1duosnue Joyiny 1duosnuen Joyiny 1duosnuen Joyiny

1duasnuen Joyiny

Author manuscript
Biometrics. Author manuscript; available in PMC 2015 April 22.

-, HHS Public Access
«

Published in final edited form as:
Biometrics. 2012 June ; 68(2): 466-476. doi:10.1111/j.1541-0420.2011.01677.X.

A latent variable approach to study gene-environment
interactions in the presence of multiple correlated exposures

Brisa N. Sanchez, Shan Kang, and Bhramar Mukherjee
Department of Biostatistics, University of Michigan, Ann Arbor, Ml USA 48109

Brisa N. Sanchez: brisa@umich.edu

Summary

Many existing cohort studies initially designed to investigate disease risk as a function of
environmental exposures have collected genomic data in recent years with the objective of testing
for gene-environment interaction (G x E) effects. In environmental epidemiology, interest in G x
E arises primarily after a significant effect of the environmental exposure has been documented.
Cohort studies often collect rich exposure data, as a result, assessing G x E effects in the presence
of multiple exposure markers further increases the burden of multiple testing, an issue already
present in both genetic and environment health studies. Latent variable (LV) models have been
used in environmental epidemiology to reduce dimensionality of the exposure data, gain power by
reducing multiplicity issues via condensing exposure data, and avoid collinearity problems due to
presence of multiple correlated exposures. We extend the LV framework to characterize gene-
environment interaction in presence of multiple correlated exposures and genotype categories.
Further, similar to what has been done in case-control G x E studies, we use the assumption of
gene-environment (G-E) independence to boost the power of tests for interaction. The
consequences of making this assumption, or the issue of how to explicitly model G-E association
has not been previously investigated in LV models. We postulate a hierarchy of assumptions about
the LV model regarding the different forms of G-E dependence and show that making such
assumptions may influence inferential results on the G, E, and G x E parameters. We implement a
class of shrinkage estimators to data adaptively trade-off between the most restrictive to most
flexible form of G-E dependence assumption and note that such class of compromise estimators
can serve as a benchmark of model adequacy in LV models. We demonstrate the methods with an
example from the Early Life Exposures in Mexico City to Neuro-Toxicants (ELEMENT) study of
lead exposure, iron metabolism genes, and birth weight.
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1. Introduction

It is now clear from many lines of evidence that pure genetics or pure environmental factors
play only a partial role in the etiology of most complex diseases. Instead, it is now accepted
that the majority of chronic diseases likely stem from interactions between genetic traits,
“G”, and environmental factors, “E” —an exponentially growing area of study (Khoury and
Wacholder, 2009). Characterizing gene-environment interactions, “G x E effects”, is critical
in understanding the biological mechanisms of disease etiology and can impact preventive
medicine and public health by informing the way clinicians advise their patients and the way
public health practitioners assess risk and set policy. Statistical approaches that heighten our
ability to understand G x E effects can accelerate mapping of the so far elusive
environmental footprint of disease etiology.

Established environmental health cohorts that have demonstrated modest health effects of
the environment are now collecting genomic data to test G x E effects. However, G x E
interaction studies are statistically difficult problems because of exposure measurement
error, multiple potential exposure markers, and prohibitive sample sizes required to reach
adequate power. Statistical methods to boost efficiency for testing G x E effects have
primarily been developed for case-control studies, where imposing the assumption of
independence between environmental exposures and inherited genetic susceptibility factors,
so called G-E independence, boosts efficiency of G x E effect estimates (Chatterjee and
Carroll, 2005, and references therein). Hybrid approaches that protect against bias under
departures from independence constraints have also been proposed (e.g., Mukherjee and
Chatterjee, 2008; Li and Conti, 2009; Chen et al., 2009).

Latent variable (LV) models have been used in environmental health studies to extract
features from a set of correlated biomarkers, thus reducing dimensionality of exposure data
and multiple testing burden, and enhancing power (e.g., Budtz-Jgrgensen et al., 2003b).
These models have enormous potential for modeling gene-environment interaction between
multiple genes and multiple environmental exposures, an area which is still in its formative
phase. Chatterjee et al. (2006) motivate a one degree of freedom test for gene-gene
interactions from a latent variable perspective in a case-control study. However the issue of
modeling G-E dependence through the LV framework is not discussed. More general LV
models, as proposed here, can incorporate and estimate G-E association structures, which
are of interest to environmental health researchers, and also impose constraints such as
independence. In our motivating example, the relationship between iron metabolism genes
and lead exposure is of interest in itself (e.g., Hopkins et al., 2008). Very few attempts exist
that pose a general LV model for studying G x E effects in cross-sectional or cohort studies
(e.g., Dhungana et al., 2007; Rathouz et al., 2008; and Javaras et al., 2010), especially those
investigating an array of G-E dependence structures.

The Early Life Exposures in MEXxico City to Neuro-Toxicants (ELEMENT) study motivates
our work. ELEMENT consists of four longitudinal birth cohorts in Mexico City, constituting
over 2,000 mother infant pairs with prospectively collected exposure data and several
anthropometric, cardiovascular, neuro-development, and behavioral outcomes. Genotyping
for these cohorts is underway, with genotyping for the first cohort completed on a set of
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candidate genes (~ 400 pairs). Figure 1 is a path diagram describing relationships between
four biomarkers of prenatal lead exposure, their interaction with iron metabolism genes, and
birth weight.

In Section 2, we describe a model structure to summarize a group of biomarkers into latent
variables, and the spectrum of G-E dependence models we consider. In Section 3, we
describe maximum likelihood estimation (MLE) and a general class of shrinkage estimators
to data-adaptively compromise between the most stringent and most flexible models for G-E
association. Small scale simulation studies (Section 4) bring out salient features of our
methodology. Section 5 presents analyses of our motivating example. Section 6 discusses
the use of LV models for G x E studies, and shrinkage estimators in general LV modeling
beyond the G x E context.

2. A Latent Exposure Model for G x E Studies

2.1 Model Representation

For the it" of N individuals, let Y; represent a univariate health outcome (here birth weight),
and Uj be an | x 1 vector of latent exposures measured indirectly by a set of p measurements
E;. In the example, | = 1, p = 4, and Uj is prenatal lead exposure (Figure 1). Let Zj and W;
represent g X 1 and r x 1 covariate vectors, respectively. Without any loss of generality,
genotype classes are represented by a categorical variable G; with classesg =0, -, G.
Genotype classes may arise from data on biallelic polymorphisms where a ‘risk’ allele ‘A’
may alter the exposure metabolism pathway or affect health (with the reference allele
denoted by ‘a”) or from combinations of genetic markers measured at multiple loci (e.g., risk
alleles A, B). In the lead example we consider two single nucleotide polymorphisms (SNPs)
implicated in iron metabolism, but due to sparsity of data, we assume G; can take two
possible values: zero for wild-type on both SNPs ("aa’” and *bb’), and 1 for at least one copy
of either of the risk alleles (i.e., ’Aa’, ’AA’, ’Bb’, or ’BB’), consistent with dominant/
recessive models for genetic susceptibility. Alternatively, genetic groups can arise as
categorization of an underlying genetic risk score that combines several markers identified
by existing genome wide association studies (Qi et al, 2011), or from infant-mother
genotype combinations at a single locus in studies of pre-natal fetal exposure.

The latent variable model is then specified in two stages: a health outcome model and an
exposure model. In the outcome model, the association between the outcome Y;, exposure U;
and genetic category G; = g conditional on covariates Z;j is characterized by either

Yizﬁo,g-i-ﬁly Ui-ﬁ-,@;g Zitei, (1)
G
orY;=00+8, Ui+ {Boloit+ Bl Iyi - Ut B Zi+B] ,1yi - Zi} +2ir (2)
g=1

using genotype class indicators lgi = I(G;j = g). The mean-zero error & has variance 2.
Equation (1) is written using the multiple group notation (Bollen 1989), which is useful in
writing the likelihood (Section 3), and B g, Bu g, Bz,g are parameters specific to class g = 0,
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.-+, G. Such notation is standard in widely used LV software. In (1), the gene-environment
interaction test is specified as Hg : By = --* = Pu,g, i.€., homogeneity of the environment’s
effects across genetic groups, and is equivalent to testing the interaction parameters in (2),
i.e., Ho: Bgxu =Bug—Buo=0forallg=1, -, G. G x E interactions are of interest in both
environmental and genetic epidemiology, but in environmental epidemiology the G x E
question arises after showing main effects of exposure on outcome, and heterogeneity of
effects across genetic subgroups as well as the exposure effect within class g, By g, are of
primary interest.

The exposure model consists of a model for the latent variable (3) dependent on covariates
W, and a measurement model (4) relating the observed exposure measurements to the latent
variable

Ui=apg+oay, W,+§&; 3)

with (3) and (4) again written in the multiple group notation. Regression coefficients agg
and ay are | x 1 and | < r matrices with yg = agg — agg being effect of genotype class on
exposure Uj, and covariates W; (r x 1) may help predict exposure levels for a given subject
(e.g., occupation). The zero-mean error terms, &;, are assumed independent of &, and have
category-specific | % | covariance matrices ®y. Means vector vg and factor loading matrix Ag
are p x 1 and p x |, respectively, and 8; has zero mean and p x p covariance matrix ©y.

Although LV models are helpful in many respects, one well known problem is the potential
for lack of identifiability. Standard identifiability constraints have been developed for linear
latent variable models (Bollen, 1989), and identifiability of latent class models has also been
investigated (Huang and Bandeen-Roche, 2004). Essentially, model parameters are
constrained to ensure identifiability; for example, some entries of vg and Ag are fixed to 0 or
1, although sometimes algebraic proofs of identifiability are needed (Sanchez et al., 2005).
In the lead example, the constraints v = (0, vg 2, Vg3, Vg4) | and Ag= (1, Ag2, Ag3, Aga) "
fix the mean and scale of the latent exposure to those of patella lead. Parameters in &g are
typically unconstrained, while the off-diagonal elements of ©g are typically, although not
necessarily, restricted to be zero denoting conditional independence between E; ’s given U;.
However, theoretical identifiability may not necessarily guarantee numerical stability of
results, which also depends on sample sizes. Some investigators recommend at least 5 to 10
observations per parameter estimated (Westland, 2010). Hence, users need to be attentive as
to what model the available sample size allows them to fit.

2.2 Modeling G-E Dependence

In many G x E studies, it may be natural to assume that an individual’s environmental
exposure is independent of genetic factors, but may not be realistic when the gene and the
exposure share a metabolic pathway. For example, iron metabolism genes may increase lead
absorption (Hopkins et al., 2008), and characterizing such dependence may shed insight into
the mechanistic process.
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Varying degrees of G-E dependence can be modeled through imposing further constraints
on the exposure model parameters (Figure 2). The most restrictive assumption is that
parameters are homogeneous across genotypes. We use ‘A0’ to denote this full G-E
independence

A0:(aog, Bg,vg, Ay, Og)=(ax0, P, 1, A, O).

With A0, the exposure model (3)—(4) has at least | parameters in each of agand @, p — |
factor loadings A and p — | intercepts v, and p parameters ©, for a total of at least 3p
parameters. In the lead exposure model, AO totals 13 exposure model parameters.

A first step at relaxing AQ is to allow the intercepts and variances in the latent variable
equation (3) to differ by genotype. Letting vq = agg — ago be the gene effect on the latent
exposure we have

Al:(vg, Ay, 04)=(v, A, ©), buty, # 00r<I);1'I>0 # Ifor at least oneg.

Relaxing these constraints is very natural, since genotype status may increase absorption of
pollutants from the environment as well as change exposure variability. Genotype status
may change the distribution of the observed exposure measures, E;, but modeling change in
the distribution of the underlying exposure is a parsimonious way of modeling changes in
the actual E;. This assumption has at least 3p + 2IG exposure model parameters; 15 in the
lead example. Alternatively, one could restrict the latent variable variances @ to be equal
across genotype subgroups; that is, a slightly modified assumption A1* : (&g, vg, Ag, ©g) =
(@, v, A, ©).

Next, constraints of equal means v and factor loadings A can be removed,

42:0,=0.

Biological mechanisms that modify transfer of pollutants from one compartment to another
are consistent with this assumption. In the lead example, three of the observed prenatal lead
exposure biomarkers are measured on the mother, while umbilical cord blood on the
offspring. The transfer rates from maternal compartments (i.e., blood and bone) to offspring
compartment may vary by child’s genotype, such that factor loading A4 may vary by
genotype. A2 has at least 3p + 2Gp exposure model parameters; 21 in the lead example.

Lastly, all equality constraints on the parameters can be removed, namely,

A3:All model parameters differ by genotype,

yielding at least 4p + 2Gp exposure model parameters; 26 in the lead example. In classical
multiple group analyses (Bollen, 1989), one might additionally posit that the structure of the
whole model might differ by genotype; e.g., that the number of latent variables differs by
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genotype. We restrict our attention to assumptions AO-A3, where the model structure is the
same across genotypes.

Assumptions A0—A3 have different number of parameters; an increase from 13 to 26
parameters in the example. Constraints on exposure model parameters may increase
efficiency and power for the main hypotheses (G, E or G x E tests), but could induce bias in
parameters of interest if they are incorrectly assumed. Model evaluation strategies are
available that may help select which assumption A0-A3 fits the data best (Bentler and Hu,
1995). However, this task may not be straightforward since many fit criteria exist for LV
models. Furthermore, testing all parameter constraints may incur a high rate Type 1 error
rate, since the study will unlikely be powered to detect significant differences across
genotypes in all model parameters.

3. Parameter estimation

Although various estimation procedures have been proposed for LV models (Bollen, 1989),
full MLE is the most common estimation procedure given its wide availability in software
packages. We review MLE and describe the implementation of shrinkage estimators that
combine MLE estimates. Using shrinkage estimators may be a more suitable approach for
parameter estimation. The strategy would be to fit the most restrictive model AO and the
most flexible model A3 (or A2 depending on sample size), and then use shrinkage to derive
the final composite estimates.

3.1 Maximum likelihood estimation

LetY;=(Y;, EiT)T and O be the vector of all model parameters. Assuming that e, &; and §;
are normally distributed, and integrating over the latent variable, the joint marginal

distribution of the observed outcome and exposures, f( Y} |G;=g, Z;, W;;0), is a
multivariate normal density, with moments given by

E(Y}|Gi=g, Zi, Wi;0)=vj+Aj (o, g+ Wicw, )+8},  Ziand
Var(Y}|Gi=g, Z:, W;;0)=A;®,(A})" +O7, where

«_ [ Bog v Bu, \ar _( Bz, . [ 0% Oixp
Vg_( Yo )Ag_< Ay Ber= Opxq O5= Opx1 Oy

N G N
The log likelihood of @ is then, ((0)=>_,_ >~ " loaf(Y7|Gi=g, Zi; Wi;0) parameter
estimates are obtained by maximizing ¢(6), or equivalently, solving the score equations

N G
S(O)ZZiZIZgZOSFO, where S;=dlog f (Y;*|Gi=g, Z;, W;;0) /98 is the contribution of
the ith observation to the score. Variances for parameters can be obtained by inverting the
information matrix, |g = —E(32€(6)/0098 "), or by computing robust variances

) _ N G T _ N G
var,(0)=B~'AB~", where A—l/NZizlzgzosiSz‘ and B—l/NZizlzgzoaSi/aa.
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3.2 Shrinkage estimation

Shrinkage estimators have been used in outcome-dependent sampling based studies as a way
to balance bias and efficiency gains from assuming G-E independence while using a
retrospective likelihood formulation of the model. Shrinkage approaches will enhance
efficiency only when the retrospective model improves efficiency. A typical formulation
will factorize the retrospective likelihood p(G, E, Z|Y; 01, 65, 63) as p(Y|G, E, Z; 61)p(GIE, Z;
0,2)p(E, Z; 63)/p(Y; 01, 65, 03) with 0, being the outcome model parameters, 6, and 63
describing the G-E dependence and exposure-covariate associations, respectively, and the
G-E association reflected through the term p(GI|E, Z; 0;). Because p(Y; 01, 02,03) =Yg E. z
p(Y|G, E, Z; 01)p(G|E, Z; 6,)p(E, Z; 63) (in the denominator) depends on the specification of
p(GIE, Z; 6,), the MLE of 61 depends on the assumed model for the G-E association
conditional on covariates. It has been shown (Chatterjee and Carroll, 2005) that assuming
conditional G-E independence, p(GI|E, Z; 6,) = p(G|Z; 6,), in case-control studies leads to
large efficiency gain for estimating the G x E interaction parameter in the outcome model
p(Y|G, E, Z; 6;). However, under violation of the independence assumption, these estimators
are biased. Shrinkage estimators then arise as a weighted average of two estimators: one
obtained under dependence and the other obtained under independence; the weights are
chosen in a data-adaptive fashion and reflect the uncertainty around the conditional G-E
association (Mukherjee and Chatterjee, 2008). Chen et al. (2009) propose a class of
shrinkage estimators applicable, in principle, to estimation problems beyond G x E effects.

In a cohort or cross-sectional study, maximization of the joint likelihood with respect to
outcome model parameters, even from modeling the joint distribution p(Y, G, E|Z; 61, 05,
03), will be independent of the specification of p(G, E|Z; 05, 03). Because of the lack of
outcome dependent sampling, and thus absence of conditioning on Y, the log likelihood
becomes a sum of two terms that can be maximized separately. However, the proposed LV
framework allows us to incorporate constraints on the G-E association (Section 2.2), raising
the possibility of gaining efficiency. In the LV framework, estimation of G-E model
parameters cannot be completely disentangled from estimation of outcome model
parameters due to integration of the likelihood over the latent variable. The extent of
efficiency and power gains for testing of outcome parameters due to such constraints
depends on design and effect size settings that we investigate in our simulation study.
Although extensive work exists on using G-E independence assumptions in case-control
studies, this paper is the first to propose and study the implications such assumptions in a
LV setting.

We follow Chen et al. (2009) to describe how estimates obtained under assumptions AO and
Al - A3 can be combined. Denoting the two estimates by 659 and 0,

A PN

9Shrink:éA*+KMV(aAo - OA*) ®)

is the shrlnkage estlmator where A* is any of A1 — A3 and shrinkage weights are Ky = V
v + wa) 1 withy = 9Ao - GA* and V is the estimated asymptotic covariance matrix of .
Alternatively, one may use a diagonal weight matrix K¢y Where the ki diagonal element is

ffk/(f/kJr@i); Vi being the ki diagonal element of V and wy the ki component of .
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Choosing Kcyy leads to ‘component-wise’ shrinkage, since the weights used for a given
component of e;hrink depend only on the variance and bias related to that component; we call
these estimates EBcyy. In contrast, using Ky, leads to so-called multivariate shrinkage
(Chen et al., 2009), which we refer to as EBpyy. In both cases we use superscripts to denote

which estimates were combined, e.g., EBffV denotes combination of estimates obtained
under assumptions A0 and A3. Note that (5) is only defined for parameters that are common
to both models, and we have slightly abused notation by using 6+ in (5) to only represent

the subset of parameters that are equivalent to those in 0.

Additional considerations about shrinkage estimators are worth mentioning. First, CW
shrinkage may be desirable in terms of efficiency gain, compared to multivariate shrinkage
in small samples, because large sampling error in the off-diagonals of V undermines the
potential efficiency gain from multivariate shrinkage (Chen et al., 2009). Second, the form
of the weights imply that EB)yy estimates will be more prone to favoring the more flexible
models. To see this, note that the component-wise shrinkage weights (the ki diagonal

element of Kcyy) can be re-written as 1 /(143 ), where X%:@i/ﬁk is the ratio of the
squared difference in the k" parameter between the two models divided by variance of the
difference. The MV shrinkage weights can be similarly re-written: 1/(1 + ¥2) where y2 =y "

V‘Alwf X2 and 2 can be interpreted as a bias-variance ratios; when they are smaller than one,
the EB estimates will lean toward the simpler model. In contrast to CW shrinkage, the MV
shrinkage weight is the same for all parameters, but the ratio x2 is a weighted sum of all the
bias-variance ratios for all model parameters. Hence, in MV shrinkage, a given parameter

might be shrunk given not only its own bias-variance ratio 2 but also given bias-variance

ratios for other parameters. Furthermore, 2 has expectation (approx) 1 when independence
holds, whereas ¥2 has expectation equal to the number of model parameters estimated with
assumption A0. Hence, MV shrinkage weights 1/(1 + x2) will almost always be small,
leading to EB estimates closer to those from more flexible models. Third, the weights
summarize information about model fit in the sense of comparing differences in estimated
parameters. If the models fit equally well, then corresponding parameters would likely be
similar. Large differences in corresponding parameters indicate a poorer fitting model (e.g.,
constrained model). Hence, shrinkage estimates can help assess model adequacy, with
smaller weights for the constrained model implying the more flexible model is preferred.
Finally, both CW and MV shrinkage estimators will asymptotically converge to those from
the more flexible model.

Chen et al. (2009) provide formal arguments to derive the variance for e;hrink. Heuristically,
the variance can be obtained by treating Osprink as a function of two random variables, 69

T T .
A0? HA*) ) Lettlng h(er, GA*) = GA* + V(V
+y 1)1y, with v = g — Oax, and employing the multivariate Delta theorem, then Var
H=0n(0 ,,, HA*)/(?(OT 01*)‘
e

A0’

and 6,:*, with joint covariance matrix E:fuar((éT

Oaprin) &~ HT SH, where . Matrix £ = D1

40=9409 4, =% 44

N
CD™ T is constructed using the sandwich-variance formula where C=1/N» " PP, and
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N T
D=1/NZZ.:13H/30, and P;=(S,, S, ) isa stacked vector of likelihood score
contributions from each model.

3.3 Simpler estimation strategies

Instead of positing a latent exposure model, (1)—(4), one may fit separate multiple linear
regression models (MLR) on each exposure measure, or one regression on their first
principal component (PCA), and its interactions with G. We include these simple
approaches in Sections 4 and 5.

4. Simulation Studies

Type | error

We conducted a small scale simulation study to examine the finite sample properties of
estimators under various settings of the true data generating model using 1 =1, p =4, and
two genetic classes. Genetic class was generated as a binary variable with prevalence 0.2,
similar to our data example. Since there are only two gene classes and one latent exposure,
in this section (and section 5) we denote the gene effect among unexposed, the exposure
effect among wild types, and the interaction parameters as g, By, Poxu- We investigate the
estimators’ properties under two scenarios of the G-E association: independence (A0) and
dependence (A3). We used either By = Bg = Pgxu =0 0r By =1, Bg = Paxu = 2 (i.e.,
standardized effects of 0.2, 0.4, 0.4, respectively, since outcome variance was o2 = 52). See
Supplementary Materials for full design.

When G and E are independent, all approaches retain rejection probabilities (P(R)) of
approximately 0.05 for tests at the 0.05 significance level (Table 1, scenario A0). When the
data are generated under G-E dependence (Table 1, scenario A3), MLE estimates derived
assuming independence (A0) have inflated Type | error probabilities for BQ and Bé. While
EBcy retain inflated Type | error rates, EByy estimates do not.

Efficiency/Power

Bias

When G-E independence holds (Table 2, scenario A0), gains in efficiency for Bé and B(;xu
estimated from AO compared to A1-A3 are very clear: the variance ratio (Var.R) for Bgxy
estimated under A3 vs A0 is 1.90. Efficiency gains translate to large power gains: power for

Boxu is 0.44 under A3 and 0.66 under AO. Compared to A3, EB® and EBY have lower
variance ratios (1.46 and 1.74, respectively) and higher power (0.53 and 0.49, respectively).
The PCA approach has power comparable to that from A0, despite the bias in By and Pgxy-

When G-E independence does not hold, all parameter estimates have large biases, except

those from A3 and EBffv (Table 2, scenario A3). Of the MLEs, bias is larger when AO or Al
are assumed; further, A1 vs. A0 does not result in uniformly less (absolute) bias for both B
and Bgxy- Simply relaxing the assumption of different mean and variance for the latent
variable, but not the measurement model, may not be sufficient to reduce bias, and could in
fact increase it.
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EBcyw estimates are approximately half way between A0 and the more flexible models,
although the exact distance varies depending on the magnitude of the coefficient. As such,

they retain some of the bias of A0 estimates when G-E dependence exists. For EBg;,, the
bias persists and is larger for f; and Bgxy than the bias in AO for these parameters. In

contrast, EB2 and EBY are generally closer to the more flexible model (see Section 3.2),

and mostly eliminate the bias in AQ.

As would be expected from the measurement error literature, parameter estimates using only
E1 or PCA as the predictor in multiple regression analysis are biased, i.e., BG and Bc;xu are
attenuated. However, note that B(; have large bias as well, due to the G-E dependence and
the measurement error in E1 or the first PC in measuring exposure. Measurement error in
one predictor (e.g., E1) can induce bias in regression coefficients of covariates measured
without error (e.g., G) that are correlated with the error-prone predictor (Budtz-Jargensen et
al., 2003a). The bias in BE; can be in either positive or negative under the alternative
hypothesis (Huang et al., 2005), although estimates will be unbiased when there is no
exposure effect (By = Pgxy =0, Table 1).

EB? estimates eliminate the bias in A0, but are less efficient; EB2? retain some bias, but

CW

achieve smaller mean squared error (MSE), hence a better bias-efficiency tradeoff. For
example, although EBgi”N incurs 15% bias, its MSE is 0.93, in contrast to an MSE of 1.31

for EBff’v. EBcyw estimators achieve a better bias-variance compromise in small samples

compared to EBpy.

Additional simulation results for the case of null main effects and small interaction
parameter: By = 0, Bg = 0, and Bgxy = 0.1 demonstrate that efficiency gains in A0 vs A3 are
still observed (Var.R=1.5). Although to a smaller degree, bias in BE;XE persisted when
incorrectly assuming AO (11% v.s. 3% bias in A3).

Recommendation

For hypothesis testing alone, PCA approaches may be just as good as using a full latent
variable model because they maintain Type | error (Table 1) and have power comparable to

AQ (Table 2). However, in terms of both bias and efficiency, using EBSA?;, is our
recommended estimation strategy. Although EB% has slightly higher MSE than EBY? | it
yields unbiased estimates, provides better control of Type I error, and has higher power than

cw’

5. Modeling lead exposure, iron metabolism genes, and birth weight

We use data from the first ELEMENT cohort, where the following prenatal lead exposure
biomarkers were collected on the mother and child: maternal blood lead levels at delivery
and umbilical cord blood lead as well as maternal bone lead levels (patella and tibia)
(Gonzalez-Cossio et al., 1997). Birth weight is the health outcome of interest in our analysis.
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To be included in this analysis, children had to be genotyped, and have measured birth
weight and least one of the four prenatal exposure biomarkers (N=406). Missing data on
covariates was imputed five times (Raghunathan et al., 2002). Parameter estimates were
obtained from the imputed data sets and combined across the imputed data sets according to
standard formulae (Little and Rubin, 2002, pg. 86).

Deleterious effects of prenatal lead exposure on birth weight have been demostrated
(Gonzalez-Cossio et al., 1997), and the main effects of lead exposure in this sample using
the LV model are significant (BG =-54.12, se(B[,) =25.1, Ty = -2.16, Supplementary
Materials Table 2). However, individuals with at least one iron metabolism gene variant may
be protected against reduced birth weight due to lead exposure (Cantonwine et al., 2010).
However, since iron metabolism genes appear to up-regulate iron and lead absorption
(Hopkins et al., 2008), there may be dependence between genotype status and lead exposure.
We use two SNPs related to iron metabolism, variants of the hemochromatosis gene (C282Y
and H63D), and dichotomize genotype into wild type for both ("aa’ and ’bb”) or variant for
any CAa’, ’AA’, ’bB’, or ’BB’); both SNPs were in Hardy-Weinberg equilibrium, and 83
participants (20%) were classified as variants.

Increasing lead exposure among wild types is associated with decreased birth weight
(negative B[J in Table 3). The largest point estimate is obtained under assumption Al,
whereas the lowest is obtained using MLR with the observed patella lead measure as the
exposure marker. Such large attenuation in the MLR estimate is due to measurement error of
patella lead in capturing prenatal exposure. Similarly, the MLR effect estimated from a
PCA-derived exposure measure is attenuated, consistent with the simulation studies. Among
the MLE and EB estimates, those obtained from assumptions AO and A1* have the smallest
standard errors, that increase with increasing flexibility of the model as expected. The PCA
and MLR standard errors are much smaller, and therefore, even though the point estimates
are also largely attenuated, the test statistics are similar to those for the MLE estimates.
Component-wise shrinkage estimates are approximately half-way between those from AO

and those from the more flexible models A1*-A3. EB‘;{V is closer to the estimates obtained

assuming Al, but EB%2

o and EBg?N are closer to the estimates from A0 than from those

obtained with A2 or A3. In contrast, EB)> and EB}> are closer to the estimates from A2 or
A3 compared to those from A0. CW shrinkage favors simpler models since it only trades off
bias-variance in one parameter at a time, where as MV shrinkage favors the more flexible

model because it simultaneously considers differences in all model parameters (Section 3.2).

Estimates and standard errors for Bé are fairly constant across G-E assumptions and EB
estimates. However, B{; from MLR and PCA are much higher (more negative) than those
from MLE. This can be due to bias arising due to exposure-gene correlation and exposure
measurement error (Budtz-Jgrgensen et al., 2003a; Huang et al., 2005).

Being variant for iron metabolism genes is protective against reduced the birth weight due to
lead exposure (B(;xu are positive), as hypothesized (Cantonwine et al., 2010). Whereas
assumptions about G-E independence did not ultimately alter the conclusions for the main
effect among wild types (e.g., all t-test statistics Ty < —2.4 in all assumptions), conclusions
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about B(;xu are impacted by the assumed G-E model. The most flexible model yields largest
estimated effects (105.0g with A3 vs 92.4g with AQ) and the standard error is lower (49.2 in
A3 vs 63.5 in AQ), resulting in t-statistics for the G x U effect as low as Tgxy = 1.46 (AQ)
and as large as 2.13 (A3). This is likely due to a higher degree of overall model residual
variance explained in A3 due to an increased number of parameters (i.e., lowest —2 log
likelihood, Table 4).

Differences in MLE estimates for the outcome parameters can be largely explained by a few
key differences exposure model parameters by genotype (Table 4). While there is little
difference in average exposure levels between wild types and variants (small yé), the
variance of thg latent variable is twice as high among variants (@ézl =2.11) than among
wild types (@40 = 1.05). Residual variances for E; and E;, ©171 and Oy, also appear to
differ between genotypes (51% and 72% difference, respectively), as does A4 (17%
difference). This deserves further study—e.g., differences in ©11 and ©,, might be due to
maternal genotypes, which are inherently correlated to infant genotype. Such investigation is
out of the scope of the current work, but this finding highlights the utility of LV models in
elucidating potential biological pathways.

In this example, implementing multivariate shrinkage was possible only for combining
estimates from AO with those from A3 and A0 with A2 estimates. MV shrinkage using A0
and Al (and Al1*) estimates resulted in a numerically singular variance matrix

AT AT T, . . -
Y=Var((6,,,0,,) ) likely due to measurement model parameters being too similar (and

correlated) when only making small changes in the latent variable model (3). Although in
the example we implemented all approaches for exposition, and even though standard model
fit criteria (Table 4) would point toward model Al being a better model in this particular
example, as a general strategy we prefer outcome model parameters estimated using the

EBffv approach. This approach avoids the potential for increased Type | errors due to fitting
multiple models before arriving at a final model, and minimizes bias in outcome model
parameters that may persist due to differences in exposure model parameters associated to
genotype that may not be declared “significantly different” due to lack of power.

6. Discussion

The presence of multiple correlated measures of exposure exacerbates existing challenges in
G x E studies. The current paper is the first step towards an integrated framework where LV
models are used to reduce the dimensionality of the exposure measure, thereby limiting the
number of tests made and boosting power. Due to the general model formulation, it is easy
to accommodate measurement errors in predictors, a pervasive problem in environmental
epidemiology, and reduce multicollinearity concerns. Furthermore, a major intuitive appeal
of the LV approach is that it provides not only estimates of the disease model parameters,
but also a clearer picture of the underlying G-E association and helps capture the essence of
the scientific problem. For a genetic marker and exposure which may have a common
metabolic pathway, this model is more meaningful to practitioners than a multiple regression
model relating Y; to Gj and E; which is not informative about the association between G; and
E;.
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Because of the flexibility afforded by LV models, one challenge is the potential for model
misspecification. In this particular application of LV models, we described various
specifications of the G-E association, and discussed how restrictions in the G-E model boost
efficiency of the G x E associations, but may incur bias when such restrictions are
incorrectly made. We proposed a strategy where one would fit a restricted model and the
most flexible model afforded by the data, and then combine estimates based on shrinkage
ideas. The proposed approach yields estimates that data-adaptively compromise between
bias and variance, and avoids having to fit and re-fit models until a best fitting model is
found. Alternatively, estimation could proceed in two stages. First, the most flexible model
could be estimated, and genotype differences in exposure model parameters tested. In the
second stage, parameters that were found to not differ by genotype would be constrained to
be equal across genotypes. However, such two-stage approach would also suffer from
inflated Type | error (Mukherjee and Chatterjee, 2008). Yet another alternative, with a
similar flavor to what we proposed here, is to average parameter estimates obtained under
various G-E assumptions according to prior information of the G-E association (Li and
Conti, 2009) or using model fit criteria as weights (Hjort and Claeskens, 2003). Further still,
one could use LASSO or Ridge penalties to select which exposure model parameters vary
by genotype (Leoutsakos et al., 2010). Lastly, extensions of the methods proposed could
include using a continuous genetic risk score G, such that a larger number of genetic
categories can be (indirectly) included without collapsing to a few categories due to limited
sample size. Such extension may not be straightforward since the multiple group analysis
used here would not apply. Compromise estimators like the ones presented have not been
used in the LV modeling literature, but can be a tool to achieve improved modeling
strategies and robustness in LV models in applications even beyond G x E studies.

It is possible that one may use the proposed approach for screening G x E effects in
genome-wide interaction studies. In our simulation studies, the estimation procedure takes
approximately 0.36 minutes per data set in a desktop computer with 3.2GHz Intel processor
and 1GB RAM. In the advent of cluster and parallel computing the proposed approach is
scalable to genome-wide studies. Nevertheless, if the intent is solely testing, and not
estimation, the PCA approach may be suitable, since, as shown in the simulation studies, it
had comparable power to the proposed shrinkage estimates, despite substantial bias.
Employing dimension-reduction approaches to the environmental exposure data will reduce
multiple testing problems since only one genome-wide scan would be needed, instead of one
scan for each observed exposure. Our methods are particularly appealing to study G x E
effects with a given environmental exposure and genetic subclasses defined through genes
on a related metabolic pathway.

The availability of higher dimensional genomic data, and multiple continuous or categorical
outcomes point to several extensions of our work. General LV models encompass latent
class models (Skrondal and Rabe-Hesketh 2004), hence one could posit a latent class model
for multiple genetic factors, Gj, which borrows strength from multiple loci and can minimize
the chance of false positives (Schumacher and Kraft, 2007). Recent proposals (Chatterjee et
al., 2006) pose gene-gene interaction models based on a latent variable approach, and can be
extended to reduce the dimension of gene-gene-environment interaction models. Similar to
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what we have done for the exposure model in the present paper, a latent outcome model to
summarize correlated multivariate or longitudinal outcome data Y; can be proposed. One
would summarize multivariate correlated outcomes by latent traits, i.e., express Y; in terms
of latent outcomes f; (e.g., Budtz-Jgrgensen et al., 2003b), and estimate model parameters
for a regression of fj on U;j and G;. When Y;j involves repeated measures over time (e.g.,
growth curves), the model for the observed multivariate vector Y; for subject i, measured at
multiple time points may contain a random slope and random intercept, which are inherently
latent variables. The random effects can be modeled as dependent on U; and G; and other
covariates, such that inferences on how exposure and genes modify growth rates can
naturally be obtained. Moreover, multivariate observations reflecting latent variables
repeated over time (Roy and Lin, 2000), and time-to-event data (Proust-Lima et al., 2009)
can be incorporated. In summary, extensions of the present model can involve
summarization of all three data components: Y, G, E.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Path diagram showing relationships between exposure biomarkers, latent prenatal lead

exposure, iron metabolism genes, and birth weight.
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Figure 2.
Path diagrams showing gene-environment dependence assumptions.
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