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Abstract

Background—High calcium intake is consistently associated with increased prostate cancer risk
in epidemiologic studies. We previously reported that the positive association between calcium
intake and risk of aggressive prostate cancer was modified by the Vitamin D Receptor (VDR)
calcium absorption genotype, Cdx2, among African American men.

Methods—We expanded our previous study to include White men, a population with a higher
calcium intake and a higher prevalence of the low absorption allele. We also examined VDR
polymorphisms at other loci unrelated to calcium absorption. The study included 1,857 prostate
cancer cases (1,140 with advanced stage at diagnosis, 717 with localized stage) and 1,096
controls. Odds ratios (OR) were estimated using conditional logistic regression.

Results—Among both Blacks and Whites, we observed a threshold for calcium intake (604 mg/
day) below which prostate cancer risk declined sharply. Low calcium intake was most strongly
associated with decreased risk among men with the VDR Cdx2 low calcium absorption genotype
(p for interaction = 0.001 and p=0.06 for Whites and African Americans, respectively). Among all
men with this genotype, those in the lowest quartile of calcium intake (<=604 mg/day) had a 50%
reduction in risk compared to those in the upper three quartiles (OR=0.49, 95% CI=0.36-0.67).
The association between calcium intake and prostate cancer risk was not modified by genotype at
other VDR loci.

Conclusions and Impact—Our findings support the hypothesis that genetic determinants of
calcium absorption influence prostate cancer risk and may contribute to racial disparities in
prostate cancer incidence and mortality rates.
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Introduction

Calcium intake has been consistently associated with risk of advanced or fatal prostate
cancer in epidemiologic studies, although the mechanism(s) underlying this association
remain(s) unclear (1-6). We recently reported that low calcium intake was associated with a
decreased risk of advanced prostate cancer in African American men, but only among those
with a genotype of the Vitamin D Receptor (VDR) that is associated with poor intestinal
absorption of calcium (7). To determine whether these associations also occur among
Whites, we expanded our study to include White men from the California Collaborative
Prostate Cancer Study. For comparison, we examined other VDR loci, unlinked to the Cdx2
polymorphism, that are not directly related to calcium absorption.

This study included 1,857 prostate cancer cases (500 African Americans and 1,357 Whites)
and 1,096 controls (240 African Americans and 856 Whites). Among cases, 1,140 were
diagnosed with advanced disease, making this one of the largest studies of advanced stage
prostate cancer in the epidemiologic literature.

Materials and Methods

Study Population

Study subjects were participants in the California Collaborative Prostate Cancer Study, a
population-based multiethnic case-control study conducted between 1997 and 2005,
enriched for aggressive prostate cancer cases, which has been described in detail previously
(8, 9). Briefly, cases were identified from the Los Angeles County Cancer Surveillance
Program and the Los Angeles County and the Greater Bay Area Cancer Registries. A total
of 2,008 cases completed the interview, including 1,232 from Los Angeles County (LAC)
and 776 from the San Francisco Bay Area (SFBA). Cases without a definitive stage were
excluded, leaving 1,960 cases, including 542 African Americans and 1,418 Whites, 333 of
whom were Hispanic and 1,085 non-Hispanic Whites. Advanced prostate cancer was
defined according to SEER (Surveillance Epidemiology and End Results) 1995 pathologic
and clinical extent of disease codes 41-85. Of the 1,960 cases, 1,199 were diagnosed with
advanced stage and 761 were diagnosed with localized disease.

Controls were frequency-matched to the expected distribution of cases on race/ethnicity and
five-year age group. In LAC, controls were ascertained by a standard neighborhood walk
algorithm that specifies an obligatory sequence of residences to be surveyed for eligible
control subjects (10). A participating control was found within 40 residences in more than
90% of case neighborhoods surveyed. In SFBA, controls were identified through random-
digit dialing and random selections from among beneficiaries of the Health Care Financing
Administration. A total of 1,139 controls (594 from LAC, 545 from SFBA) completed the
interview, including 253 African Americans and 886 Whites (122 Hispanic and 764 non-
Hispanic).

Blood or mouthwash samples were obtained for 1,164 advanced cases, 553 localized cases,
and 1,119 controls. Biospecimens were not collected from localized cases in SFBA.

All study participants provided written informed consent. The protocol was approved by the
Institutional Review Boards of the University of Southern California and the Cancer
Prevention Institute of California.

Data Collection

Trained professional interviewers conducted home visits and administered a structured
questionnaire on demographic background, medical history, body size, lifestyle factors
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(including physical activity, alcohol consumption, smoking), and family history of prostate
cancer. Three measurements of standing height and two measurements of weight were taken
and averaged. Usual dietary intake during the reference year (defined as the calendar year
before diagnosis for cases and the year before selection into the study for controls) was
assessed using a 74-item food frequency questionnaire (FFQ) adapted from Block’s 1995
Health Habits and History Questionnaire, which has been validated in middle-aged and older
men (11-14). The FFQ assessed for each food item the frequency of consumption and
portion size, using food models and utensils. Daily intake of specific nutrients, including
calcium, was estimated using the DIETSYS software. Intake of supplemental calcium during
the reference year was assessed by questions on use (number of tablets per week) of
multivitamins, calcium pills with or without vitamin D, and calcium-based antacids (e.g.,
Tums, Rolaids).

Exposure variables

Genotyping

Calcium intake was estimated from the food frequency questionnaire and from use of
supplements (i.e., multivitamin pills, single calcium tablets, and calcium-based antacids).
Total calcium intake included calcium from foods, beverages and supplements. Cut points
were selected based on quartiles of intake among controls. Subjects with dietary intake
considered unreliable (<600 or >6000 kcal/day) were excluded from analyses (103 cases and
43 controls), leaving 1,857 cases (500 African Americans and 1,357 Whites) and 1,096
controls (240 African Americans and 856 Whites) in the dietary analyses.

In addition to the Cdx2 polymorphism, we examined the Fokl translation start site
polymorphism in exon 2 that influences receptor transactivation ability and the synonymous
Tagl polymorphism in exon 9 that is linked to variation in the 3’ untranslated region which
is important for mRNA stability.

SNPs in three regions of the VDR gene were examined: a missense SNP in a CDX-2 protein
binding site lying between exons 1D and 1G [rs11568820], (15) a missense SNP in the first
of two potential start codons in exon 2 [rs10735810] (referred to as Fokl), and a
synonymous SNP in exon 9 (3’UTR) [rs731236] (referred to as Taql) (8).

The Cdx2, Fokl, and Tagl SNPs were genotyped with TagMan assays using the TagMan
Core Reagent kit (Applied Biosystems, Foster City, CA) as previously described (7, 8). PCR
reactions were conducted using conditions recommended by the manufacturer. Fluorescent
signals were measured using an ABI 7900HT Detection System. Water blanks were
included in all PCR batches. Ten percent of samples were blindly replicated. There were no
discrepancies among replicated samples. Call rates were >97%. Laboratory technicians were
blinded to case-control status. Genotype data were obtained for 1,857 cases and 1,096
controls.

Statistical Analyses

Allele frequencies were estimated by gene counting. Chi-square tests were used to test for
departures of genotype frequencies from Hardy-Weinberg Equilibrium among controls. To
control for differences in race/ethnicity, socio-economic status (SES) and case/control ratio
across study sites, we created a variable that classified subjects according to study site, SES
quintile and race/ethnicity, as described previously (8), and fit conditional logistic regression
models to estimate odds ratios (OR) and 95% confidence intervals (CI). Models were
adjusted for age (continuous variable) and first-degree family history of prostate cancer (yes,
no) as potential confounders. We also checked for potential confounding by PSA screening

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 January 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rowland et al.

Results

Page 4

during the five years prior to the reference year. Reliable screening data were available only
for SFBA cases and controls, and there was no evidence of confounding by PSA screening.

Dose-response trends were assessed by including quartiles as an ordinal value in the
conditional logistical regression models. Cross-product terms were included and a 1 degree
of freedom likelihood ratio test was used to evaluate effect modification (interaction).
Separate analyses were performed for cases with localized and advanced stage disease.
Because the number of Hispanic Whites was too small for separate analyses, Hispanic and
Non-Hispanic Whites were combined.

The demographic characteristics of study participants are shown in Table 1. The mean age at
diagnosis was 64 years. On average, advanced cases were diagnosed three years earlier than
localized cases among African Americans, and five years earlier among Whites. Cases and
controls were similar in education, socio-economic status, and BMI. Cases consumed more
calcium than controls and were more likely to report a first-degree family history of prostate
cancer. African Americans consumed less calcium than Whites (mean of 818 vs. 1,078 mg/
day for African American vs. White controls). In both racial groups, advanced cases
consumed more calcium than localized cases (1,173 vs. 1,119 mg/day among Whites; 979
vs. 945 mg/day among African Americans for advanced vs. localized disease).

Table 2 shows that low calcium intake is associated with lower prostate cancer risk among
both African Americans and Whites. The association was seen for both advanced and
localized disease. Men in the lowest quartile of total calcium intake (<604 mg/day) had an
approximately 40% lower risk of prostate cancer (advanced or localized) than men in the
highest quartile (>1,258 mg/day) (OR=0.62, 95% Cl=0.49, 0.77; p for trend: 0.001). The
top three quartiles, however, did not differ significantly with respect to prostate cancer risk.
The associations were somewhat stronger among African Americans, with a 54% decrease
in advanced disease risk (quartile 4 vs. 1) compared to 35% in White men.

Table 3 shows associations between risk and the genotypes for the three SNPs, Cdx2, Fokil,
and Tagl, in the VDR gene. All genotypes were in Hardy-Weinberg equilibrium among
African American and White controls. The Cdx2 genotype was associated with prostate
cancer risk only among African Americans; specifically, the GG genotype was associated
with reduced risk of advanced disease. The Fokl genotype was associated with risk only
among Whites and only for advanced disease. No significant associations were observed for
Tagl. For all pairwise combinations of SNPs, there was no linkage disequilibrium detected
among either African Americans or Whites.

Table 4 shows the association with genotype, stratified by total calcium intake (lowest
quartile vs. top three quartiles). Effect modification was present only for the Cdx2 genotype.
Among both African Americans and Whites, the Cdx2 G allele was associated with reduced
risk, but only among those with low (lowest quartile) calcium intake (p for interaction =
0.001 in Whites; 0.06 in African Americans). Among men with low calcium intake (<604
mg/day), each additional G allele was associated with a 39-46% decrease in risk.

Table 5 shows the association with calcium consumption, stratified by Cdx2 genotype. Low
calcium intake (<604 mg/day vs. =604 mg/day) was significantly associated with decreased
risk only among men with the protective genotype (GG) (OR=0.49, 95% CI=0.36, 0.67). A
similar pattern was seen in African Americans and Whites (data not shown). Both races
were combined due to sparse numbers of men with both the GG genotype and low calcium
intake.
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Discussion

In this multi-ethnic study of 1,857 prostate cancer cases and 1,096 controls, we observed a
positive association between calcium intake and prostate cancer risk, consistent with a large
epidemiologic literature (1-6). Moreover, among both African Americans and Whites, the
association was modified by VDR calcium absorption GG genotype. Specifically, low
calcium intake was most strongly associated with decreased prostate cancer risk among men
with the VDR Cdx2 GG genotype that has been linked to low calcium absorption (16-17).
Thus, low calcium intake (<604 mg/day) and low absorption genotype (VDR Cdx2 GG)
appear to jointly confer markedly reduced risk.

We observed a threshold for calcium intake below which prostate cancer risk declined
sharply for both African Americans and Whites. No reduction in risk was seen for intake in
the middle two quartiles compared to men in the highest quartile of calcium intake (>1,258
mg/day). Conversely, men in the lowest quartile (<604 mg/day) had a 30-50% reduction in
risk.

The Institute of Medicine recently set the recommended daily intake (RDI) of calcium for
men aged 51-70 years at 1,000 mg and at 1,200 mg for men over 70 (18, 19). The Tolerable
Upper Limit (TUL) for calcium intake for both age groups is 2,000 mg per day. Notably, an
increased risk of prostate cancer was one of the considerations leading to the selection of the
TUL for men. Our data indicate that only calcium intake below the RDI (and well below the
TUL) is associated with decreased risk, which suggests that with respect to prostate cancer,
both the RDI and the TUL are too high.

Calcium intake was lower in African Americans than in Whites, a finding that is consistent
with many other reports (20-22). Only half as many Whites as African Americans (21% vs.
41%) consumed a diet sufficiently low in calcium (i.e., < 604 mg/day) to be associated with
a reduced risk. Thus, among Whites, the low calcium absorption genotype did not appear to
be protective when considered in isolation from calcium intake.

The prevalence of the low calcium absorption genotype is much lower in African Americans
than Whites (10% vs. 61% among controls). Despite the difference in genotype prevalence
by race, results for the interaction of genotype and diet were consistent across both groups.
In numerous studies and in diverse ethnicities, the low calcium absorption genotype (VDR
Cdx2 GG) has been associated with markers of reduced calcium availability, e.g., lower
bone mineral density and osteoporosis (23-25). The Cdx2 polymorphism interrupts a
transcription factor binding site that is thought to be important for intestinal VDR expression
and calcium absorption (16, 17). Although a direct effect of the Cdx2 SNP on calcium
absorption has not been demonstrated /n vivofunctional differences have been demonstrated
in vitro (15). Thus, effect modification of calcium intake by the Cdx2 genotype, which
governs calcium physiology, is biologically plausible (7).

The VDR polymorphisms examined in this study are located in three independent regions of
the gene: the upstream promoter (Cdx2), the start codon (Fokl), and the exon containing the
3'UTR (Tagl). The presumed mechanisms of any effects of the Fokl and Taqg|l
polymorphisms are believed to be unrelated to calcium. The Fokl polymorphism changes the
length of the VDR protein, affecting transactivation ability (26), whereas 3UTR
polymorphisms (marked by Tagl) have been proposed to influence stability of the gene
transcript (27). Neither of these polymorphisms modified the association between calcium
intake and prostate cancer risk.

The Fokl and Tagl polymorphisms, considered alone, were not associated with prostate
cancer risk, except for an increased risk of advanced prostate cancer among Whites
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homozygous for the variant start codon genotype (previously reported by John et al.) (8).
This genotype was present among only 4% of African Americans (10 controls and 10
advanced cases), thus statistical power to detect an association in this group was limited.
Our findings are consistent with recent meta-analyses (28, 29), which found only weak
associations of borderline significance between VDR Taql and Fokl genotypes and prostate
cancer risk.

The mechanisms underlying the association between high dietary calcium intake and
increased risk of prostate cancer remain uncertain(1, 30-32). High dietary calcium has been
proposed to inhibit the renal hydroxylation of 25-OHD into the active hormone, 1,25-
Dihydroxyvitamin D5, but serum levels of either 25-OHD or 1,25-Dihdroxyvitamin D have
not been consistently associated with prostate cancer risk (33, 34). An attractive, alternate
hypothesis is that calcium in diet increases levels of ionized calcium in serum and that serum
ionized calcium affects prostate cancer cells directly (35). Both the calcium-sensing receptor
as well as calcium-dependent voltage gated channels are expressed in prostate cancer cells
(33, 36, 37). Stimulation of these receptors by extracellular calcium is known to increase
prostate cancer cell proliferation /n7 vitro and metastasis /n7 vivo. This interpretation is
consistent with our previous findings for fatal prostate cancer from two prospective studies.
Relative risks for fatal cancer were increased two-fold among men with high vs. low total
serum calcium (38) and three-fold among those with high vs. low ionized serum calcium
(39). An attractive aspect of the serum calcium model is that this mechanism, increases in
ionized calcium stimulating cancer cell proliferation, can accommodate the findings from
both the dietary and serum studies. This is because, although levels of total calcium in serum
vary little following calcium intake, increases in dietary calcium cause a rise in serum levels
of ionized calcium, which remain elevated for several hours after dietary intake (40, 41).

Our results should be considered in light of several potential limitations. First, the
retrospective design may have introduced recall bias in participants’ reporting of calcium
intake. However, our findings are consistent with those from several prospective studies in
which recall bias is not an issue. Second, selection bias cannot be completely ruled out since
participation rates were slightly lower for controls than for cases. However, this would occur
only if the probability of inclusion in the study was related to calcium intake or absorption.
We did not detect any heterogeneity in effect estimates by race/ethnicity, SES or study site.
Third, our recording of disease stage may be subject to misclassification. It is well-known
that prostate cancer that is staged clinically may be under-staged relative to its true extent, as
determined by pathological stage. This limitation applies principally to early stage disease
which may include a mixture of localized and advanced disease.

The relatively small number of Hispanics (101 controls, 119 localized cases, and 174
advanced cases), precluded ethnic-specific analyses among White men. Few Hispanics (11
controls, 10 localized cases and 15 advanced cases) had low calcium intake (lowest
quartile), which was associated with decreased risk. Average calcium intake was higher
among Hispanics than among non-Hispanic Whites (1,342 vs. 1,043 mg/day). However, the
low absorption Cdx2 (G) allele was common among Hispanics. The frequency of the G
allele did not vary by ethnicity (81% vs. 80% reported by HapMap (42); 79% vs. 77% in our
study, for Hispanics and non-Hispanic Whites, respectively). Future, larger studies are
needed to examine prostate cancer risk in Hispanics in relation to calcium intake.

Conversely, our study has several strengths, including its sample size, population-based
design, and the oversampling of cases with advanced-stage disease, which allowed us to
distinguish stage-specific genotype-diet interactions that would have been difficult or
impossible to detect in a case series that consisted mainly of early-stage disease.
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Furthermore, few epidemiologic studies of diet have included large numbers of advanced-
stage prostate cancer among African Americans.

Racial/ethnic disparities in prostate cancer are well documented. In the US, incidence rates
are 60% higher and mortality rates are 150% higher among African Americans than Whites
(SEER 2000-2009) (43). The reasons for these differences remain unexplained. We are
impressed by the fundamental differences in calcium biology among African Americans and
Whites. For example, despite consuming less calcium than Whites, African Americans have
higher bone mineral density. Thus, African Americans are more efficient at calcium
absorption (44, 45). We observed substantial differences in Cdx2 allele frequencies by race.
The high absorption allele is more common in populations of African origin (98% in
Yorubans in Ibadan, 89% in Luhya in Kenya, 71% in African Americans of the U.S.
Southwest) than in men of Northern or Western European ancestry (20% in Utah residents)
(42). We suggest that these genetic differences in calcium absorption, which are known to
influence racial differences in bone mineral density, may contribute to racial/ethnic
differences in prostate cancer incidence and mortality.

Although the genetics of calcium absorption are not modifiable, the dietary intake of
calcium is. Our results suggest that a subset of men, i.e., those with the Cdx2 GG genotype,
may be able to substantially reduce their risk of prostate cancer by reducing their calcium
intake. Prior to making such a decision, men might want to consider their personal risk of
other diseases that have been linked to lower calcium intake, such as osteoporosis and
colorectal cancer. Additionally, if the association between high calcium absorption and
increased risk of t prostate cancer risk is confirmed by additional studies, medicines that
lower calcium absorption may have a role as chemopreventive agents.
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Abbreviations

VDR Vitamin D (1,25- dihydroxyvitamin D3) receptor protein

VDR gene gene encoding the vitamin D3 receptor

CDX-2 caudal type homeo box transcription factor 2 protein

Cdx2 single nucleotide polymorphism in the CDX-2 binding site of the VDR gene
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TABLE S5
Calcium Intake and Risk of Prostate Cancer, Stratified ny VDR Cdx2 Polymorphism

All Races Controls All Cases vs. Controls
N=1018 N=1531
VDR Cdx2 N (%) N (%) OR (95%)
AA Genotype N=166 N=316
High Calcium | 109 (66%) | 229 (72%) 1.0 (ref)
Low Calcium | 57 (34%) | 87 (28%) | 0.76 (0.50, 1.15)
AG Genotype N=349 N=484
High Calcium | 269 (77%) | 389 (80%) 1.0 (ref)
Low Calcium | 80 (23%) 94 (20%) | 0.80 (0.57,1.14)
GG Genotype N=503 N=731
High Calcium | 384 (76%) | 639(87%) 1.0 (ref)
Low Calcium | 119 (24%) | 92 (13%) | 0.49 (0.36,0.67)
LRTp for interaction p=0.05

Abbreviation: LRT, Likelihood Ratio Test
Total calcium from diet and supplements
Low Calcium (<604 mg/day); High Calcium (=604 mg/day)

All models adjusted for age, study site, socio-economic status and family history of prostate cancer
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