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Abstract

The objective of this laboratory study was to identify and measure manganese (Mn) fractions in 

chamber-generated welding fumes (WF) and to evaluate and compare the results from a sequential 

extraction procedure for Mn fractions with that of an acid digestion procedure for measurement of 

total, elemental Mn. To prepare Mn-containing particulate matter from representative welding 

processes, a welding system was operated in short circuit gas metal arc welding (GMAW) mode 

using both stainless steel (SS) and mild carbon steel (MCS) and also with flux cored arc welding 

(FCAW) and shielded metal arc welding (SMAW) using MCS. Generated WF samples were 

collected onto polycarbonate filters before homogenization, weighing and storage in scintillation 

vials. The extraction procedure consisted of four sequential steps to measure various Mn fractions 

based upon selective solubility: (1) soluble Mn dissolved in 0.01 M ammonium acetate; (2) Mn 

(0,II) dissolved in 25 % (v/v) acetic acid; (3) Mn (III,IV) dissolved in 0.5% (w/v) hydroxylamine 

hydrochloride in 25% (v/v) acetic acid; and (4) insoluble Mn extracted with concentrated 

hydrochloric and nitric acids. After sample treatment, the four fractions were analyzed for Mn by 

inductively coupled plasma-atomic emission spectroscopy (ICP-AES). WF from GMAW and 

FCAW showed similar distributions of Mn species, with the largest concentrations of Mn detected 

in the Mn (0,II) and insoluble Mn fractions. On the other hand, the majority of the Mn content of 

SMAW fume was detected as Mn (III,IV). Although the concentration of Mn measured from 

summation of the four sequential steps was statistically significantly different from that measured 

from the hot block dissolution method for total Mn, the difference is small enough to be of no 

practical importance for industrial hygiene air samples, and either method may be used for Mn 

measurement. The sequential extraction method provides valuable information about the oxidation 

state of Mn in samples and allows for comparison to results from previous work and from total Mn 

dissolution methods.
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Introduction

According to the US Bureau of Labor Statistics, over 300,000 workers in the United States 

are employed in the welding, brazing and soldering fields1. Welding is not a homogenous 

engineering method to join metal. In addition to the variety of tasks and projects within the 

field, welding may be performed using numerous processes and operating modes. This paper 

focuses on three of those processes which can result in significant airborne Mn exposures: 

short circuit gas metal arc welding (GMAW), flux cored arc welding (FCAW), and shielded 

metal arc welding (SMAW). All three of these processes produce a weld from heating with 

an arc between an electrode that provides the filler metal and the metal component(s) to be 

welded.2 With GMAW, shielding of the weld pool from oxidation is provided from an 

externally supplied gas mixture. FCAW is shielded by the flux present in the core of the 

electrode, which often is supplemented by an externally supplied gas or gas mixture. SMAW 

does not use externally supplied gas(es) for shielding; rather, it is the decomposition of the 

electrode coating that provides shielding.

The composition of welding fume (WF) is greatly dependent upon the welding process and 

conditions employed. Using mild carbon steel (MCS) in a chamber study, Zimmer et al.3 

generated WF using GMAW which contained Fe, Mn, and silica, while FCAW fumes 

reportedly contained Fe, Mn, silica, Mg, Ca, and Ba. Other researchers have reported that 

the amount of Mn detected from GMAW fumes ranges from 3–15%4–7 of the collected 

aerosol, with reported concentrations of 0.01–2.7 mg/m3 7–9. SMAW fume is reported to 

contain 3–10% Mn7. In several studies, FCAW was shown to generate the greatest 

concentration of Mn9–12. The majority of the WF components originate from the 

electrode2,13, but several other factors may also affect the emission, including the base 

metal, flux(es), surface coating, shield gases and spattered particles2,7,10,14. Additionally, the 

fume components are not necessarily in the same form or quantities as in the starting 

materials10. Voitkevich15, Jenkins et al.16 and Minni et al.17 have reported that the Mn 

found in WF is primarily in the divalent and trivalent states. Keane et al.6 found evidence of 

multiple Mn oxides in GMAW fume by X-ray diffraction, but weak signals from the small 

particle size limited their absolute identification. Welding generates a range of health 

hazards, including noise, heat stress and radiation, but the gases and aerosol particles 

generated are considered to be the most harmful exposure2. Exposure to WF has been linked 

to metal fume fever, pneumonitis, airway irritation, lung function changes, skin 

sensitization, and possible cancers and reproductive effects10,18. While the respiratory 

system is the primary target of injury, long-term exposure to Mn in WF may lead to 

disorders of the nervous system10. These neurophysical effects may manifest even with 

relatively low Mn exposures19. Results are conflicting as to a link between welding and 

clinical manganism, a Parkinson’s-like neurological disease.20–22 However, sub-clinical 

neurobehavioral changes are consistently reported for workers who experience airborne Mn 

exposures from metal fumes19,23–26.

After exposure, several factors influence the biological fate (absorption, distribution, 

metabolism, and elimination) of Mn, such as particle size, shape, solubility and oxidation 

state. In an animal study, Chen et al.27 reported that the Mn oxidation state determines the 

degree to which this element exerts cytotoxicity. They found Mn3+ to be more cytotoxic 
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than Mn2+. Therefore, data on the Mn species generated in different operating processes 

would be valuable to assessing the airborne Mn exposure risks associated with welding. 

Sequential extraction of welding fume can provide information on the physiochemical 

availability of Mn. The main objective of our study was to identify and measure Mn species, 

differentiated by solubility of Mn compounds only, using sequential extraction in 

laboratory-generated WF collected during GMAW on stainless and mild carbon steels and 

FCAW and SMAW on mild carbon steel. Additionally, sets of WF samples were analyzed 

for total, elemental Mn content and the results were compared to the sequential Mn fractions 

and summation of sequential extraction results.

Experimental

Welding fume generation

Laboratory welding fumes were generated using a welding system within a conical chamber 

described previously by Keane et al.28 WFs were generated in short circuit mode GMAW 

using both SS and MCS and with FCAW and SMAW processes using mild carbon steel. 

Fumes from the weld area were sampled at 200 L/min through a 102-mm filter electrostatic 

medium (Hollingsworth and Vose East Walpole, MA), cut to fit the filter housing at the top 

of the chamber. The flow was measured with a mass flow meter (TSI, Shoreview, MN) 

before sampling. After sampling was completed, filters were removed from the housing, 

folded inward, weighed to the nearest 0.1 mg and put in sealed anti-static polyethylene bags. 

Table 1 lists the welding operational conditions used. The gas mixtures used are typical 

industrial mixtures for the respective steels, while the currents, voltages and other 

parameters listed are recommended levels for the steel thicknesses used. The available 

material safety data sheets for the materials used list Mn values typically <5% by weight.

Welding fume collection

Most of the WF particulate matter was recovered from filters at the outlet of the welding 

chamber by gentle suction onto a 47-mm, 0.8-μm polycarbonate filter (Millipore, Billerica, 

MA). Fumes were removed from the electrostatic medium with low vacuum so that there 

was no damage to the filter media and no residue from the filter was present in the recovered 

fume. Sufficient quantity was collected for metals analysis, but quantitative recovery was 

not necessary. The collected WF material was then brushed from the polycarbonate filter 

and its housing using a #3 artist’s brush (McMaster-Carr, Aurora, OH) into a tared 75-mm × 

75-mm weighing boat. The fume was treated with an anti-static device to prevent losses 

before and after grinding in a metal-free apparatus to homogenize the sample. Fume was 

ground using disposable 13-mm × 25-mm polyethylene vials with two 3.2-mm silicon 

nitride coated ceramic balls and shaken for 30 s in a Wig-L-Bug grinder (Fisher Scientific, 

Pittsburgh, PA). The material was weighed into 20-mL scintillation vials with 

polytetrafluoroethylene (PTFE)-lined caps for storage at room temperature.

Sample Preparation

Samples (~5 mg) were weighed to the nearest 0.01 mg (n=12 for GMAW on stainless steel 

and FCAW and SMAW on mild carbon steel; and n=25 for GMAW on mild carbon steel) 

into extraction tubes. The extraction tubes were 50-mL Maxi-Spin polypropylene centrifuge 
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tubes with 25-mL filter inserts equipped with 0.2-μm polyvinylidene fluoride (PVDF) filters 

(Grace Davison, Deerfield, IL). Samples were prepared following a sequential extraction 

procedure based upon work by Thomassen et al.,29 with a change made in the final 

preparation step to allow for possible comparisons to traditional metal dissolution methods, 

e.g., NIOSH 730330. NIOSH 7303 is a hot block dissolution method utilizing concentrated 

hydrochloric and nitric acids. Digestion methods employing hydrofluoric acid, as used in 

Thomassen et al.,29 are mainly (but not always) applicable to geological samples. For our 

purposes, owing to safety considerations, such an aggressive digestion procedure was not 

deemed warranted. Samples were taken through a multiple step extraction and acid 

dissolution procedure to determine soluble Mn (Step 1); Mn (0) and Mn (II) (Step 2); Mn 

(III) and Mn (IV) (Step 3); and insoluble Mn (Step 4). Details of the sample preparation 

procedure are presented in Table 2. Between extraction steps, the samples were centrifuged 

at 2500 rpm (1260 g) for 15 min in order to filter the extraction solutions for analysis while 

leaving the welding fume bulk available for subsequent sample preparation steps. Deionized 

water (18 MΩ-cm resistivity), ammonium acetate (Fisher, Pittsburgh, PA, HPLC grade), 

glacial acetic acid (Fisher, Pittsburgh, PA, Certified ACS grade), hydroxylamine 

hydrochloride (Acros Organics, NJ, Reagent ACS grade), and concentrated hydrochloric and 

nitric acids (both Fisher Trace Metal grade) were used in sample preparation. After Step 1 

and after Step 2, the insert section of the extraction tube was transferred to a clean 50-mL 

polypropylene centrifuge tube. After Step 3, the insert was disassembled and its contents 

transferred to a clean 50-mL polypropylene centrifuge tube for acid digestion in Step 4. If 

necessary, samples were filtered between steps using Swinnex® reusable syringe filter 

holders loaded with 0.45-μm Omnipore™ membrane filters (Millipore, Billerica, MA). Each 

filter was then placed into the insert holding the bulk sample, thus making the filtered bulk 

material available for the subsequent extraction/dissolution step(s). If necessary, samples 

were filtered using Acrodisc® syringe filters with 0.45-μm PTFE membranes (Pall, Port 

Washington, NY) before analysis of Step 4 solutions.

Quality control (QC) samples of individual Mn compounds were analyzed alongside the WF 

samples to ensure satisfactory sample preparation and analysis. A solution of manganese 

nitrate (Inorganic Ventures, Christiansburg, VA) (for soluble Mn), Mn powder (325 mesh), 

Mn (II) oxide, and Mn (III) oxide (325 mesh) (all from Sigma-Aldrich, St. Louis, MO), and 

Mn (IV) oxide (Sigma-Aldrich, St. Louis, MO; 60–230 mesh, Reagent Plus grade), a SiMn 

alloy material characterized by Thomassen et al.29 (for Mn(0,II) and insoluble Mn), and UK 

Health and Safety Laboratory (HSL) certified WF materials31 HSL MSWF-1 and HSL 

SSWF-1 were used for QC samples. HSL MSWF-1 and HSL SSWF-1 were collected in 

ventilation ducts above robotic welding stations32,33. The amount of Mn expected in SiMn 

alloy was determined by NIOSH 7303 analysis of the bulk material.

Additional sets of laboratory generated WF bulk samples (n=3 for GMAW on stainless steel 

and FCAW and SMAW on mild carbon steel; and n=25 for GMAW on mild carbon steel) 

were prepared and analyzed following NIOSH 7303. 2.5 mL concentrated hydrochloric acid 

were added to the sample in a 50-mL polypropylene tube and the tubes heated at 95 ° C for 

15 min. After a 5 min cooling step, 2.5 mL concentrated nitric acid were added to the 

sample tube and the samples heated at 95 ° C for 15 min. After cooling, the samples were 
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diluted using deionized water. This method is identical to Step 4 of the sequential method 

described earlier.

Sample analysis was performed with a Spectro Arcos EOP ICP-AES (Spectro Ametek, 

Mahwah, NJ).

Statistical Analysis

Sample results were tested for outliers using Grubbs’ test. The test was performed at the 

two-sided, 5% significance level. Results identified as outliers were removed based upon 

laboratory observations, such as early fraction filtration leading to reduced extraction time. 

To compare the difference between data sets, a one-way ANOVA (in this case, same as a t-

test) procedure was used. The required normality assumption for the procedure was tested 

and met. All statistical analyses were performed using SAS Software (version 9.2, SAS 

Institute Inc., Cary, NC).

Results

The results for the QC samples may be found in Tables 3 & 4. Reusable syringe filter 

holders were used for approximately 30% of the samples (WF and QC) in this study. Their 

use does not appear to negatively impact the amounts of Mn detected, as determined by 

quantitative QC recoveries and WF results in agreement with those from WF samples that 

did not need filtration. For the Mn compounds, the samples recovered at 82% or higher in 

the expected fraction and mass balance was found using Mn(sum). Because the low pH of 

the second extraction solution could partially attack the compounds to be extracted in the 

third step34, Mn(sum) is the most telling indication of the cumulative recovery using the 

sequential method. These overall results confirm the suitability of the method for Mn 

compounds of known valence and stoichiometry.

For the SiMn alloy, 40.2% of the expected Mn was detected as Mn(0,II) and 32.9% was 

detected as insoluble Mn. Overall, 75.1% of the expected Mn in SiMn alloy was recovered. 

For the stainless steel WF certified bulk (HSL-SSWF-1), 74.1% was recovered using 

Mn(sum) and the largest fraction measured was Mn(0,II). For the mild steel WF certified 

bulk (HSL-MSWF-1), 68.2% was recovered and the greatest fraction was insoluble Mn. 

Using NIOSH 7303 as a reference, HSL-SSWF-1 and HSL-MSWF-1 were recovered at 

84.8% and 96.8%, respectively. Detectable amounts of soluble Mn were found in 3 of the 6 

HSL-MSWF-1 bulk samples analysed; therefore, the results shown for the soluble Mn 

fraction are an average of the three measurable results.

Figure 1 shows the Mn content obtained for each of the generated WF. The average results 

of the Mn speciation analysis from the lab generated WF as mg Mn/g of bulk fume are 

shown. FCAW on mild carbon steel produced the greatest overall Mn concentration, with 

94.4 mg Mn/g measured (summation of the 4 steps). The next highest concentration of Mn/g 

of bulk fume was generated using GMAW of MCS with 52.8 mg Mn/g. The amount of Mn 

detected from GMAW-SS did not differ significantly from that detected with SMAW-MCS, 

47.1 mg Mn/g and 45.6 mg Mn/g of bulk fume, respectively.
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In comparing results from GMAW fume only, more soluble Mn, Mn (III,IV) and insoluble 

Mn are detected (leading to greater overall Mn measured) when mild carbon steel was the 

base material. When welding with stainless steel, more proportional mass of Mn (0,II), 

relative to the bulk fume mass was detected than when mild carbon steel was the base 

material. Greater Mn(sum) was detected with GMAW-MCS than with GMAW-SS and this 

difference in the Mn(sum) detected for GMAW fumes was found to be statistically 

significant. However, regardless of material welded, the prevalence of Mn fractions in 

GMAW fume remained the same: Mn (0,II) > insoluble Mn > Mn (III,IV) > soluble Mn 

(Figure 2). For FCAW-MCS, this same ordinal rank was observed but the difference 

between Mn (0,II) and insoluble Mn was much smaller than with GMAW fume, however, 

the difference was still statistically significant. The order of prevalence for SMAW was Mn 

(III,IV) > Mn (0,II) > soluble Mn and insoluble Mn. No statistically significant difference 

was found between soluble Mn and insoluble Mn for SMAW-MCS fume.

The fraction of Mn detected when welding in either short circuit GMAW or SMAW was 

approximately 5% of the total weight of the bulk WF. FCAW yielded the highest overall Mn 

result, with 9.44% of the total weight of the bulk WF attributed to Mn. FCAW also gave the 

greatest Mn (0,II) and insoluble Mn weight concentrations. These Mn concentrations were 

between 2 to 2.8 times and 2.4 to 24 times, respectively, of that of GMAW-MCS and 

SMAW.

Three GMAW-MCS results were identified as outliers, but only one sample was removed 

from the data set based upon laboratory observations. Figure 3 displays a boxplot to show 

the distribution of the data upon removal of the outlier. The distribution of the results was 

largest for fractions 3 & 4 (Mn(III,IV) and insoluble Mn), indicating that there is greater 

variability for these later extraction steps.

Boxplots comparing the sequential and hot block methods are shown in Figure 4 for each 

type of generated WF. Outliers are included in Fig. 4. As expected due to additional error 

involved with multiple extraction steps, there is a greater spread in the total Mn results for 

the sequential method when compared with the hot block method. Also, the loss of Mn 

during sample handling is evident in the reduced amount of Mn recovered from the GMAW-

MCS WF using the summation of the Mn fractions in the sequential method compared to 

that recovered using the hot block method.

The overall percentage of Mn detected in GMAW-MCS using the sequential method was 

5.28% Mn and was 5.65% using the hot block acid dissolution method (NIOSH 7303). To 

compare the difference between these two analytical procedures, statistical analyses were 

performed for all data including the outliers as well as for data excluding the outliers. The 

hot block method gave statistically significantly higher mean results than those of the 

sequential method (p<0.001).

Discussion

The results of Figure 4 show that the sums of Mn amounts obtained by sequential extraction 

are comparable to the amounts of Mn measured using NIOSH 7303. These data are 
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demonstrative of the ruggedness of the sequential extraction procedure. Approximately 70% 

of the certified amount of Mn was detected in the UK HSL certified WF samples using the 

sequential extraction method. The sample preparations recommended in the certification 

reports use stronger acids and more aggressive conditions to prepare the certified WF than 

were used in the last step of the sequential method. A “total” digestion of the WF sample is 

not warranted in light of the relevance of soluble Mn components on uptake in the body35,36. 

Ellingsen et al.37 reported a univariate correlation between soluble Mn in aerosol samples 

and Mn levels in urine and blood of welders using a relatively mild extraction of WF in an 

artificial lung lining simulant (Hatch Solution) at 37 °C. Also, a stronger acid digestion 

procedure was not used in the sequential method to ultimately allow the WF Mn(sum) 

results to be compared to historical results that have utilized NIOSH 7303 (and equivalent 

methods) for Mn measurement. NIOSH 7303 and comparable methods are of interest for 

purposes of comparison since it is these methods, i.e., those that do not employ HF in their 

dissolution procedures, which are widely used by occupational hygiene laboratories 

worldwide.

The distribution pattern of Mn species detected was similar for WF generated using GMAW 

for both stainless steel and mild carbon steel base materials, with Mn (0,II) > insoluble Mn > 

Mn (III,IV) > soluble Mn. This distribution pattern is not in agreement with that reported by 

Berlinger et al.8 In that study, relatively similar proportions of Mn were detected in the 

insoluble and soluble Mn/Mn (0,II) fractions, whereas, our results show 1.6 and 2.8 times 

more soluble Mn/Mn (0,II) than insoluble Mn for GMAW-MCS and GMAW-SS, 

respectively. The overall percent Mn content was slightly elevated for GMAW-generated 

fume when mild carbon steel was used as the base material versus when using stainless steel 

as the base metal (5.3% vs. 4.7%, respectively). A similar effect has been reported by Pesch 

et al.11 and Lehnert et al.13. The differences in Mn content in our study may have been due 

to differences in the shield gases and current applied. While the conditions were appropriate 

for the base material used, more CO2 was present in the shield gas mixture and a higher 

current was applied when using MCS. Both of these factors have been shown to increase 

particle number concentration38 and fuming10.

The greater spread of results shown in Figure 4 for the sequential method is due to the 

complicated nature of the sample preparation procedure. More preparation steps yields more 

potential sources of error and this error is propagated due to the sequential nature of the 

method. The sequential method was performed over the course of 4 days, but the NIOSH 

7303 sample preparation process can be completed in a few hours. This greater amount of 

time for sample preparation increases the chance of sample loss. Additionally, for bulk 

samples, the Mn results may be lower than those from total elemental methods due to 

difficulties in quantitatively transferring bulk material from the tube insert to a digestion 

vessel. While Steps 1 through 3 take place in a single extraction vessel insert, Step 4 

requires the removal of the sample (and any filters used throughout the extraction) into a 

new tube for the acid digestion. The complete removal of the bulk sample can be 

problematic and it is highly likely that a small portion of the undissolved sample residue is 

unable to be transferred through a deionized water rinse. This increases the sample error and 

variability for the 4th step and prevents the entire remaining undissolved fraction from being 

available for acid digestion and analysis. Consequently the measured Mn(sum) is slightly 
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less than what should ideally be obtained for total, elemental Mn using the hot block acid 

dissolution method via NIOSH 7303. The results shown for the SiMn alloy and the UK HSL 

certified WF illustrate this point. The amount of Mn in the SiMn alloy was determined using 

NIOSH 7303, but the lower than expected Mn(sum) recovery for that alloy is due to sample 

loss when the sample residue was transferred for the final extraction step. With the 

sequential method, 74.1 % of HSL-SSWF-1 and 68.2% of HSL-MSWF-1 were recovered, 

but an additional 10 – 30% was recovered using the hot block method alone. Based upon the 

summation of the laboratory-generated WF results from the sequential steps and the hot 

block method results, it was found that over 90% of the bulk material was successfully 

transferred for the fourth step of the sequential method in this study. This is not expected to 

be an issue for filter based field samples because the fume will deposit onto the filter, easing 

its transfer to the subsequent extraction and digestion vessels.

In comparing GMAW to the other two welding processes (i.e., FCAW and SMAW) with 

mild carbon steel used in this study, either the overall concentration of Mn detected or the 

distribution of Mn species varied. FCAW and GMAW showed similar ratio distributions of 

Mn fractions; however, the overall weight percentage of Mn detected in FCAW is nearly 

double than that detected using GMAW. This is supportive of the results of Lehnert et al.13 

and Wallace et al.12, who found that the mass concentration of Mn for FCAW was 2 - 4 

times greater than for GMAW. On the other hand, SMAW yielded the lowest Mn content, 

and its species distribution was unique, with the majority of its Mn content detected as Mn 

(III,IV). In a field study using stationary air samples, Berlinger et al.8 found SMAW to have 

a greater Mn content than that of GMAW for unalloyed structural steel, i.e. MCS, and 

corrosion-resistant steels, i.e. SS, but the fractional distribution for SMAW (with Mn (III,IV) 

as the dominant fraction) agrees with our laboratory results.

For all of the welding processes studied, the most prevalent Mn fractions were those of Mn 

(0,II) and Mn (III,IV). Observation of the prevalence of the Mn(0, II) fraction in WF was 

reported by Thomassen et al.,29 in agreement with our results. Other workers have reported 

predominance of soluble and sparingly soluble Mn fractions, in agreement with our data. For 

instance, Voitkevich15 reported that Mn(II) and Mn(III) are the most probable oxidation 

states in WF, which is consistent with the results reported here. The fractionation method 

does not separate the fractions into individual oxidation states, but rather according to 

solubility. This enables potential linkage to investigations of Mn bioavailability,37 which is 

of interest for toxicology studies.2,4,27,36 It also relies on the material being extracted in a 

sequential fashion that may not be amenable to WF particles due to their complicated 

structure17,39. Therefore, any identification of specific Mn compounds in WF is not possible 

with this method. These limitations need to be considered when applying the method to WF.

Conclusions

While the difference in the sequential extraction and hot-block dissolution methods is 

statistically significant, the results for Mn(sum) are indeed quite comparable (53 mg/g vs. 57 

mg/g). This difference is small enough to have no practical importance and either method 

may be used for Mn measurement in industrial hygiene samples. The sequential extraction 

method has been validated at an independent laboratory and utilized for over 600 field 

Andrews et al. Page 8

Anal Methods. Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



samples. While the sequential extraction method is time- and labor-intensive, it provides 

valuable information on the Mn fractionation of samples. Due to the role solubility and 

oxidation state play in the biological fate of metal compounds, this information could 

provide insight into bioavailability and toxicity of Mn from welding fume and other 

occupational exposures and aid health hazard evaluations.
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Figure 1. 
Manganese fractions (mg/g) detected in laboratory generated WF for different welding 

processes. (Error bars are standard deviations.)
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Figure 2. 
Ratio of Mn fractions to bulk fume total mass for four welding process
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Figure 3. 
Box plot of Mn detected (mg/g) for generated GMAW-MCS fume (n=24). One outlier 

removed for each fraction.
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Figure 4. 
Boxplots of total Mn detected (mg/g) in generated (a) GMAW-SS*, (b) GMAW-MCS 

(n=25), (c) FCAW*, and (d) SMAW* fumes for sequential and hot block methods *(n=12 

for sequential; n=3 for hot block)
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Table 4

Average concentration of Mn fractions detected (% m/m) +/− SD for certified WF bulks31.

HSL-SSWF-1 (n = 3) HSL-MSWF-1 (n = 6)

% m/m % m/m

soluble Mn 0.619 ± 0.17 0.013 ± 0.0092*

Mn (0,II) 8.57 ± 0.46 0.20 ± 0.0079

Mn (III,IV) 4.68 ± 0.43 0.36 ± 0.073

insoluble Mn 3.08 ± 0.48 0.45 ± 0.10

Mn(sum) 17.0 ± 0.58 1.01 ± 0.098

Certified amount 22.9 1.48

% Recovery 74.1 68.2

*
n=3
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