged from 0–45°. Caution should be exercised when using the subjective rating or 

the human posture simulation method to estimate an increased trunk flexion angle for 

postural risk assessments.

Results from the phase 2 experiment show that the mean of the simulation errors in trunk 

flexion, lateral bending and axial rotation angles ranged from 4° to 18° for the three groups 

of trunk flexion and 8° –16° for the three viewing angles. The results about estimating the 

three important postural risk factors for LBDs are not entirely satisfactory but perhaps 

tolerable for epidemiological research. If the simulator’s body type is a match or similar in 

terms of height, weight and gender to the person in the video for assessment, the posture 

simulation method may offer a promising approach for a fairly accurate estimation of these 

trunk posture variables, as indicated by an improved average 6° simulation error for a 

variety of trunk postures in different views in the phase 1 experiment.

Among the three viewing angles, the side viewing angle had the least average errors for 

estimating both self’s and mannequin’s body posture angles. According to the correlation 
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analysis (Table 4), the estimated back compressive force and moment data for the side 

viewing angle was also found to have the strongest correlation (r > 0.9) with both self’s and 

mannequin’s. This increased correlation for the side viewing angle seemingly was the results 

of the decreased average posture simulation error with this viewing angle. Therefore, to 

improve the accuracy of estimating the back compressive force and moment using the 

human posture simulation method, the side viewing angle is recommended.

With the limited sample size used in the experiment phase 2, it is difficult to conclude an 

under- or over-estimation of the back compressive force and moment using the human 

posture simulation method. According to the regression coefficients of the regression 

analysis for the five subjects, only one subject had a regression coefficient greater than 1. 

Most subjects had a coefficient ranging from 0.95–1. Therefore, the human posture 

simulation method appears to have a trend of underestimating both back compressive force 

and moment within a range of 5%.

As the level of hand load increased, the correlation between simulation and mannequin data 

decreased, indicating a compromised accuracy of estimating back compressive force and 

moment at an increased level of hand load. The decreased correlation is attributed to the 

multiplication effect of the horizontal moment arm from the load to the L4/L5 and hand load 

for calculating both force and moment data (Chaffin et al., 1999). This limitation may not be 

critical when one is to assess the biomechanical model driven back compressive force and 

moment for small to median hand loads.

As can be seen in Figure 2, the main advantage of the posture simulation method is its 

efficiency in completing posture specification of the 15 body angles. Previously, we 

reported an average time period of 20 sec to complete one posture simulation trial (Lu et al., 

2011). The time was based on the preparation time and actual posture posing time 

(standardized 3 sec) without considering the time for presenting the posture on the screen 

and time for saving data to the computer hard drive by the computer operator. Taking these 

extra factors into account, the average time (~1.5 min) for each simulation trial is about 5 

min less than manual posture matching on computer screen in the current study. Due to the 

limited data (one subject’s 54 trials) we collected for assessing the efficiency of the on-

screen posture matching method, the comparison does not seem generalizable. However, the 

time required for completing one human posture simulation trial is on average 3 min less 

than the reported data for similar on-screen posture specification trials reported in previous 

studies (Liu et al., 1997; Xu et al., 2011). For a large scale epidemiological study involving 

measuring the whole body postures for many manual materials handling tasks, the human 

posture simulation method may offer an efficient, precise and reasonably accurate way.

Our human posture simulation method has two advantages over on-screen manual posture 

matching methods. First, the human posture simulation method has the capability of 

specifying many body angles of interest at once, as compared to judging one angle at a time 

on the computer screen using the manual posture matching methods. This advantage leads to 

a significant reduction in labor and analysis time required by the on-screen methods. 

Second, human posture simulation has the capability of linking many body angles 

realistically, as compared to specifying one body angle at a time without considering 
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anatomical limitations between the body angle being specified and other body angles using 

the on-screen methods. For example, excess trunk axial rotation typically comes with pelvic 

rotation in the same direction, resulting in a reduction in the trunk twisting or axial rotation 

angle with respect to the pelvis (Anderson et al., 1986). This reduction is difficult to take 

into account during manual posture matching on the computer screen and typically is not 

addressed by researchers. In 3DSSPP, a body linkage constraint algorithm is implemented to 

limit unrealistic manual posture specification; however, this constraint algorithm is based on 

range of motion data and is relatively unrealistic for most lifting situations, compared to 

human posture simulation that employs a real human body composed of natural constraints 

from muscles, bones, ligaments and soft tissues.

The study methodology has some limitations that warrant considerations. First, the small 

sample sizes for both experiments provide limited generality. Although statistically 

significant differences were found for the average posture simulation error in both 

experiments, the non-significant associations between test conditions (viewing angle, lift 

asymmetry and simulated trunk flexion angle) and some trunk posture simulation errors may 

raise a question about the appropriate sample size for assessing the simulation errors in these 

trunk posture variables. Post hoc power sample size calculations were performed to estimate 

the required sample sizes for the non-significant trunk posture variables for both 

experiments. To detect a significant difference (p<0.05 with power=0.9) in the accuracy of 

simulating the trunk lateral bending, axial rotation and flexion variables in the test 

conditions in the phase 1 experiment, a minimal sample size of 19, 26 and 41 was required, 

respectively. For the same trunk variables with the same statistical power in the phase 2 

experiment, a minimal sample size of 13, 21 and 14 was needed, respectively. Research with 

a larger sample size is recommended to provide further data to quantify the human posture 

simulation errors. Second, theoretically, the simulation error for each posture variable may 

be influenced by relevant posture variables. For example, the simulation error for trunk axial 

rotation may be affected by the simulation error for trunk flexion because of the anatomical 

link. However, the interactions between the simulation errors for the 15 body posture 

variables were not assessed in both experiments. Due to the limited sample size, an 

assessment of the complicated interaction terms may not justify meaningful results. A 

preliminary analysis of linear correlation between the trunk posture simulation errors 

revealed that the correlation coefficients varied from 0.2–0.3 for both experiments. The poor 

correlations imply the complicated hypothesized interactions that may warrant further 

investigations. Third, the computer generated mannequin posture was not realistic; however, 

to investigate the effects of simulation errors on the accuracy of estimating the back 

compressive force and moment by the posture simulation method, it was perhaps the most 

accurate method for comparisons. The resolution of the mannequin for rendering a realistic 

human figure should have sufficient details for posture specification, as presented in Table 

1. In addition, the use of the mannequin as a realistic person completely eliminated the 

probabilities of measurement errors using a person’s posture data recorded by the motion 

capture system. Using a real person’s data for comparisons may also raise a question about 

the unknown effects of personal body characteristics, such as body type, size and height. 

Due to the number of trials to be completed during the test session, these personal factors 

were difficult to investigate simultaneously with the studied factors (viewing angle, trunk 
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flexion level and lift asymmetry). Nevertheless, future research on the additional factors is 

recommended to further validate the applications of the method.

While direct-reading measurement tools for physical risk quantifications are not well 

developed for field use, the human posture simulation method offers a novel approach to 

quantifying postural stress and biomechanical measures in the workplace. Since the method 

is based on the premise that biomechanical measures are associated with the development of 

LBDs, the value of the method in correlating the biomechanical variables with health 

outcomes has yet to be evaluated.

5. Conclusions

It is possible to use the human posture simulation method to simultaneously estimate 

multiple body angles from field recorded video. The method enables researchers to 

determine postural risks for musculoskeletal disorders and calculate spinal loading variables 

with accuracy and precision comparable to on-screen posture matching methods. The 

efficiency of this method presents the main advantage over the traditional on-screen posture 

matching approaches. The disadvantage of the method is initial costs and training required 

for using a motion capture system for human posture simulation.
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Figure 1. 
Linear regression lines (solid) predicting the back compressive force (A) and total moment 

(B) at the L4/L5 intervertebral disc using simulation data for 54 lifting conditions (data from 

one subject). The dotted lines are diagonal lines.
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Figure 2. 
Efficiencies of human posture simulation and manual on-screen posture matching methods 

(N represents number of trials)
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Figure 3. 
Comparisons of errors (mean and SD) in estimating trunk flexion angle as a function of 

viewing angle (a) and simulated trunk flexion angle (b) between human posture simulation 

method (self and mannequin postures) and on-screen posture matching method (N=5)

Lu et al. Page 18

Hum Factors Ergon Manuf. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 19

T
ab

le
 1

C
ha

ra
ct

er
is

tic
s 

of
 s

im
ul

at
ed

 p
os

tu
re

s 
(t

hr
ee

 le
ve

ls
 o

f 
tr

un
k 

fl
ex

io
n 

an
gl

e,
 tw

o 
le

ve
ls

 o
f 

lif
t a

sy
m

m
et

ry
 a

nd
 th

re
e 

vi
ew

in
g 

an
gl

es
)

F
ro

nt
Si

de
R

ea
r

T
ru

nk
 f

le
xi

on
L

if
t 

as
ym

m
et

ry

1
75

° 
(A

)
45

° 
(Y

es
)

2
60

° 
(A

)
0°

 (
N

o)

3
30

° 
(B

)
0°

 (
N

o)

4
30

° 
(B

)
45

° 
(Y

es
)

Hum Factors Ergon Manuf. Author manuscript; available in PMC 2015 September 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 20

F
ro

nt
Si

de
R

ea
r

T
ru

nk
 f

le
xi

on
L

if
t 

as
ym

m
et

ry

5
0°

 (
C

)
0°

 (
N

o)

6
0°

 (
C

)
45

° 
(Y

es
)

Hum Factors Ergon Manuf. Author manuscript; available in PMC 2015 September 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 21

T
ab

le
 2

Po
st

ur
e 

si
m

ul
at

io
n 

ac
cu

ra
cy

 a
nd

 p
re

ci
si

on
 m

ea
su

re
s 

as
 a

 f
un

ct
io

n 
of

 v
ie

w
in

g 
an

gl
e 

an
d 

tr
un

k 
fl

ex
io

n 
an

gl
e 

(p
ha

se
 1

 e
xp

er
im

en
t)

.

P
ha

se
 1

 E
xp

er
im

en
t

V
ie

w
in

g 
an

gl
e 

(n
=4

8)
Si

m
ul

at
ed

 t
ru

nk
 f

le
xi

on
 g

ro
up

 (
n=

48
)

M
ea

n 
(S

D
)

M
ea

n 
(S

D
)

R
ea

r
F

ro
nt

Si
de

A
 (

>6
0°

)
B

 (
30

°)
C

 (
0°

)

A
ve

ra
ge

 p
os

tu
ra

l s
im

ul
at

io
n 

er
ro

r 
(°

)
12

.0
 a

 (
4.

7)
12

.8
a  

(4
.8

)
11

.0
b  

(5
.1

)
15

.4
a  

(4
.9

)
9.

9b
 (

3.
8)

10
.4

 b
 (

4.
0)

T
ru

nk
 la

te
ra

l b
en

di
ng

 e
rr

or
 (

°)
6.

5 
(6

.2
)

6.
1 

(6
.0

)
7.

4 
(6

.3
)

11
.1

a  
(8

.3
)

4.
5b

 (
3.

0)
4.

3 
b  

(2
.5

)

T
ru

nk
 f

le
xi

on
 e

rr
or

 (
°)

5.
5 

(4
.3

)
6.

4 
(4

.5
)

5.
6 

(5
.7

)
8.

2 
(6

.8
)

4.
8 

(3
.0

)
4.

5 
(2

.9
)

T
ru

nk
 a

xi
al

 r
ot

at
io

n 
er

ro
r 

(°
)

4.
2 

(2
.3

)
5.

3 
(3

.8
)

5.
5 

(4
.2

)
4.

7 
(3

.4
)

4.
7 

(3
.0

)
5.

6 
(4

.2
)

A
ve

ra
ge

 p
re

ci
si

on
 (

°)
2.

3 
(2

.2
)

2.
5 

(2
.1

)
1.

9 
(2

.5
)

2.
7a

 (
2.

4)
2.

4a
 (

2.
6)

1.
5 

b 
(1

.4
)

a,
 b

, c
D

if
fe

re
nt

 s
up

er
sc

ri
pt

 le
tte

rs
 r

ep
re

se
nt

 a
 s

ig
ni

fi
ca

nt
 d

if
fe

re
nc

e,
 P

<
0.

05
.

Hum Factors Ergon Manuf. Author manuscript; available in PMC 2015 September 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 22

T
ab

le
 3

Po
st

ur
e 

si
m

ul
at

io
n 

ac
cu

ra
cy

 a
nd

 p
re

ci
si

on
 m

ea
su

re
s 

as
 a

 f
un

ct
io

n 
of

 v
ie

w
in

g 
an

gl
e 

an
d 

tr
un

k 
fl

ex
io

n 
an

gl
e 

(p
ha

se
 2

 e
xp

er
im

en
t)

.

P
ha

se
 1

 E
xp

er
im

en
t

V
ie

w
in

g 
an

gl
e 

(n
=3

0)
Si

m
ul

at
ed

 t
ru

nk
 f

le
xi

on
 g

ro
up

 (
n=

30
)

M
ea

n 
(S

D
)

M
ea

n 
(S

D
)

R
ea

r
F

ro
nt

Si
de

A
 (

>6
0°

)
B

 (
30

°)
C

 (
0°

)

A
ve

ra
ge

 p
os

tu
ra

l s
im

ul
at

io
n 

er
ro

r 
(°

)
17

.3
 a

 (
5.

0)
14

.3
b  

(4
.5

)
13

.6
b  

(4
.4

)
17

.0
a  

(4
.1

)
15

.5
a  

(4
.9

)
12

.8
b  

(4
.7

)

T
ru

nk
 la

te
ra

l b
en

di
ng

 e
rr

or
 (

°)
8.

3 
(5

.8
)

7.
5 

(5
.1

)
8.

1 
(5

.3
)

12
.7

a  
(5

.5
)

7.
1a

 (
3.

4)
4.

1 
b  

(2
.6

)

T
ru

nk
 f

le
xi

on
 e

rr
or

 (
°)

15
.9

 (
11

.0
)

11
.1

 (
7.

5)
11

.7
 (

7.
8)

15
.6

 (
11

.6
)

14
.5

 (
8.

6)
8.

6 
(3

.8
)

T
ru

nk
 a

xi
al

 r
ot

at
io

n 
er

ro
r 

(°
)

13
.7

 (
11

.2
)

13
.7

 (
11

.1
)

14
.3

 (
11

.1
)

7.
6a

 (
4.

6)
18

.1
b  

(9
.8

)
16

.0
 c

 (
13

.8
)

A
ve

ra
ge

 p
re

ci
si

on
 (

°)
2.

7 
a  

(2
.2

)
1.

4b
 (

1.
1)

1.
5b

 (
1.

3)
2.

2 
(2

.1
)

1.
9 

(1
.7

)
1.

6 
(1

.1
)

a,
 b

, c
D

if
fe

re
nt

 s
up

er
sc

ri
pt

 le
tte

rs
 r

ep
re

se
nt

 a
 s

ig
ni

fi
ca

nt
 d

if
fe

re
nc

e,
 P

<
0.

05
.

Hum Factors Ergon Manuf. Author manuscript; available in PMC 2015 September 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 23

Table 4

Mean values of correlation coefficients between simulation and mannequin data (A: back compressive force; 

B: moment) as a function of viewing angle and hand load (p-values for statistical significance of all 

correlation coefficients are <0.001).

A: Back compressive force

View
Hand load (kg)

Mean
1.8 14.6 27.2

Rear 0.93 0.85 0.79 0.86

Front 0.84 0.68 0.6 0.71

Side 0.95 0.9 0.84 0.90

Mean 0.91 0.81 0.74 0.82

B: Moment

View
Hand load (kg)

Mean
1.8 14.6 27.2

Rear 0.92 0.83 0.71 0.82

Front 0.86 0.69 0.56 0.70

Side 0.95 0.92 0.9 0.92

Mean 0.91 0.81 0.72 0.82
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