Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A comparison of two methods for estimating prevalence ratios

Filetype[PDF-259.00 KB]


  • English

  • Details:

    • Alternative Title:
      BMC Med Res Methodol
    • Description:
      Background

      It is usually preferable to model and estimate prevalence ratios instead of odds ratios in cross-sectional studies when diseases or injuries are not rare. Problems with existing methods of modeling prevalence ratios include lack of convergence, overestimated standard errors, and extrapolation of simple univariate formulas to multivariable models. We compare two of the newer methods using simulated data and real data from SAS online examples.

      Methods

      The Robust Poisson method, which uses the Poisson distribution and a sandwich variance estimator, is compared to the log-binomial method, which uses the binomial distribution to obtain maximum likelihood estimates, using computer simulations and real data.

      Results

      For very high prevalences and moderate sample size, the Robust Poisson method yields less biased estimates of the prevalence ratios than the log-binomial method. However, for moderate prevalences and moderate sample size, the log-binomial method yields slightly less biased estimates than the Robust Poisson method. In nearly all cases, the log-binomial method yielded slightly higher power and smaller standard errors than the Robust Poisson method.

      Conclusion

      Although the Robust Poisson often gives reasonable estimates of the prevalence ratio and is very easy to use, the log-binomial method results in less bias in most common situations, and because it fits the correct model and obtains maximum likelihood estimates, it generally results in slightly higher power, smaller standard errors, and, unlike the Robust Poisson, it always yields estimated prevalences between zero and one.

    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    Supporting Files

    More +

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov