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Supplementary Figures
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Figure S1 (corresponding to Figure 3). Controls for correlations of neural posi- tion with RT in main text.

(A) Euclidean distance (without dimensionality reduction) between the neurons’ firings rates at the go cue and the mean activity across trials at some time relative to the go cue (labeled d in the figure) is used in our control analysis in (B).

(B) Performance of method in (A) and projection method in Fig. 1C versus time used to compute reference point. Distance method was used to compute the solid trace; projection method for the dashed trace. The distribution of correlation coefficients for the projection method shifts from being significantly positive before the go cue (pre-go) to significantly negative after (post-go) (top inset histograms; p<1e-5, Wilcoxon signed- rank test). Filled circles are those timepoints that are significantly greater (log-likelihood comparison) than the r2 around the go cue. Note that the peak of the curve, at ∆t = 100ms, was chosen as the offset in the main text. The peak of the curve for negative ∆t′ = -190ms was chosen when using the component of the neural activity along the mean neural trajectory prior to the go cue (Fig. S2). Since the peaks in RT variance explained are broad, a variety of offsets produce similar results to those quoted here. As mentioned in the Experimental Procedures of the main text, the distance method with an offset of 0ms could be viewed as an implementation of the optimal subspace hypothesis. This is because the single-trial prediction of RT would then be the Euclidean distance between the vector of firing rates at the go cue on a given trial and the vector of mean firing rates at the go cue across trials. Note that this implementation of the optimal subspace hypothesis performs quite poorly. We now call the vectors upon which single-trial neural activity was projected pre- and post-go axes.

(C) Repeat of analyses in (B) with single-unit recordings. Distance and projection method using single-unit recordings (see Supplementary Experimental Procedures for selection criteria). As criteria used for single-unit selection only existed for a subset of datasets used, the total RT variance explained is not comparable to that in (B). Otherwise, the results are similar qualitatively to that in (B). Thus, we conclude that our use of multi-units in addition to single-units do not artifactually create our results.

(D)–(E) Reaction time as a function of delay period for monkeys G (D) and H (E). The dark black line is the mean RT for trials in different delay bins, binned every 50ms except for the last bin in (D) which contains delays from >800ms due to the few trials at these delays. Mean RTs and one standard error of the mean are shown. Note that individual trials’ delay periods (represented by dots) appear discretized due to the frame rate of the projector used; that is, the go cue can only appear on a particular frame, which occurs every ∼16ms. Note that the RTs of the monkey in (E) seem to increase slightly for delays around 300– 500ms; this may be noise because these bins contain many fewer trials than other bins. His RT saturated at his fastest RTs, however, for delay periods of >700ms, which are the only ones we use.

The fact that the monkeys’ RTs decrease and then approach saturation is evidence that they are trying hard to acquire the target as fast as possible. Otherwise, one would expect that RT would not be a decreasing function of delay, as an unmotivated monkey would not exploit the delay period to plan the movement. Thus, it seems likely that in the analyzed trials the monkeys were moving as fast as they could.

(F) Computation of average RT variance explained when spikes in 50ms window around go cue are used to make the prediction. This figure shows that using a small window and our kernel have extremely similar results. Thus, our use of a kernel to obtain smooth firing rates from spike times did not artifactually create our results.

(G) Search of time for location in neural space that could be used to find best trial-by-trial correlate with RT using the projection method and segregating by delay period in 100ms bins. The dash-dotted line is the r2 obtained by correlating trial-by-trial RT with delay period. Note that both points before and after the go cue are significantly greater (asterisks; p<0.05, log-likelihood comparison) than the average variance explained by delay period only. This indicates that our results are not solely due to systematic changes in firing rate as a function of delay period. Furthermore, this indicates that segregating our data by delay period into 100ms bins is sufficient to remove the effects of delay period on neural position when evaluating our results, as done in Fig. 4B.

(H) RT variance explained by hand velocity in direction of target as a function of time. Since average r2 is much less than that explained by the neural distance metric in (B) (about half), in addition to the controls in (H) and (I), we conclude that small movements around the time of the go cue could not have explained our results. The sharp rise around 150ms is probably due to the initiation of movements that have short RTs (<200ms). Notice that the time axis on this figure has a different meaning than that on the other, similar figures. In this figure, the hand velocity as a function of different times is being correlated with RT, while in other figures, the reference is being varied across time.

(I) Distribution of average r2 for 1000 random shuffles of hand velocity in the direction of the target and RT. To produce this histogram, measured hand velocity and RT were shuffled with respect to one another and the RT variance explained was recalculated. This operation was performed 1000 times in order to generate the distribution shown. The empirically measured r2 is designated by the cross, which lies inside the distribution with p∼0.9. This shows that hand velocity explains about as much RT variance as chance, since the empirically measured r2 lies well within the distribution created by random shuffling. Compare with (J).

(J) Distribution of average r2 for 1000 random shuffles of neural distance and RT. Shuffling done as in (I). The empirically measured r2 is designated by the cross, which lies outside the distribution with p<1e-3. This shows that the neural data explains more RT variance than chance with the given significance value.

(K) RT variance explained by EMG as a function of reference time. EMG’s predictability of trial-by-trial RT does not change much with respect to reference time used. Note that the difference in percentage RT variance explained by EMG and that explained by neural data (∼8% versus ∼3.5%) is due to the many fewer trials that were recorded with EMG, not an improved RT predictability. The large dip around ∼100ms post-go cue is possibly due to increased noise in EMG shortly prior to movement onset. Regardless of its source, this graph clearly does not have the pattern that using a reference further in the future allows one to better predict RT. Thus, from this graph (and the control done in (J)), we infer that small muscle contractions likely did not cause our neural correlates with RT.

(J) Distribution of average r2 for 1000 random shuffles of EMG and RT. Shuffling done as in (H). The empirically measured r2 is designated by the cross, which lies inside the distribution with p∼0.1. This is consistent with EMG explaining about as much RT variance as chance.
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Figure S2 (corresponding to Fig. 4). Controls for analyses relating single-trial neural velocity with RT.

(A) Histograms of correlation coefficients relating components of neural position and velocity at the go cue. All four combinations of components of neural position and velocity along the pre- and post-go axes are compared; three of the four have significant (p<0.01; Wilcoxon signed-rank test) relationships, consistent with the neural state moving with stereotyped position and velocity. This shows that the control in (B) is necessary in order to rule out the possibility that all of the RT variance explained by neural velocity is not solely due to a correlation of neural position and velocity.

(B) Histograms of correlation coefficients relating components of neural position and velocity at the go cue when data is segregated by delay period in 100ms bins. All four combinations of components of neural position and velocity along the pre- and post-go axes are compared; only one of the four have significant (p<0.05; Wilcoxon signed-rank test) relationships. This, in combination to our other statistical tests for over fitting (Fig. S3A), reduces the likelihood that our improved RT variance explained using larger models is solely due to a correlation between neural position and velocity.
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Figure S3 (corresponding to Fig. 5). Controls for comparisons of full multivariate model with other models.

(A) Bar graph comparing full multivariate model of RT with other models that use fewer predictors (see Supplementary Experimental Procedures for details). Asterisks mark those comparisons where the multivariate model explained significantly more RT variance than the univariate model by F-statistics; daggers mark those comparisons where the multivariate model had a lower BIC score. The full, four-variable model outperforms all other models that use fewer variables. On right is a bar graph of the fraction of targets that had a significant correlation (p<0.05) between the given neural metrics and RT. We obtained similar results when separating trials by delay period (not shown).

(B) Bar graph comparing position univariate model with other models in literature. Our model significantly (p<0.05, log-likelihood comparison) outperforms the other models on most datasets and overall. Since this model only uses one predictor, the increased RT variance explained noted in the main text is not merely due to the use of more variables. Furthermore, combining this figure with (A) implies that the full model used is the best known predictor of trial-by-trial RT.

Supplementary Experimental Procedures

Selection Criteria for Single Units (Fig. S1C)

We also re-performed our main analyses on a subset of datasets with only our single-unit recordings. A unit was labeled as single-unit if the automated spike-sorter reported a false- positive and false negative classification rate <10%. Note that this data was only available for 3/8 datasets (G20040123, H20041119, H20041217), but this was a majority of total trials used in this work (2922/4710 trials). This is did not yield qualitatively different results.

Hand Velocity Correlation with RT (Fig. S1G,H)

In order to ensure that the correlation between neural distance and RT found was not due to small hand movements, we also correlated trial-by-trial RT with trial-by-trial hand velocity in the direction of the target at various times relative to the go cue. The hand velocity at time t was computed as the vector difference between hand positions recorded at t + 10ms and t − 10ms.

EMG Recordings and Analysis (Fig. S1J,K)

EMG was recorded only with monkey G and on a different day than the neural recordings (dataset G20040716). Recordings from the deltoid, biceps, or triceps muscles (not simul- taneous) were made while the monkey performed the same delayed-reach task as in other datasets. We performed the same pre-processing as on the spikes (e.g., smoothing with Gaussian filter with 30ms SD that only had 50ms acausally), with the additional caveat that the EMG voltage signal was squared prior to smoothing. This allows us to see if the power of the EMG signal correlates with RT. We performed a very similar analysis to that done with the neural data. The mean squared-EMG signal (across trials) was computed at various reference times relative to the go cue. For each reference, the trial-by-trial difference in squared-EMG between the signal at the go cue and at the reference was correlated with RT. This is completely analogous to our analysis in Fig. S2G,H.

Analyzing RT Predictive Power (Fig. S3A)

We performed a multi-variable regression using all four predictor variables discussed: components of neural position along the pre- and post-go axes and components of neural velocity along pre- and post-go axes. Note that we used the same reference times to compute the pre- and post-go axes for both neural position and velocity (as determined by the peaks on the RT variance curve for neural position in Fig. S1A).


This algorithm is compared against other algorithms that used fewer predictors: position and velocity, post-go only (2 predictors: post-go position and post-go velocity); position multivariate regression (2 predictors: post- and pre-go position); position univariate regression (1 predictor: post-go position); velocity multivariate regression (2 predictors: post- and pre-go velocity); velocity univariate regression (1 predictor: post-go velocity).


We computed the F-statistics and BIC scores values for all algorithms, as shown in the figure.

F-test (Fig. S3A)

We used an F-test as one of the tests to see if models with more variables explained more RT variance. The F-test is well-suited to our purposes, as it is designed for comparing two models where one model uses a superset of the predictor variables of the other. There is a caveat here, however, since we are combining the results of many individual regressions (by target), each of which has its own error variance. We therefore computed the F-statistic that compared the two models separately for each regression and found the sum of all of these F-statistics. Since the errors across various regressions are assumed to be independent, we then found the probability density function (pdf) of the sum of F-statistics by numerically convolving the pdfs of each individual F-statistic. We can then calculate the likelihood of having observed the empirical sum of F-statistics, which we use as a p-value.
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