Supplemental Figures

Supplemental Figure 1. Repetitive DE exposure does not induce Foxp3 expression of CD4+ T cells. C57BL/6 mice were repetitively exposed to DE and saline for 3 wk, and CD4+ T cells pooled from 3 animals were isolated from lung tissue by FACS and immediately ex vivo stimulated with PMA + ionomycin for 4 hours, and stained for Foxp3. As an additional control, CD4+ T cells from saline and DE-treated mice were not ex vivo stimulated, but stained for Foxp3. A representative contour plot depicting Foxp3 staining for one of three independent experiments is shown.

Supplemental Figure 2. Repetitive DE exposure does not induce IFN-γ and IL-17 production of CD8+ T cells. C57BL/6 mice were repetitively exposed to DE and saline for 3 wk, and CD8+ T cells pooled from 3 animals were isolated from lung tissue by FACS and immediately stimulated with PMA + ionomycin for 4 hours, and stained for IL-17 and IFN-γ to demonstrate cytokine profiles. A representative contour plot depicting cytokine staining for one of three independent experiments is shown. Left column depicts background or isotype staining for each respective cytokine. Middle and right column depict saline- and DE-treated mice, respectively.

Supplemental Figure 3. PGN exposure induces a Th1/17-polarized cytokine response in the whole lung. Cytokine profiles associated with T cell subsets were analyzed from cell-free supernatants of total lung homogenates from C57BL/6 mice repetitively exposed with PGN (100 μg and 10 μg) or saline (PGN 0 μg) for 3 weeks. Results represent the mean ± SEM of six mice from two independent experiments with statistical significance denoted by asterisk (*p<0.05) as compared to saline (PGN 0 μg).
Supplemental Figure 1

Saline-Tx
Unstimulated ex vivo

Saline-Tx
Stimulated ex vivo

DE-Tx
Unstimulated ex vivo

DE-Tx
Stimulated ex vivo

Fo3

CD4+

E-Supplement figure unmarked
Supplemental Figure 2

IL-17A → IL-17A

Isotype Staining

Saline-Tx

DE-Tx

CD8

IFN-γ Isotype

0.5%

0.8%

1.3%

1.4%

7.9%

9.1%

0.5%

0.8%

1.3%

1.4%

7.9%

9.1%

0.5%

0.8%

1.3%

1.4%

7.9%

9.1%

0.5%

0.8%

1.3%

1.4%

7.9%

9.1%

0.5%

0.8%

1.3%

1.4%

7.9%

9.1%