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Summary
The process by which neural circuitry in the brain plans and executes arm movements is not well
understood. Prevailing data (single-neuron and field potential recordings) do not reveal how
individual neurons’ activities are coordinated within the population, and thus inferences about how
the neural circuit forms a motor plan have been indirect. Here we frame and test a new ‘initial
condition hypothesis’ in which the reaction time (RT) of upcoming movements may be predicted
on each trial using neurons’ moment-by-moment firing rates and rates of change of those rates.
Using microelectrode array recordings from premotor cortex of monkeys performing delayed-
reach movements, we compare such single-trial RT predictions to those of other theories. The
initial condition hypothesis model can explain approximately four-fold more RT variance than the
best alternative method. Thus, the initial condition hypothesis elucidates a new view of the
relationship between single-trial preparatory neural population dynamics and single-trial behavior.

In 1991, Leroy Burrell set a world record for the 100 m dash with a spectacular time of
9.90s, stunning the pre-race favorite Carl Lewis, who finished second with a time of 9.93s. It
was later noted, however, that Burrell was not the faster runner. Rather, his reaction time to
the gun that marked the start of the race was much shorter than Lewis’s: a hair-trigger
117ms against a relatively lethargic 166ms. Without this difference, Lewis would have won
handily. Why was Carl Lewis so much slower than Leroy Burrell to start the race that day?

Of course, non-athletes also often prepare movements in anticipation of events: while
preparing to swat a fly, to press a car accelerator when a traffic light turns green, or to select
the appropriate button while playing a video game. Sometimes we are slow in reacting and
sometimes we move before we are fully ready. This inability to precisely time the onset of a
movement can often be extremely frustrating.
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What is the cause of this imprecision? Presumably, it is related to the operation of planning
and executing movements. Voluntary movements are believed to be “prepared” before they
are executed (e.g., Wise, 1985). Important evidence for this belief comes from behavioral
tasks in which a delay period separates a stimulus instructing the goal of a reaching
movement from a subsequent ‘go’ cue. Reaction time (RT) is the time elapsed from the go
cue until movement onset in these delayed-reach tasks, and RT is shorter when delays are
longer (e.g., Rosenbaum, 1980; Riehle & Requin, 1989). This suggests that a time-
consuming preparatory process is given a head start by the delay period. How is this process
reflected in neural activity, and why should the preparation take time? One view, drawn by
analogy to the oculomotor system (Hanes & Schall, 1996), would be that neural activity in a
subpopulation of cells might be increased in order to reside near a threshold level, and that
the initiation of movement would follow from the subsequent crossing of this threshold.
Thus, if the distance of preparatory neural activity from this threshold were measured
experimentally, it should correlate inversely with RT (Erlhagen & Schoner, 2002).

Neurons in a number of brain areas, including dorsal premotor cortex (PMd), exhibit delay-
period activity changes according to the direction, distance, and speed of the upcoming
movement (Messier & Kalaska, 2000; Churchland et al., 2006b). Electrical disruption of this
activity in PMd largely erases the RT savings earned during the delay (Churchland &
Shenoy, 2007b). PMd is thus broadly implicated in arm movement preparation. In support of
the “rise-to-threshold” hypothesis, higher firing rates in PMd are often associated with
shorter RTs (Riehle & Requin, 1993; Bastian et al., 2003), although Crammond & Kalaska
(2000) found that peak firing rates after the go cue, when the movement is presumably
triggered, were on average lower after an instructed delay.

We recently proposed an alternative hypothesis (Churchland et al., 2006c), illustrated in Fig.
1. The “optimal subspace hypothesis” assumes that the movement produced is a function of
the state of preparatory activity (pgo) at the time the movement is externally triggered. For
each possible movement there would be an “optimal subspace”: a subset of possible
population firing rates that are appropriate to generate a sufficiently accurate movement.
Motor preparation might therefore be an optimization in which firing rates are brought from
their initial state to a state within the subregion of adequately planned movements (gray
region with green outline in Fig.1A). Each point in this optimal subregion corresponds to
movements that are planned equally well for the purpose of completing the behavioral task
and receiving reward. Thus, firing rates would remain within this optimal region while
awaiting the cue to initiate movement, so as to preserve the appropriately-prepared state.
This contrasts with the rise-to-threshold model, where the crossing of an appropriate
threshold actually triggers the movement. The most obvious predictions of this optimal
subspace hypothesis are well-established: delay-period firing rates are concentrated in a
subregion of the accessible space, and this subregion is different for each instructed
movement. However, if evidence could be found to show that the brain actively attempted to
contain firing rates within that subregion, and that a penalty was paid for failing to do so,
then the optimal subspace hypothesis could prove to be a valuable framework for further
investigation of arm movement preparation.

Three recent experiments have probed the process of motor preparation further, yielding
averaged measurements consistent with the optimal subspace hypothesis, and motivating the
present study of single-trial neural correlates of behavior. First, we found that movement
speed is predicted by the state of preparatory activity at the time of presentation of the go
cue (Churchland et al., 2006a,b). Second, we found that the across-trial FanoFactor (FF; the
variance in firing rate normalized by the mean rate) in neural activity decreases following
target onset and results in low across-trial FF at the time of the go cue (Churchland et al.,
2010). In Fig.1B, this is closely related to the reduction of across-trial scatter from the time
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the target appears (red dots) to the time that the go cue appears (green dots). Consistent with
the idea that the brain actively attempts to bring firing rates to a focal subregion during the
planning period, the variance between trials with RTs shorter than the median value was
smaller at the go cue (lower FF) than that between trials with RTs in the upper half of the
distribution (Churchland et al., 2006c). Finally, when the exact state of the preparatory
activity is perturbed with electrical microstimulation, which most likely moves pgo in Fig.
1B to outside of the optimal subregion, we found that the RT savings created by the delay
period (i.e., presumed motor preparation) is largely erased (Churchland & Shenoy, 2007a).

These initial experiments studied the process of preparation by averaging measures across
multiple trials. Their consistency with the optimal subspace hypothesis motivated us to now
ask how individual movements are prepared on individual trials, and how the initiation of
the movement is related to transition of activity from preparatory to movement states. More
specifically, we asked how the preparatory activity at the time of the go cue is related to the
reaction time on each individual trial.

Our earlier work (Yu et al., 2009; Churchland et al., 2010b) revealed that neural activity
across different trials to the same reach target becomes progressively more stereotyped
during the planning and movement periods (Fig.1B). We wondered if we could exploit this
the mean. To see how this might be possible, consider the average neural activity across all
trials to the given target, shown by the bold trace in Fig. 1C. This can be viewed as a low-
dimensional representation of the mean neural activity that creates the motor plan for, and
generates the arm movement to, a given target. We hypothesized that if the point
corresponding to the neural population activity were farther along this mean path on a given
trial at the time of the go cue, but still within the optimal subspace, then that trial would
have a correspondingly fast RT (compare points labeled ‘shortRT’ versus ‘longRT’ in Fig.
1C). This view is consistent with the hypothesis that there exists a boundary along the mean
neural trajectory (dotted line in the figure), which is crossed at the initiation of a movement.
Importantly, as discussed below, this is a different “threshold” than that of the rise-to-
threshold models. This view augments the optimal subspace hypothesis, which does not
suggest that different neural states within the optimal subregion would correspond to
different RTs. We call this augmented view the ‘initial condition hypothesis’, as it is
consistent with the idea that differences in RT reflect the different times taken for the motor
network to evolve from each state of the optimal subregion to the states associated with
motor initiation.

To test this hypothesis we conducted experiments with rhesus monkeys performing a
delayed-reach task, while recording from tens to hundreds of neurons simultaneously
(Churchland et al., 2007). Our subjects performed multiple reaches to different targets
throughout the workspace (see Methods for details). The task design is shown in Fig. 2.
Simultaneous measurement of multiple neurons is essential to gather enough information
about the population preparatory state on a millisecond timescale to make it feasible to
account for individual trial RTs. We found that visualizing these neural data in a lower
dimensional space helped reveal a stereotyped “neural trajectory” (Yu et al., 2009;
Churchland et al., 2010b) and helped lead to a new neural measure(based on our initial
condition hypothesis) that predicts roughly four times more RT variance than previously-
published methods.

Results
Neural Activity Predicts Trial-by-Trial RT

A low dimensional representation of neural data from our experiments is shown in Fig. 3.
Panel A shows neural data from three reaches to a given target, while panel B shows all of
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the 49 reaches. Dimensionality reduction was performed using Gaussian-process factor
analysis(GPFA); see Experimental Procedures for details (also Yu et al. (2009); Churchland
et al. (2010b)). Note that qualitatively similar results are obtained when using principal
components analysis (PCA), but in general PCA can be erroneously dominated by just a few
high firing-rate neurons (Yu et al., 2009). As in the illustrations in Fig.1, the neural activity
seems to behave in a stereotyped way during motor planning and execution. Notably, the
three trials shown are in approximately the same location in the GPFA state-space at the
time of target onset (red points in Fig. 1A). The neural states during all three trials then
move together along the second latent dimension during the plan period (red traces) before
changing direction after the go cue is given (green and blue traces are along a different
direction than red traces). This stereotypy is also evident even when looking at all trials to a
given reach target (Fig.3B). Furthermore, the drift speed in neural space (calculated by
measuring the distance traveled per time step along the mean neural trajectory) also has a
stereotyped shape and decreases markedly after about 200ms, which is the approximate
presumed length of time required for motor preparation (Fig.3C).

As described above, we reasoned that the degree to which the neural state had advanced by
the time of the go cue along the mean neural path across similar trials would be predictive of
RT (Fig. 1C). To test this, we calculated the projection of an individual trial’s neural
activities along the mean neural path (the ‘mean neural trajectory’) for the appropriate
target. This is shown in Fig. 1C as α, which is the length of the bold line segment. This
segment is the projection of the vector pgo along the vector p−go+Δ_t; pgo links the target’s
mean neural activities at the go cue to the activity on a single trial at the go cue, while
p−go+Δ_t links the target’s mean neural activities at the go cue to the mean neural activities
at a time Δt later for this target.

This projection was correlated with the reaction time for all trials to the same target on a
trial-by-trial basis. The offset Δt was chosen to maximize the average RT variance explained
across all datasets (100 ms for our data; see Fig. S1B). The exact Δt used does not appear to
be critical, as any from of a range of values yields similar results (Fig. S1B). This analysis
and all subsequent analyses were performed without dimensionality reduction so as to
preserve complete information about firing rates from all neurons recorded.

Histograms of correlation coefficients across all reach targets for both monkeys are shown in
Fig.3D. For both monkeys, the histograms are shifted significantly to the negative values,
with medians less than zero (p<0.01; Wilcoxon signed-rank test). This is consistent with the
hypothesis that trials with neural activities that are farther along the mean neural trajectory
at the time of the go cue have shorter RTs, which predicts that correlation coefficients
should be negative. Thus, these data are consistent with the hypothesis as depicted in Fig.
1C.

We performed several controls, as described in the Supplementary Materials (Fig. S1), to
rule out some alternative hypotheses, as well as potential artifacts in the experimental design
or analysis. Specifically, we found that a model based on the distance between the neural
state and an arbitrary reference point performed more poorly (panels A,B); our results did
not depend on the inclusion of multi-neuron units(panel C and qualititive observations that
spike sorting was of good quality); subjects remained motivated during the planning period
(panels D, E); the smoothing used to create continuous firing rates from spike times did not
introduce an artifact (panelF); the results could not be explained by a systematic change of
neural position with delay period (panelG); the results could not be explained by small
anticipatory arm movements during the delay period (panels H, I, J); nor by small muscle
contractions as measured by EMG (panels J, K, L).
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The results of the previous section show that the degree to which the neural activity has
progressed along the average neural trajectory by the time of the go cue (the ‘neural
position’) is predictive of RT trial-by-trial. We further hypothesized that the direction and
rate of change of neural activity at the time of the go cue (the ‘neural velocity’) also relates
to that trial’s RT.

We investigated this possibility using a similar analysis to that above, now correlating the
neural velocity at the time of the go cue (vgo) projected onto the mean neural trajectory with
RT (Fig.4A). In order to isolate the effects of neural velocity from position, we grouped
trials together that had similar neural positions, which was done by further segregating our
data by delay period into100 ms bins (justified by results in Fig. S1G). As shown in Fig.4B,
for both monkeys the histograms have medians significantly less than zero (p<0.01;
Wilcoxon signed-rank test). This is consistent with the hypothesis that the greater the rate of
change of neural activity in the direction of the mean neural trajectory at the time of the go
cue, the shorter the RT.

We again performed control analyses to rule out alternative hypotheses, as described in the
Supplementary Materials (Fig. S2). Specifically, we found that the overall neural speed (i.e.,
magnitude of velocity) did not provide a stronger correlate with RT; and that the observed
correlations did not derive solely from the correlation of neural position and neural velocity
to each other (panels A, B).

Comparison with Other Published RT Predictors—We combined both neural
position and velocity along the mean neural trajectory at the time of the go cue to construct a
multivariate predictor of trial-by-trial RT.

Since the mean neural trajectory changes direction around the time of the go cue (see neural
trajectory at times both before and after the go cue. The vector representing the mean
trajectory prior to the go cue, p− go−Δt′, was based on an offset of Δt′ chosen to maximize the
average correlation as before (see Fig. S1B). The four resulting covariates (each of neural
position and velocity projected onto each of the pre-and post-’go’ directions) were used as
inputs to a multivariate linear regression for RT.

This model was compared with other RT predictors in the literature: the rise-to-threshold
hypothesis (the best performing of three different definitions of the rise-to-threshold process
is shown); the optimal subspace hypothesis; and an independent linear decoding method (see
Experimental Procedures). The percentage of total data variance explained is shown in the
bar graph in Fig. 5. This method explained more variance for each dataset, had the most
targets with significant correlations, and explained approximately four-fold more variance
than the next best model overall.

In order to ensure that this effect was not simply due to the use of more predictor variables
(four in our model versus one in others), we performed the following controls. First, we
computed the Bayesian Information Criterion (BIC) for all the models tested (McQuarrie &
Tsai, 1998). The BIC is a method for comparing models that use different numbers of
parameters, and a lower score corresponds to a better model. Our model had a lower score
for every dataset and overall. Second, the full four-parameter model predicts significantly
more RT variance than models that use a subset of the parameters by F-test and BIC
comparisons (Fig. S3A). Note that since this four-parameter model greatly out performs the
one-parameter models mentioned previously, the percent of RT variance explained in the bar
graph is much greater than those that would be expected by the histograms of correlation
coefficients in Figs. 3 and4. Finally, using just a simple one-parameter model (neural
position projected onto the mean neural trajectory after the go cue) also significantly
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outperforms the other models (Fig. S3B). Therefore, we conclude that our model’s superior
RT predictability is not due solely to its use of more parameters.

In sum, the combination of neural state position and velocity provides the best known
predictor of single-trial RT, suggesting that the initial condition of the neural state at the
time of the go cue is predictive of RT.

Discussion
The precise function and mechanism of the time-consuming process of motor preparation
are currently unknown. Evidence has been collected to support at least two different
accounts for the neural activity that is observed during such preparation: the rise-to-
threshold hypothesis (Riehle & Requin, 1993; Bastian et al., 2003) and, more recently, the
optimal subspace hypothesis (Churchland et al., 2006c, 2010a). Our results are consistent
with a hybrid view, combining elements of both of these preceding theories. We suggest that
during motor preparation the network firing activity in the motor system is brought to a
suitable initial condition from which the sequence of neural commands that underlies a
movement may efficiently be generated (see also Churchland et al., 2010a). We call this the
‘initial condition hypothesis’.

Our specific findings built on the observation that neural activity consistently follows a
movement-dependent trajectory during preparation, at least in tasks as strongly stereotyped
as ours. We showed here that the degree to which the neural activity has advanced, and the
speed with which it has been advancing, along this trajectory at the time of the go cue
contributes substantially to determining RT. Indeed, to our knowledge, the initial condition
hypothesis leads to the best known trial-by-trial predictor of fluctuations in RT.

This observation is consistent with the presence of a movement-dependent boundary in
firing-rate space, which separates firing-rate states corresponding to preparation from those
corresponding to movement, and which is crossed at a fixed time relative to the initiation of
the arm movement (Fig. 1C). However, the function of the pre-movement preparatory
activity seems not to be simply to rise to a point close to this boundary, as the rise-to-
threshold hypothesis would suggest. Instead we note that the firing rates of some neurons
fall (rather than rise) after the go cue, and – crucially -- do so even if the firing of those same
neurons had increased during the preparatory phase. Thus, the path by which the system
approaches this crossing point may be indirect. This observation was reflected in our RT
predictions in two ways. First, the directions of the mean neural trajectory before and after
the go cue (p− go−Δt ′ and p− go+Δt′) differed, so that taking both into account improved RT
predictions. Second, three alternative schemes (see Methods) that used the extent of rise or
change in firing rates from their baseline values at the time of the go cue to predict RT did
not perform as well; results from the best performing of the three are shown in Fig.5. Thus,
we conclude that neural activity during movement preparation does not simply rise to, or
directly approach, a movement-initiation threshold.

The optimal subspace hypothesis suggests that for each possible desired movement goal
there is a set of consistent preparatory network states which all lead to movements that
achieve that goal. The role of preparation is then to find one such state, and the possibly
involved computation necessary to do so is reflected in the dynamical evolution of the
network state from its relatively uncontrolled pre-task value to a point in the optimal
subregion. Our results augment this view of preparation. There are many possible
mechanisms by which the preparatory activity may determine the activity associated with
the execution of the movement, and thus the parameters of the movement itself. Our results
suggest that the mechanism is, in fact, embodied in the dynamics of the network. It seems
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that the network activity evolves smoothly away from the optimal preparatory states when
the movement is triggered. Thus, the optimality of the subregion may simply reflect the fact
that all states within it form suitable initial conditions from which the dynamics of the
network may evolve to generate the appropriate muscular control signals to generate the
corresponding movement. All such points may lead to movements that achieve the task
goals adequately well. However, those states that happen to fall farther in the direction along
which neural activity needs to evolve to generate the movement, and which reflect continued
movement in that direction, allow the movement to begin sooner.

Previous results that have provided evidence for the optimal subspace hypothesis remain
consistent with this view. Preparatory activity must still reach the subregion of adequate
initial conditions, leading to a fall in neural variance across trials during motor preparation
(Churchland et al., 2006c). Electrical disruption of a formed plan is very likely to move the
state outside the set of suitable initial conditions, requiring further computation to regain a
state of preparation and thus increasing RT (Churchland & Shenoy, 2007b). Furthermore,
random fluctuations away from the center of the region of optimal initial conditions are, in a
high dimensional space, unlikely to be directed towards the movement initiation states, and
may indeed bring the state outside the optimal region. Both effects would lead to a tendency
towards longer RTs for greater deviations from the center as reported previously
(Churchland et al., 2006c) and also seen in single-trial correlations here (Fig. S1B; point at
‘Go Cue’). We see here, however, that when they happen to fall along the direction
associated with movement initiation, some displacements away from the center can benefit
RT.

The subjects in our (and similar preceding) experiments had extensive training, and so their
neural circuitry is likely to have become skilled at performing the optimizations required in
planning, resulting in the observed stereotypy of neural trajectories (Fig. 3A,B). We took
advantage of this stereotypy to identify the region of suitable initial conditions, and the
direction of network state evolution associated with movement initiation. We believe that
the initial condition hypothesis should continue to apply under even less stereotyped
conditions. However, it remains to be seen whether the relevant network states and
directions could be found in tasks where shorter delay periods, varying reach requirements,
or lack of training might disrupt the stereotypy of planning and movement. If they cannot be
found then the gains in RT prediction may fail to generalize, even if the process of
movement initiation is the same.

Furthermore, although our method’s predictive power was significantly greater than that of
previously published methods by approximately four-fold, the majority of RT variance
remains unexplained (Fig.5). This may be because variance in RT is predicted by factors
other than pre-go cortical activiy in highly-trained subjects.

We focused on RT in this study in order to provide a thorough treatment and perform all
necessary controls. However, we have performed unreported analyses, including
correlations with peak movement speeds, endpoint accuracies, and muscle activities and
found similar results (not shown here). Indeed, investigating the relationship between the
neural trajectory and other such parameters may reveal correlations important for deeper
scientific understanding and of value to brain-machine interface design (Gilja et al. 2011).

As described above, our results are consistent with a boundary separating preparatory states
of the network from movement states. It is difficult to tell from our data alone whether an
inadvertent crossing of this boundary by the state of the network being monitored might
itself cause an initiation of the movement; or whether the trigger for movement lies
elsewhere in the brain, with a change in input to the monitored network releasing it from the
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preparatory phase and consequently allowing the state to evolve across the boundary. This
question of causality must be deferred to future work. We note, however, that Carl Lewis
had committed a false-start immediately before his losing to Leroy Burrell in 1991. One
possible interpretation is that Lewis altered his perceptual threshold of the gun shot to be
certain that he would not start prematurely twice in a row. However, it is a tantalizing
conjecture that both his false-start and subsequent loss may have been related to an inability
to precisely control his neural state while waiting for the cue to run.

Behavioral task
We trained two rhesus monkeys (Macaca mulatta)(G and H) to perform instructed-delay
center-out reaches. Animal protocols were approved by the Stanford University Institutional
Animal Care and Use Committee. Hand and eye position were tracked optically (Polaris,
Northern Digital; Iscan). Stimuli were back-projected onto a frontoparallel screen 30cm
from the monkey. Trials (Fig.2A) began when the monkey touched a central yellow square
and fixated on a magenta cross. After a touch hold time (200–400ms), a visual reach target
appeared on the screen. After a randomized (30–1000ms) delay period, a go cue (fixation
and central touch cues were extinguished and reach target was slightly enlarged) indicated
that a reach should be made to the target. Fixation was enforced throughout the delay period
to control for eye-position-modulated activity in PMd (Cisek & Kalaska, 2004). Subsequent
to a brief reaction time, the reach was executed, the target was held (~200ms), and a juice
reward was delivered along with an auditory tone. An inter-trial interval (~250ms) was
inserted before starting the next trial.

Datasets
We collected and analyzed a number of ‘datasets’. Each dataset consisted of the recording
from a single day and included 30–60 single-unit and multiunit recordings. We collected
five datasets with monkey G using a 200–1000 ms delay (labeled G20040119–G20040123).
For monkey H, two datasets were collected using discrete delays of 750 and 1000 ms with
catch trials of 200–500 ms (labeled H20041119) or 200–400ms (H20041217). For all
analyses, only non-catch trials were included to ensure that planning had completed
(>400ms for monkey G and >700ms for monkey H).

These datasets come from experiments that were designed to address a number of issues,
only some of which are considered in the current study. For this reason, the different
datasets differ modestly in the task details. For datasets G20040120–G20040123, targets
were presented in seven directions (e.g., 45, 90, 135, 180, 225, and 315°) and two distances
(e.g., 60 and 100 mm). For dataset G20040119, targets were located in a grid 20 cm by 20
cm at 5 cm increments. Three targets that were covered by the outstretched arm (located on
the bottom half of the vertical column in the middle of the grid) were removed, thereby
making 22 total possible targets. For monkey H, targets were located at eight possible
directions (e.g., 0, 45, 70, 110, 150, 190, 230, 310, and 350°) and two possible distances
(e.g., 70 and 120 mm) for H20041119 or one distance (100mm) for H20041217. These
variations in design across datasets serve, if anything, to strengthen the result of this study
because similar effects were found regardless of the details of the task. Note that some of
these datasets are precisely the same ones used in previous studies (Churchland et al. 2006c,
Santhanam et al., 2006).

For all datasets, trials that had outlier RTs (>500ms and <150ms) were not analyzed. This
comprised a small percentage (<5%) of all trials. We did not have enough statistical power
to fully study those trials here and defer those interesting investigations to future work.
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Neural recordings
Signals from the implanted array were amplified and manually sorted using the Cerebus
system (Blackrock Microsystems) for monkey G or sorted by computer for monkey H using
an algorithm described previously (see Supp Mats in Santhanam et al., 2006). Arrays were
implanted at the border of PMd and M1 as determined by anatomical landmarks (please see
Supp Mats in Santhanam et al., 2006). Units were included in our analysis if (1) they
possessed tuned (p<0.05; ANOVA) delay period activity with reasonable modulation [more
than ten spikes per second (spikes/s)], and (2) the mean delay-period firing rate was at least
one-third the mean rate during the movement. For this comparison, delay-period rate was
averaged over the delay period, excluding the first150ms (to exclude the initial, possibly
“visual” transient response), whereas movement activity was considered from 100ms before
to 200ms after movement onset. The goal of these criteria was to select, from the 100–200
isolations (single unit and multiunit), only those that were responsive and selective during
the delay period. We also wanted to exclude neurons whose activity was dominated almost
entirely by movement-related responses.

Ocular fixation
Ocular fixation was tracked and enforced for both monkeys. A small purple cross appeared
near the initial central spot (1.5cm lateral and 1.5cm above its center). The trial began only
once the central spot was touched and the purple cross was fixated. Fixation requirements
were quite forgiving (±3cm), but actual fixation was much more more accurate (~6 and
9mm standard deviation (SD) of horizontal and vertical eye position). For monkey G, after
the onset of the target, the purple cross was moved near the target, and fixation was enforced
there for the duration of the delay (thus, a saccade was made during the delay). However, for
experiments with monkey H, fixation was enforced near the central spot throughout the
delay. This was done so as to ensure that changes in neural activity/RT were not indirectly
the result of saccadic behavior.

Data preprocessing
Spike trains were preprocessed to produce a continuous firing rate as a function of time by
smoothing with a modified Gaussian kernel with 30ms SD. Only 50ms (less than the time
required for PMd to process the go cue) of the a causal portion of the filter was used. This
means that the estimated continuous firing rates at the time of the go cue did not take into
account spikes that occurred more than 50ms after the go cue. Since it is highly unlikely that
movement activity exists in the PMd as little as 50ms after a go cue, this method ensured
that the predictions of trial-by-trial RT were not influenced by peri-movement activity. After
smoothing, the data was down-sampled by a factor of ten, meaning that only every tenth
sample was kept. This was done to reduce computational time. The resulting vector is a
neural activity every millisecond. These data were then used to calculate a trial-by-trial
estimation of RT based on the hypothesis tested.

Dimensionality reduction
Dimensionality reduction was done only for the purposes of visualization in this work. All
quantitative analysis relied on data of full dimensionality.

GPFA (Yu et al., 2009) was performed on the neural data from 200ms before target onset to
100 ms after movement onset of all trials to a single target. Briefly, this method works by
performing smoothing of spike trains and dimensionality reduction simultaneously within a
common probabilistic framework. It assumes that the observed activity of each neuron is a
linear function (plus noise) of a low-dimensional neural state, whose evolution in time is
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well-described by a Gaussian process. This common probabilistic framework allows for
better resolution of subtle neural dynamics than other methods (Yu et al., 2009).

The data were reduced to twelve dimensions (consistent with the results of Yu et al. (2009))
to produce the trajectories in Figure 3 so that the axes would best describe the neural
dynamics of both motor planning and execution. The two latent dimensions that resulted in a
good separation of the data points are used to produced the figure. These dimensions explain
the second and third most covariance overall.

Neural speed calculation
For calculation of neural projected speed (used in Fig. 3C), the neural velocity in GPFA
space was first calculated by taking the difference between neural states at two consecutive
timepoints. This neural velocity was then projected onto the neural velocity of the mean
neural trajectory (across all trials) time point by time point. This is can be viewed as the
speed along the path. Note that a very similar plot is produced if this projection is not done.
The normalized projected speed at a given time is reported as the magnitude of
Normalization is done so that the speed computed from datasets with different numbers of
neurons are comparable.

RT Correlations
When correlating our single-trial neural metrics with RT, we did not include that trial’s
neural data in the computation of the mean neural trajectory used for that prediction. The
predicted RTs and measured RTs were then correlated against each other. This leave-one-
out technique was done to ensure that we did not use the current trial’s neural data in the
creation of the prediction model.

To report an average RT variance explained across multiple datasets, a weighted average
was computed in which each dataset’s r2 was weighted by the number of trials in the dataset.

Optimal Subspace Method
The optimal subspace method was implemented by correlating trial-by-trial RT with the
unsigned difference between the firing rate at the go cue and the average firing rate across
similar trials, averaged across all recorded neurons. This reflects the optimal subspace
hypothesis, which states that trials in which firing rates are close to the mean rates observed
for similar trials have shorter RTs. Note that this is identical to how it was implemented in
Churchland et al. (2006c).

One might implement this hypothesis directly without averaging across neurons by
correlating single-trial RT with the Euclidean distance between the high-dimensional vector
of firing rates of all neurons at the time of the go cue and the vector of mean firing rates
across trials at the go cue. This was implicitly performed in the Fig. S1B of the
Supplementary Materials, in which it is called the distance method with an offset of 0ms.
Note that this implementation of the optimal subspace hypothesis performs quite poorly,
with average r2 much less than the methods used here in the main text.

The rise-to-threshold method asserts that neural activity during the delay period changes so
as to approach a threshold which is then crossed to initiate the upcoming movement
(Erlhagen & Schoner, 2002). There are many different ways to relate such a hypothesis to a
mathematical prediction, and we tried three in this paper, correlating trial-by-trialRT with:
the signed difference between the firing rate at the go cue and that at target onset (i.e., the
baseline firing rate), averaged across all neurons; the same metric, but only including
neurons for their preferred directions; the same metric, but not subtracting the baseline firing
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rate. These all can be viewed to reflect the rise-to-threshold hypothesis, which states that
trials in which neurons are firing more quickly have a shorter RT. We only report the
method that yielded the best results, which used the signed difference between the firing rate
at the go cue and that at target onset.

Independent Linear Decoding
We also compared the performance of our model to that obtained by a standard neural
decoding method derived from an independent linear encoding assumption. This method
assumes that the firing rate of each neuron linearly and independently encodes a single
behavioral metric (RT in this work). Observed firing rates on each trial are then combined to
find the corresponding maximum likelihood estimate of the behavioral metric on each trial.

Note that this method might also be viewed as a type of threshold model, with the added
possibility of a neuron “falling” to threshold (i.e., it may decrease its neural activities
towards a threshold during the delay) instead of only rising to it.

The relationship between the single-trial firing rate of the ith neuron, Fi, and the RT on the
same trial was modelled by Fi = αiRT + βi + ζ, where αi and βi are constants of regression,
and ζ~N(0,σQ

2i) is a noise random variable with variance σQ
2i. This expression treats RT as

the independent variable, a viewpoint often favored in decoding methods as covariates (here
RT) tend to be much more stable than firing rate. In fact, taking the alternative direct
decoding viewpoint, in which RT is treated as the dependent variable, did not change the
results reported here.

The RT on each trial was decoded as follows. First, the firing rates and RTs measured on all
other trials were used to find the regression parameters αi, βi and σQ

2i for each neuron. Then,
the maximum-likelihood value of RT was found, given these parameters and the firing rates
observed on the current trial. As the encoding noise was assumed to be Gaussian, the
maximum-likelihood value is that which minimizes (*** PLEASE SEE .PDF FOR THE
EQUATION, WHICH I CANNOT PROPERLY FORMAT HERE IN MS WORD ***): that
is, the noise-scaled sum of squared regression residuals for each of the N neurons. This
maximum-likelihood value is given by:

(*** PLEASE SEE .PDF FOR THE EQUATION, WHICH I CANNOT PROPERLY
FORMAT HERE IN MS WORD ***)

The assumption of Gaussian variability is sometimes supported by working with the square-
roots of spike counts, which renders Poisson-distributed counts more Gaussian and
stabilized their variance. Indeed, such a transform did slightly improve the performance of
this method (as it does our method), but our multivariate method still outperformed linear
decoding for nearly all datasets (not shown).

Bayesian Information Criterion
This criterion for model selection is well known (McQuarrie & Tsai, 1998). It is related to
the log-likelihood of the data given the model and is given by

where L is the posterior likelihood of the data given the best-fit model, k is the number of
parameters in the model, and N is the number of datapoints used. A smaller BIC is
associated with a better explanatory model.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-trial neural population activity predicts single-trial reaction time (RT)

• Rate of change of neural activity predicts single-trial RT similarly

• A combination of the two is the best known neural predictor of RT
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Figure 1.
Illustrations of the optimal subspace hypothesis (A), the elaborated optimal subspace
hypothesis (B), and the initial condition hypothesis discussed in this work (C). (A) The
configuration of firing rates is represented in a state space, with the firing rate of each
neuron contributing an axis, only three of which are drawn here. Under this hypothesis the
goal of motor preparation is to optimize the configuration of firing rates so that it lies within
the optimal subregion for the desired movement (small gray region with green outline). The
formation of a motor plan for a given trial is represented by an individual gray trace.
Adapted from Churchland et al. (2006c). (B) The hypothesis extended to include the entire
trial. The across-trial variance, represented in this illustration by the area of the colored
ellipses, reduces from target onset (red) to go cue (green) to movement onset (blue). Bold
dots represent individual trials at target onset, go cue, and movement onset. Pgo marks the
neural state of a particular trial at the time of the go cue. Adapted from Yu et al. (2009) and
Churchland et al. (2010). (C) In this work, we hypothesize that if the neural state on a given
trial was far along the mean neural trajectory across all trials to that target, then that trial
would have a short reaction time. This is possible due to the neural activity being closer to a
movement threshold (dashed line). This corresponds to a given trial’s RT correlating with α
(length of bold line segment), which is the projection of Pgo along p− go+Δt. Vector Pgo
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connects the mean neural activity at the go cue across all trials to a given target (green
asterisk) to the neural activity measured at the go cue on a given trial. Vector P− go+Δt
connects the mean neural activity at the go cue across all trials to a given target (green
asterisk) to the mean neural activity at some offset after the go cue (Δt=100ms; see Fig.
S1B). Bold line is the mean neural trajectory. Colored asterisks are the mean neural state
across all trials at target onset, go cue, and movement onset.
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Figure 2.
Task design and neural data. (A) Monkeys performed a delayed-reach task, similar to that
described previously Santhanam et al. (2006) and Churchland et al. (2006c) while
simultaneous neural data were recorded via a 96-channel microelectrode array (Blackrock
Microsystems, Salt Lake City, Utah). (B) One of 53 trials to a given target (G20040123,
target 5, which is at a distance of 60mm and angle 225°). Gray corresponds to the baseline
period (before a target is presented), red to the delay period (after target presentation but
before go cue), green to the reaction time period (after go cue but before movement onset),
and blue to movement period (after recorded movement onset). A spike raster is shown,
which is organized with one neuron per row and with each tick corresponding to a spike
time for a given neuron. Neurons are organized by preferred direction as determined by plan
period activity. Hand and eye traces are also shown.
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Figure 3.
Low-D representations of recorded neural data and correlations of single-trial RT
predictions with RT. GPFA reductions of neural data recorded for three randomly selected
(A) and for all 49 (B) preparations and movement initiations to the same target (G20040123,
target 13, which is at a distance of 100mm and angle 45°). Same color code is used here as
in the previous figure. The neural state at the time of target onset are bold red dots; at the
time of the go cue are bold green dots; at the time of measured movement onset are bold
blue dots. Lighter dots are separated by 20ms. (C) Normalized path neural speed in GPFA
space as a function of time relative to target onset. Same color code used here as in previous
figures. Dark black trace is the mean speed across all trials. Note that this speed increases
after target onset and decreases to near zero until the go cue (green portion of traces). (D)
Histograms of correlations coefficients of neural metric described in Fig. 1C with Δt =
100ms across all reach targets performed by two monkeys (G and H). The medians of both

Afshar et al. Page 18

Neuron. Author manuscript; available in PMC 2012 August 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



distributions (marked with arrows) are not 0 with p<0.01 (Wilcoxon sign-rank test). Colored
bars represent those correlations that are statistically significant (p<0.05).
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Figure 4.
Illustration depicting neural velocity correlate (A) and resulting histogram of cor- relation
coefficients when using neural velocity to predict RT for all targets by two monkeys (B).
(A) Neural velocity at time t, labeled vt, was defined as (the neural position at t+10ms −
position at t − 10ms). The component of the vgo along the mean neural trajectory across
trials was correlated with that trial’s RT. (B) Histogram of correlation coefficients from all
comparisons of projections of neural velocity with trial-by-trial RT for monkeys G and H
when segregating by delay period in 100ms bins. Medians are denoted by arrows and gray
bars represent significant correlations (p<0.05). The medians of both distributions (marked
with arrows) are not 0 with p<0.01 (Wilcoxon sign-rank test).
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Figure 5.
Bar graph comparing full multivariate model of RT with other models by dataset and
overall. On right is a bar graph of the fraction of targets that had a significant correlation
(p<0.05) between the given neural metrics and RT.
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