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Summary

Many existing cohort studies initially designed to investigate disease risk as a function of 

environmental exposures have collected genomic data in recent years with the objective of testing 

for gene-environment interaction (G × E) effects. In environmental epidemiology, interest in G × 

E arises primarily after a significant effect of the environmental exposure has been documented. 

Cohort studies often collect rich exposure data, as a result, assessing G × E effects in the presence 

of multiple exposure markers further increases the burden of multiple testing, an issue already 

present in both genetic and environment health studies. Latent variable (LV) models have been 

used in environmental epidemiology to reduce dimensionality of the exposure data, gain power by 

reducing multiplicity issues via condensing exposure data, and avoid collinearity problems due to 

presence of multiple correlated exposures. We extend the LV framework to characterize gene-

environment interaction in presence of multiple correlated exposures and genotype categories. 

Further, similar to what has been done in case-control G × E studies, we use the assumption of 

gene-environment (G-E) independence to boost the power of tests for interaction. The 

consequences of making this assumption, or the issue of how to explicitly model G-E association 

has not been previously investigated in LV models. We postulate a hierarchy of assumptions about 

the LV model regarding the different forms of G-E dependence and show that making such 

assumptions may influence inferential results on the G, E, and G × E parameters. We implement a 

class of shrinkage estimators to data adaptively trade-off between the most restrictive to most 

flexible form of G-E dependence assumption and note that such class of compromise estimators 

can serve as a benchmark of model adequacy in LV models. We demonstrate the methods with an 

example from the Early Life Exposures in Mexico City to Neuro-Toxicants (ELEMENT) study of 

lead exposure, iron metabolism genes, and birth weight.
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1. Introduction

It is now clear from many lines of evidence that pure genetics or pure environmental factors 

play only a partial role in the etiology of most complex diseases. Instead, it is now accepted 

that the majority of chronic diseases likely stem from interactions between genetic traits, 

“G”, and environmental factors, “E” –an exponentially growing area of study (Khoury and 

Wacholder, 2009). Characterizing gene-environment interactions, “G × E effects”, is critical 

in understanding the biological mechanisms of disease etiology and can impact preventive 

medicine and public health by informing the way clinicians advise their patients and the way 

public health practitioners assess risk and set policy. Statistical approaches that heighten our 

ability to understand G × E effects can accelerate mapping of the so far elusive 

environmental footprint of disease etiology.

Established environmental health cohorts that have demonstrated modest health effects of 

the environment are now collecting genomic data to test G × E effects. However, G × E 

interaction studies are statistically difficult problems because of exposure measurement 

error, multiple potential exposure markers, and prohibitive sample sizes required to reach 

adequate power. Statistical methods to boost efficiency for testing G × E effects have 

primarily been developed for case-control studies, where imposing the assumption of 

independence between environmental exposures and inherited genetic susceptibility factors, 

so called G-E independence, boosts efficiency of G × E effect estimates (Chatterjee and 

Carroll, 2005, and references therein). Hybrid approaches that protect against bias under 

departures from independence constraints have also been proposed (e.g., Mukherjee and 

Chatterjee, 2008; Li and Conti, 2009; Chen et al., 2009).

Latent variable (LV) models have been used in environmental health studies to extract 

features from a set of correlated biomarkers, thus reducing dimensionality of exposure data 

and multiple testing burden, and enhancing power (e.g., Budtz-Jørgensen et al., 2003b). 

These models have enormous potential for modeling gene-environment interaction between 

multiple genes and multiple environmental exposures, an area which is still in its formative 

phase. Chatterjee et al. (2006) motivate a one degree of freedom test for gene-gene 

interactions from a latent variable perspective in a case-control study. However the issue of 

modeling G-E dependence through the LV framework is not discussed. More general LV 

models, as proposed here, can incorporate and estimate G-E association structures, which 

are of interest to environmental health researchers, and also impose constraints such as 

independence. In our motivating example, the relationship between iron metabolism genes 

and lead exposure is of interest in itself (e.g., Hopkins et al., 2008). Very few attempts exist 

that pose a general LV model for studying G × E effects in cross-sectional or cohort studies 

(e.g., Dhungana et al., 2007; Rathouz et al., 2008; and Javaras et al., 2010), especially those 

investigating an array of G-E dependence structures.

The Early Life Exposures in MExico City to Neuro-Toxicants (ELEMENT) study motivates 

our work. ELEMENT consists of four longitudinal birth cohorts in Mexico City, constituting 

over 2,000 mother infant pairs with prospectively collected exposure data and several 

anthropometric, cardiovascular, neuro-development, and behavioral outcomes. Genotyping 

for these cohorts is underway, with genotyping for the first cohort completed on a set of 
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candidate genes (≈ 400 pairs). Figure 1 is a path diagram describing relationships between 

four biomarkers of prenatal lead exposure, their interaction with iron metabolism genes, and 

birth weight.

In Section 2, we describe a model structure to summarize a group of biomarkers into latent 

variables, and the spectrum of G-E dependence models we consider. In Section 3, we 

describe maximum likelihood estimation (MLE) and a general class of shrinkage estimators 

to data-adaptively compromise between the most stringent and most flexible models for G-E 

association. Small scale simulation studies (Section 4) bring out salient features of our 

methodology. Section 5 presents analyses of our motivating example. Section 6 discusses 

the use of LV models for G × E studies, and shrinkage estimators in general LV modeling 

beyond the G × E context.

2. A Latent Exposure Model for G × E Studies

2.1 Model Representation

For the ith of N individuals, let Yi represent a univariate health outcome (here birth weight), 

and Ui be an l × 1 vector of latent exposures measured indirectly by a set of p measurements 

Ei. In the example, l = 1, p = 4, and Ui is prenatal lead exposure (Figure 1). Let Zi and Wi 

represent q × 1 and r × 1 covariate vectors, respectively. Without any loss of generality, 

genotype classes are represented by a categorical variable Gi with classes g = 0, ⋯, G. 

Genotype classes may arise from data on biallelic polymorphisms where a ‘risk’ allele ‘A’ 

may alter the exposure metabolism pathway or affect health (with the reference allele 

denoted by ‘a’) or from combinations of genetic markers measured at multiple loci (e.g., risk 

alleles A, B). In the lead example we consider two single nucleotide polymorphisms (SNPs) 

implicated in iron metabolism, but due to sparsity of data, we assume Gi can take two 

possible values: zero for wild-type on both SNPs (’aa’ and ’bb’), and 1 for at least one copy 

of either of the risk alleles (i.e., ’Aa’, ’AA’, ’Bb’, or ’BB’), consistent with dominant/

recessive models for genetic susceptibility. Alternatively, genetic groups can arise as 

categorization of an underlying genetic risk score that combines several markers identified 

by existing genome wide association studies (Qi et al, 2011), or from infant-mother 

genotype combinations at a single locus in studies of pre-natal fetal exposure.

The latent variable model is then specified in two stages: a health outcome model and an 

exposure model. In the outcome model, the association between the outcome Yi, exposure Ui 

and genetic category Gi = g conditional on covariates Zi is characterized by either

(1)

(2)

using genotype class indicators Igi = I(Gi = g). The mean-zero error εi has variance σ2. 

Equation (1) is written using the multiple group notation (Bollen 1989), which is useful in 

writing the likelihood (Section 3), and β0,g, βU,g, βZ,g are parameters specific to class g = 0, 
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⋯, G. Such notation is standard in widely used LV software. In (1), the gene-environment 

interaction test is specified as H0 : βU,0 = ⋯ = βU,g, i.e., homogeneity of the environment’s 

effects across genetic groups, and is equivalent to testing the interaction parameters in (2), 

i.e., H0 : βg×U = βU,g − βU,0 = 0 for all g = 1, ⋯, G. G × E interactions are of interest in both 

environmental and genetic epidemiology, but in environmental epidemiology the G × E 

question arises after showing main effects of exposure on outcome, and heterogeneity of 

effects across genetic subgroups as well as the exposure effect within class g, βU,g, are of 

primary interest.

The exposure model consists of a model for the latent variable (3) dependent on covariates 

Wi, and a measurement model (4) relating the observed exposure measurements to the latent 

variable

(3)

(4)

with (3) and (4) again written in the multiple group notation. Regression coefficients α0g 

and αW are l × 1 and l × r matrices with γg = α0g − α00 being effect of genotype class on 

exposure Ui, and covariates Wi (r × 1) may help predict exposure levels for a given subject 

(e.g., occupation). The zero-mean error terms, ξi, are assumed independent of εi, and have 

category-specific l × l covariance matrices Φg. Means vector νg and factor loading matrix Λg 

are p × 1 and p × l, respectively, and δi has zero mean and p × p covariance matrix Θg.

Although LV models are helpful in many respects, one well known problem is the potential 

for lack of identifiability. Standard identifiability constraints have been developed for linear 

latent variable models (Bollen, 1989), and identifiability of latent class models has also been 

investigated (Huang and Bandeen-Roche, 2004). Essentially, model parameters are 

constrained to ensure identifiability; for example, some entries of νg and Λg are fixed to 0 or 

1, although sometimes algebraic proofs of identifiability are needed (Sánchez et al., 2005). 

In the lead example, the constraints νg = (0, νg,2, νg,3, νg,4)⊤ and Λg = (1, λg,2, λg,3, λg,4)⊤ 

fix the mean and scale of the latent exposure to those of patella lead. Parameters in Φg are 

typically unconstrained, while the off-diagonal elements of Θg are typically, although not 

necessarily, restricted to be zero denoting conditional independence between Ei ’s given Ui. 

However, theoretical identifiability may not necessarily guarantee numerical stability of 

results, which also depends on sample sizes. Some investigators recommend at least 5 to 10 

observations per parameter estimated (Westland, 2010). Hence, users need to be attentive as 

to what model the available sample size allows them to fit.

2.2 Modeling G-E Dependence

In many G × E studies, it may be natural to assume that an individual’s environmental 

exposure is independent of genetic factors, but may not be realistic when the gene and the 

exposure share a metabolic pathway. For example, iron metabolism genes may increase lead 

absorption (Hopkins et al., 2008), and characterizing such dependence may shed insight into 

the mechanistic process.
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Varying degrees of G-E dependence can be modeled through imposing further constraints 

on the exposure model parameters (Figure 2). The most restrictive assumption is that 

parameters are homogeneous across genotypes. We use ‘A0’ to denote this full G-E 

independence

With A0, the exposure model (3)–(4) has at least l parameters in each of α0 and Φ, p − l 

factor loadings Λ and p − l intercepts ν, and p parameters Θ, for a total of at least 3p 

parameters. In the lead exposure model, A0 totals 13 exposure model parameters.

A first step at relaxing A0 is to allow the intercepts and variances in the latent variable 

equation (3) to differ by genotype. Letting γg = α0g − α00 be the gene effect on the latent 

exposure we have

Relaxing these constraints is very natural, since genotype status may increase absorption of 

pollutants from the environment as well as change exposure variability. Genotype status 

may change the distribution of the observed exposure measures, Ei, but modeling change in 

the distribution of the underlying exposure is a parsimonious way of modeling changes in 

the actual Ei. This assumption has at least 3p + 2lG exposure model parameters; 15 in the 

lead example. Alternatively, one could restrict the latent variable variances Φg to be equal 

across genotype subgroups; that is, a slightly modified assumption A1* : (Φg, νg, Λg, Θg) = 

(Φ, ν, Λ, Θ).

Next, constraints of equal means ν and factor loadings Λ can be removed,

Biological mechanisms that modify transfer of pollutants from one compartment to another 

are consistent with this assumption. In the lead example, three of the observed prenatal lead 

exposure biomarkers are measured on the mother, while umbilical cord blood on the 

offspring. The transfer rates from maternal compartments (i.e., blood and bone) to offspring 

compartment may vary by child’s genotype, such that factor loading λ4 may vary by 

genotype. A2 has at least 3p + 2Gp exposure model parameters; 21 in the lead example.

Lastly, all equality constraints on the parameters can be removed, namely,

yielding at least 4p + 2Gp exposure model parameters; 26 in the lead example. In classical 

multiple group analyses (Bollen, 1989), one might additionally posit that the structure of the 

whole model might differ by genotype; e.g., that the number of latent variables differs by 
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genotype. We restrict our attention to assumptions A0–A3, where the model structure is the 

same across genotypes.

Assumptions A0–A3 have different number of parameters; an increase from 13 to 26 

parameters in the example. Constraints on exposure model parameters may increase 

efficiency and power for the main hypotheses (G, E or G × E tests), but could induce bias in 

parameters of interest if they are incorrectly assumed. Model evaluation strategies are 

available that may help select which assumption A0–A3 fits the data best (Bentler and Hu, 

1995). However, this task may not be straightforward since many fit criteria exist for LV 

models. Furthermore, testing all parameter constraints may incur a high rate Type 1 error 

rate, since the study will unlikely be powered to detect significant differences across 

genotypes in all model parameters.

3. Parameter estimation

Although various estimation procedures have been proposed for LV models (Bollen, 1989), 

full MLE is the most common estimation procedure given its wide availability in software 

packages. We review MLE and describe the implementation of shrinkage estimators that 

combine MLE estimates. Using shrinkage estimators may be a more suitable approach for 

parameter estimation. The strategy would be to fit the most restrictive model A0 and the 

most flexible model A3 (or A2 depending on sample size), and then use shrinkage to derive 

the final composite estimates.

3.1 Maximum likelihood estimation

Let  and θ be the vector of all model parameters. Assuming that εi, ξi and δi 

are normally distributed, and integrating over the latent variable, the joint marginal 

distribution of the observed outcome and exposures, , is a 

multivariate normal density, with moments given by 

 and 

, where

The log likelihood of θ is then, . Parameter 

estimates are obtained by maximizing ℓ(θ), or equivalently, solving the score equations 

, where  is the contribution of 

the ith observation to the score. Variances for parameters can be obtained by inverting the 

information matrix, Iθ = −E(∂2ℓ(θ)/∂θ∂θ⊤), or by computing robust variances 

, where  and .
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3.2 Shrinkage estimation

Shrinkage estimators have been used in outcome-dependent sampling based studies as a way 

to balance bias and efficiency gains from assuming G-E independence while using a 

retrospective likelihood formulation of the model. Shrinkage approaches will enhance 

efficiency only when the retrospective model improves efficiency. A typical formulation 

will factorize the retrospective likelihood p(G, E, Z|Y; θ1, θ2, θ3) as p(Y|G, E, Z; θ1)p(G|E, Z; 

θ2)p(E, Z; θ3)/p(Y; θ1, θ2, θ3) with θ1 being the outcome model parameters, θ2 and θ3 

describing the G-E dependence and exposure-covariate associations, respectively, and the 

G-E association reflected through the term p(G|E, Z; θ2). Because p(Y; θ1, θ2, θ3) = ∑G, E, Z 

p(Y|G, E, Z; θ1)p(G|E, Z; θ2)p(E, Z; θ3) (in the denominator) depends on the specification of 

p(G|E, Z; θ2), the MLE of θ1 depends on the assumed model for the G-E association 

conditional on covariates. It has been shown (Chatterjee and Carroll, 2005) that assuming 

conditional G-E independence, p(G|E, Z; θ2) = p(G|Z; θ2), in case-control studies leads to 

large efficiency gain for estimating the G × E interaction parameter in the outcome model 

p(Y|G, E, Z; θ1). However, under violation of the independence assumption, these estimators 

are biased. Shrinkage estimators then arise as a weighted average of two estimators: one 

obtained under dependence and the other obtained under independence; the weights are 

chosen in a data-adaptive fashion and reflect the uncertainty around the conditional G-E 

association (Mukherjee and Chatterjee, 2008). Chen et al. (2009) propose a class of 

shrinkage estimators applicable, in principle, to estimation problems beyond G × E effects.

In a cohort or cross-sectional study, maximization of the joint likelihood with respect to 

outcome model parameters, even from modeling the joint distribution p(Y, G, E|Z; θ1, θ2, 

θ3), will be independent of the specification of p(G, E|Z; θ2, θ3). Because of the lack of 

outcome dependent sampling, and thus absence of conditioning on Y, the log likelihood 

becomes a sum of two terms that can be maximized separately. However, the proposed LV 

framework allows us to incorporate constraints on the G-E association (Section 2.2), raising 

the possibility of gaining efficiency. In the LV framework, estimation of G-E model 

parameters cannot be completely disentangled from estimation of outcome model 

parameters due to integration of the likelihood over the latent variable. The extent of 

efficiency and power gains for testing of outcome parameters due to such constraints 

depends on design and effect size settings that we investigate in our simulation study. 

Although extensive work exists on using G-E independence assumptions in case-control 

studies, this paper is the first to propose and study the implications such assumptions in a 

LV setting.

We follow Chen et al. (2009) to describe how estimates obtained under assumptions A0 and 

A1 − A3 can be combined. Denoting the two estimates by θ̂
A0 and θ̂A*,

(5)

is the shrinkage estimator, where A* is any of A1 − A3 and shrinkage weights are KMV = V̂

(V̂ + ψ̂ψ̂⊤)−1, with ψ̂ = θÂ0 − θ̂
A* and V̂ is the estimated asymptotic covariance matrix of ψ̂. 

Alternatively, one may use a diagonal weight matrix KCW where the kth diagonal element is 

; V̂
k being the kth diagonal element of V̂ and ψ̂

k the kth component of ψ̄. 
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Choosing KCW leads to ‘component-wise’ shrinkage, since the weights used for a given 

component of θ̂
shrink depend only on the variance and bias related to that component; we call 

these estimates EBCW. In contrast, using KMV leads to so-called multivariate shrinkage 

(Chen et al., 2009), which we refer to as EBMV. In both cases we use superscripts to denote 

which estimates were combined, e.g.,  denotes combination of estimates obtained 

under assumptions A0 and A3. Note that (5) is only defined for parameters that are common 

to both models, and we have slightly abused notation by using θÂ* in (5) to only represent 

the subset of parameters that are equivalent to those in θÂ0.

Additional considerations about shrinkage estimators are worth mentioning. First, CW 

shrinkage may be desirable in terms of efficiency gain, compared to multivariate shrinkage 

in small samples, because large sampling error in the off-diagonals of V̂ undermines the 

potential efficiency gain from multivariate shrinkage (Chen et al., 2009). Second, the form 

of the weights imply that EBMV estimates will be more prone to favoring the more flexible 

models. To see this, note that the component-wise shrinkage weights (the kth diagonal 

element of KCW) can be re-written as , where  is the ratio of the 

squared difference in the kth parameter between the two models divided by variance of the 

difference. The MV shrinkage weights can be similarly re-written: 1/(1 + χ2) where χ2 = ψ̂⊤ 

V̂−1ψ̂.  and χ2 can be interpreted as a bias-variance ratios; when they are smaller than one, 

the EB estimates will lean toward the simpler model. In contrast to CW shrinkage, the MV 

shrinkage weight is the same for all parameters, but the ratio χ2 is a weighted sum of all the 

bias-variance ratios for all model parameters. Hence, in MV shrinkage, a given parameter 

might be shrunk given not only its own bias-variance ratio  but also given bias-variance 

ratios for other parameters. Furthermore,  has expectation (approx) 1 when independence 

holds, whereas χ2 has expectation equal to the number of model parameters estimated with 

assumption A0. Hence, MV shrinkage weights 1/(1 + χ2) will almost always be small, 

leading to EB estimates closer to those from more flexible models. Third, the weights 

summarize information about model fit in the sense of comparing differences in estimated 

parameters. If the models fit equally well, then corresponding parameters would likely be 

similar. Large differences in corresponding parameters indicate a poorer fitting model (e.g., 

constrained model). Hence, shrinkage estimates can help assess model adequacy, with 

smaller weights for the constrained model implying the more flexible model is preferred. 

Finally, both CW and MV shrinkage estimators will asymptotically converge to those from 

the more flexible model.

Chen et al. (2009) provide formal arguments to derive the variance for θŝhrink. Heuristically, 

the variance can be obtained by treating θ̂shrink as a function of two random variables, θ̂
A0 

and θÂ*, with joint covariance matrix . Letting h(θA0, θA*) = θA* + V(V 

+ ψψ⊤)−1 ψ, with ψ = θA0 − θA*, and employing the multivariate Delta theorem, then Var 

(θ̂shrink) ≈ H⊤ Σ̂H, where . Matrix Σ̂ = D−1 

CD−⊤ is constructed using the sandwich-variance formula where  and 
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, and  is a stacked vector of likelihood score 

contributions from each model.

3.3 Simpler estimation strategies

Instead of positing a latent exposure model, (1)–(4), one may fit separate multiple linear 

regression models (MLR) on each exposure measure, or one regression on their first 

principal component (PCA), and its interactions with G. We include these simple 

approaches in Sections 4 and 5.

4. Simulation Studies

We conducted a small scale simulation study to examine the finite sample properties of 

estimators under various settings of the true data generating model using l = 1, p = 4, and 

two genetic classes. Genetic class was generated as a binary variable with prevalence 0.2, 

similar to our data example. Since there are only two gene classes and one latent exposure, 

in this section (and section 5) we denote the gene effect among unexposed, the exposure 

effect among wild types, and the interaction parameters as βG, βU, βG×U. We investigate the 

estimators’ properties under two scenarios of the G-E association: independence (A0) and 

dependence (A3). We used either βU = βG = βG×U = 0 or βU = 1, βG = βG×U = 2 (i.e., 

standardized effects of 0.2, 0.4, 0.4, respectively, since outcome variance was σ2 = 52). See 

Supplementary Materials for full design.

Type I error

When G and E are independent, all approaches retain rejection probabilities (P(R)) of 

approximately 0.05 for tests at the 0.05 significance level (Table 1, scenario A0). When the 

data are generated under G-E dependence (Table 1, scenario A3), MLE estimates derived 

assuming independence (A0) have inflated Type I error probabilities for β̂
U and β̂

G. While 

EBCW retain inflated Type I error rates, EBMV estimates do not.

Efficiency/Power

When G-E independence holds (Table 2, scenario A0), gains in efficiency for β̂
G and βĜ×U 

estimated from A0 compared to A1–A3 are very clear: the variance ratio (Var.R) for β̂
G×U 

estimated under A3 vs A0 is 1.90. Efficiency gains translate to large power gains: power for 

βĜ×U is 0.44 under A3 and 0.66 under A0. Compared to A3,  and  have lower 

variance ratios (1.46 and 1.74, respectively) and higher power (0.53 and 0.49, respectively). 

The PCA approach has power comparable to that from A0, despite the bias in β̂
U and β̂

G×U.

Bias

When G-E independence does not hold, all parameter estimates have large biases, except 

those from A3 and  (Table 2, scenario A3). Of the MLEs, bias is larger when A0 or A1 

are assumed; further, A1 vs. A0 does not result in uniformly less (absolute) bias for both βU 

and βG×U. Simply relaxing the assumption of different mean and variance for the latent 

variable, but not the measurement model, may not be sufficient to reduce bias, and could in 

fact increase it.
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EBCW estimates are approximately half way between A0 and the more flexible models, 

although the exact distance varies depending on the magnitude of the coefficient. As such, 

they retain some of the bias of A0 estimates when G-E dependence exists. For , the 

bias persists and is larger for βU and βG×U than the bias in A0 for these parameters. In 

contrast,  and  are generally closer to the more flexible model (see Section 3.2), 

and mostly eliminate the bias in A0.

As would be expected from the measurement error literature, parameter estimates using only 

E1 or PCA as the predictor in multiple regression analysis are biased, i.e., β̂
U and β̂

G×U are 

attenuated. However, note that β̂
G have large bias as well, due to the G-E dependence and 

the measurement error in E1 or the first PC in measuring exposure. Measurement error in 

one predictor (e.g., E1) can induce bias in regression coefficients of covariates measured 

without error (e.g., G) that are correlated with the error-prone predictor (Budtz-Jørgensen et 

al., 2003a). The bias in β̂
G can be in either positive or negative under the alternative 

hypothesis (Huang et al., 2005), although estimates will be unbiased when there is no 

exposure effect (βU = βG×U = 0, Table 1).

MSE

 estimates eliminate the bias in A0, but are less efficient;  retain some bias, but 

achieve smaller mean squared error (MSE), hence a better bias-efficiency tradeoff. For 

example, although  incurs 15% bias, its MSE is 0.93, in contrast to an MSE of 1.31 

for . EBCW estimators achieve a better bias-variance compromise in small samples 

compared to EBMV.

Additional simulation results for the case of null main effects and small interaction 

parameter: βU = 0, βG = 0, and βG×U = 0.1 demonstrate that efficiency gains in A0 vs A3 are 

still observed (Var.R=1.5). Although to a smaller degree, bias in βĜ×E persisted when 

incorrectly assuming A0 (11% v.s. 3% bias in A3).

Recommendation

For hypothesis testing alone, PCA approaches may be just as good as using a full latent 

variable model because they maintain Type I error (Table 1) and have power comparable to 

A0 (Table 2). However, in terms of both bias and efficiency, using  is our 

recommended estimation strategy. Although  has slightly higher MSE than , it 

yields unbiased estimates, provides better control of Type I error, and has higher power than 

.

5. Modeling lead exposure, iron metabolism genes, and birth weight

We use data from the first ELEMENT cohort, where the following prenatal lead exposure 

biomarkers were collected on the mother and child: maternal blood lead levels at delivery 

and umbilical cord blood lead as well as maternal bone lead levels (patella and tibia) 

(Gonzalez-Cossio et al., 1997). Birth weight is the health outcome of interest in our analysis. 
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To be included in this analysis, children had to be genotyped, and have measured birth 

weight and least one of the four prenatal exposure biomarkers (N=406). Missing data on 

covariates was imputed five times (Raghunathan et al., 2002). Parameter estimates were 

obtained from the imputed data sets and combined across the imputed data sets according to 

standard formulae (Little and Rubin, 2002, pg. 86).

Deleterious effects of prenatal lead exposure on birth weight have been demostrated 

(Gonzalez-Cossio et al., 1997), and the main effects of lead exposure in this sample using 

the LV model are significant (β̂
U = −54.12, se(β̂

U) = 25.1, TU = −2.16, Supplementary 

Materials Table 2). However, individuals with at least one iron metabolism gene variant may 

be protected against reduced birth weight due to lead exposure (Cantonwine et al., 2010). 

However, since iron metabolism genes appear to up-regulate iron and lead absorption 

(Hopkins et al., 2008), there may be dependence between genotype status and lead exposure. 

We use two SNPs related to iron metabolism, variants of the hemochromatosis gene (C282Y 

and H63D), and dichotomize genotype into wild type for both (’aa’ and ’bb’) or variant for 

any (’Aa’, ’AA’, ’bB’, or ’BB’); both SNPs were in Hardy-Weinberg equilibrium, and 83 

participants (20%) were classified as variants.

Increasing lead exposure among wild types is associated with decreased birth weight 

(negative βÛ in Table 3). The largest point estimate is obtained under assumption A1, 

whereas the lowest is obtained using MLR with the observed patella lead measure as the 

exposure marker. Such large attenuation in the MLR estimate is due to measurement error of 

patella lead in capturing prenatal exposure. Similarly, the MLR effect estimated from a 

PCA-derived exposure measure is attenuated, consistent with the simulation studies. Among 

the MLE and EB estimates, those obtained from assumptions A0 and A1* have the smallest 

standard errors, that increase with increasing flexibility of the model as expected. The PCA 

and MLR standard errors are much smaller, and therefore, even though the point estimates 

are also largely attenuated, the test statistics are similar to those for the MLE estimates. 

Component-wise shrinkage estimates are approximately half-way between those from A0 

and those from the more flexible models A1*-A3.  is closer to the estimates obtained 

assuming A1, but  and  are closer to the estimates from A0 than from those 

obtained with A2 or A3. In contrast,  and  are closer to the estimates from A2 or 

A3 compared to those from A0. CW shrinkage favors simpler models since it only trades off 

bias-variance in one parameter at a time, where as MV shrinkage favors the more flexible 

model because it simultaneously considers differences in all model parameters (Section 3.2).

Estimates and standard errors for β̂
G are fairly constant across G-E assumptions and EB 

estimates. However, β̂
G from MLR and PCA are much higher (more negative) than those 

from MLE. This can be due to bias arising due to exposure-gene correlation and exposure 

measurement error (Budtz-Jørgensen et al., 2003a; Huang et al., 2005).

Being variant for iron metabolism genes is protective against reduced the birth weight due to 

lead exposure (β̂
G×U are positive), as hypothesized (Cantonwine et al., 2010). Whereas 

assumptions about G-E independence did not ultimately alter the conclusions for the main 

effect among wild types (e.g., all t-test statistics TU < −2.4 in all assumptions), conclusions 
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about β̂
G×U are impacted by the assumed G-E model. The most flexible model yields largest 

estimated effects (105.0g with A3 vs 92.4g with A0) and the standard error is lower (49.2 in 

A3 vs 63.5 in A0), resulting in t-statistics for the G × U effect as low as TG×U = 1.46 (A0) 

and as large as 2.13 (A3). This is likely due to a higher degree of overall model residual 

variance explained in A3 due to an increased number of parameters (i.e., lowest −2 log 

likelihood, Table 4).

Differences in MLE estimates for the outcome parameters can be largely explained by a few 

key differences exposure model parameters by genotype (Table 4). While there is little 

difference in average exposure levels between wild types and variants (small γ̂
g), the 

variance of the latent variable is twice as high among variants (Φ̂
g=1 = 2.11) than among 

wild types (Φ̂
g=0 = 1.05). Residual variances for E1 and E2, Θ11 and Θ22, also appear to 

differ between genotypes (51% and 72% difference, respectively), as does λ4 (17% 

difference). This deserves further study–e.g., differences in Θ11 and Θ22 might be due to 

maternal genotypes, which are inherently correlated to infant genotype. Such investigation is 

out of the scope of the current work, but this finding highlights the utility of LV models in 

elucidating potential biological pathways.

In this example, implementing multivariate shrinkage was possible only for combining 

estimates from A0 with those from A3 and A0 with A2 estimates. MV shrinkage using A0 

and A1 (and A1*) estimates resulted in a numerically singular variance matrix 

, likely due to measurement model parameters being too similar (and 

correlated) when only making small changes in the latent variable model (3). Although in 

the example we implemented all approaches for exposition, and even though standard model 

fit criteria (Table 4) would point toward model A1 being a better model in this particular 

example, as a general strategy we prefer outcome model parameters estimated using the 

 approach. This approach avoids the potential for increased Type I errors due to fitting 

multiple models before arriving at a final model, and minimizes bias in outcome model 

parameters that may persist due to differences in exposure model parameters associated to 

genotype that may not be declared “significantly different” due to lack of power.

6. Discussion

The presence of multiple correlated measures of exposure exacerbates existing challenges in 

G × E studies. The current paper is the first step towards an integrated framework where LV 

models are used to reduce the dimensionality of the exposure measure, thereby limiting the 

number of tests made and boosting power. Due to the general model formulation, it is easy 

to accommodate measurement errors in predictors, a pervasive problem in environmental 

epidemiology, and reduce multicollinearity concerns. Furthermore, a major intuitive appeal 

of the LV approach is that it provides not only estimates of the disease model parameters, 

but also a clearer picture of the underlying G-E association and helps capture the essence of 

the scientific problem. For a genetic marker and exposure which may have a common 

metabolic pathway, this model is more meaningful to practitioners than a multiple regression 

model relating Yi to Gi and Ei which is not informative about the association between Gi and 

Ei.
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Because of the flexibility afforded by LV models, one challenge is the potential for model 

misspecification. In this particular application of LV models, we described various 

specifications of the G-E association, and discussed how restrictions in the G-E model boost 

efficiency of the G × E associations, but may incur bias when such restrictions are 

incorrectly made. We proposed a strategy where one would fit a restricted model and the 

most flexible model afforded by the data, and then combine estimates based on shrinkage 

ideas. The proposed approach yields estimates that data-adaptively compromise between 

bias and variance, and avoids having to fit and re-fit models until a best fitting model is 

found. Alternatively, estimation could proceed in two stages. First, the most flexible model 

could be estimated, and genotype differences in exposure model parameters tested. In the 

second stage, parameters that were found to not differ by genotype would be constrained to 

be equal across genotypes. However, such two-stage approach would also suffer from 

inflated Type I error (Mukherjee and Chatterjee, 2008). Yet another alternative, with a 

similar flavor to what we proposed here, is to average parameter estimates obtained under 

various G-E assumptions according to prior information of the G-E association (Li and 

Conti, 2009) or using model fit criteria as weights (Hjort and Claeskens, 2003). Further still, 

one could use LASSO or Ridge penalties to select which exposure model parameters vary 

by genotype (Leoutsakos et al., 2010). Lastly, extensions of the methods proposed could 

include using a continuous genetic risk score G, such that a larger number of genetic 

categories can be (indirectly) included without collapsing to a few categories due to limited 

sample size. Such extension may not be straightforward since the multiple group analysis 

used here would not apply. Compromise estimators like the ones presented have not been 

used in the LV modeling literature, but can be a tool to achieve improved modeling 

strategies and robustness in LV models in applications even beyond G × E studies.

It is possible that one may use the proposed approach for screening G × E effects in 

genome-wide interaction studies. In our simulation studies, the estimation procedure takes 

approximately 0.36 minutes per data set in a desktop computer with 3.2GHz Intel processor 

and 1GB RAM. In the advent of cluster and parallel computing the proposed approach is 

scalable to genome-wide studies. Nevertheless, if the intent is solely testing, and not 

estimation, the PCA approach may be suitable, since, as shown in the simulation studies, it 

had comparable power to the proposed shrinkage estimates, despite substantial bias. 

Employing dimension-reduction approaches to the environmental exposure data will reduce 

multiple testing problems since only one genome-wide scan would be needed, instead of one 

scan for each observed exposure. Our methods are particularly appealing to study G × E 

effects with a given environmental exposure and genetic subclasses defined through genes 

on a related metabolic pathway.

The availability of higher dimensional genomic data, and multiple continuous or categorical 

outcomes point to several extensions of our work. General LV models encompass latent 

class models (Skrondal and Rabe-Hesketh 2004), hence one could posit a latent class model 

for multiple genetic factors, Gi, which borrows strength from multiple loci and can minimize 

the chance of false positives (Schumacher and Kraft, 2007). Recent proposals (Chatterjee et 

al., 2006) pose gene-gene interaction models based on a latent variable approach, and can be 

extended to reduce the dimension of gene-gene-environment interaction models. Similar to 
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what we have done for the exposure model in the present paper, a latent outcome model to 

summarize correlated multivariate or longitudinal outcome data Yi can be proposed. One 

would summarize multivariate correlated outcomes by latent traits, i.e., express Yi in terms 

of latent outcomes fi (e.g., Budtz-Jørgensen et al., 2003b), and estimate model parameters 

for a regression of fi on Ui and Gi. When Yi involves repeated measures over time (e.g., 

growth curves), the model for the observed multivariate vector Yi for subject i, measured at 

multiple time points may contain a random slope and random intercept, which are inherently 

latent variables. The random effects can be modeled as dependent on Ui and Gi and other 

covariates, such that inferences on how exposure and genes modify growth rates can 

naturally be obtained. Moreover, multivariate observations reflecting latent variables 

repeated over time (Roy and Lin, 2000), and time-to-event data (Proust-Lima et al., 2009) 

can be incorporated. In summary, extensions of the present model can involve 

summarization of all three data components: Y, G, E.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Path diagram showing relationships between exposure biomarkers, latent prenatal lead 

exposure, iron metabolism genes, and birth weight.
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Figure 2. 
Path diagrams showing gene-environment dependence assumptions.
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