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Abstract

Twenty subjects underwent quantitative respirator fit testing with two styles (flat fold, cup-shaped) 

of N95 filtering facepiece respirators (N95 FFRs). Passing a fit test was followed by 

stereophotogrammetry to determine the face seal area and computation of seal pressure. There 

were significantly different seal pressures (p < 0.01) between standard size flat fold and cup-

shaped N95 FFRs but no significant differences in face seal area. No significant differences were 

noted in fit factors, but more individuals passed fit testing wearing flat fold respirators. The ability 

of flat fold N95 FFRs, at lower seal pressures, to obtain similar fit factors as cup-shaped N95 FFR 

at higher seal pressures offers the possibility of enhanced facial comfort without a loss of 

protection. Stereophotogrammetry offers a relatively simple, non-invasive technology to evaluate 

various properties of N95 FFR fit.
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INTRODUCTION

The respiratory protection afforded by a filtering facepiece respirator (FFR) is dependent not 

only on its filtration capability but also on the face seal leakage that occurs at the face/FFR 

interface.(1) The adequacy of the face seal is reliant on various factors, including the design 

of the facepiece sealing surface and the pressures generated by the FFR tethering devices 

(e.g., straps, bands, and so on).(2,3) Discontinuities at the face seal area (FSA) are 

responsible for the greatest portion of inward leakage of contaminants, with face seal 

leakage averaging 3–5 times that of filter penetration in a recent study.(4) Computational 

fluid dynamics studies have indicated that FSAs with low pressure are more likely to leak,(5) 

whereas high-pressure areas may cause facial discomfort(6) that can lead to intolerance and 
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negatively impact FFR use compliance.(7) This has prompted suggestions that a priority in 

improved FFR development should emphasize fit while striking a harmonious balance with 

comfort.(4) Pressure developed by the tethering devices is distributed over the FSA(8) and is 

inversely proportional to contact surface area.

The N95 class of FFR (N95 FFR) is the most commonly used FFR in U.S. private industry 

and health care,(2) but despite decades of its use, little scientific data exist regarding contact 

area dimensions and pressures of the FSA when worn. Stereophotogrammetry (SPG), the 

process of obtaining geometric data from photographic images, enables the determination of 

an object’s subcomponent features during real-time use and has been used previously to 

study N95 FFRs.(2) This study, a part of a larger National Institute for Occupational Safety 

and Health (NIOSH) investigation examining multiple facets of respiratory protective 

equipment (portions of which have been previously reported,(2,9–12)) used SPG to determine 

the FSA of six N95 FFR models and thereby calculate associated pressures. These data may 

be useful to respiratory protective equipment researchers and manufacturers in developing 

FFRs that are more comfortable for the wearer while still affording adequate protection.

MATERIALS AND METHODS

Twenty healthy, non-smoking subjects (13 men, 7 women) participated in this study. 

Demographic mean values (standard deviations) were: age 23.0 years (2.8), height 175.8 cm 

(9.5), weight 77.6 kg (15.9), and body mass index 25.0 kg/m−2 (4.1). The study was 

approved by the NIOSH Human Subjects Review Board, and all subjects provided oral and 

written informed consent.

Subjects first underwent Occupational Safety and Health Administration (OSHA) 

quantitative respirator fit testing(13) with the PortaCount Plus Respirator Fit Tester and N95 

Companion (TSI, Shoreview, Minn.) that uses condensation nuclei or particle counting 

technology to count the number of ambient particles. The ratio of measured ambient 

particles to within-FFR particles, calculated as geometric means, is termed the fit factor and 

is one measure of the adequacy of the fit of the FFR to the subject. The fit tester, as 

configured for the study, reports out a maximum score of 200 irrespective even if higher 

scores are attained. Passing a fit test required a fit factor of ≥100, equivalent to a passing 

score on an OSHA quantitative respirator fit test.(13) This score for determining a passed fit 

test was used because our U.S. government laboratory follows U.S. Code (19 CFR 1910) 

with regard to the score required to pass quantitative fit testing of respirators.(13)

Subjects donned the individual FFRs as per the manufacturer’s instructions, performed a 

user seal check to evaluate the FFR seal,(14) and fit tested each of four molded, cup-shaped 

N95 FFR models from one manufacturer (Models A, B, C, D) and each of two flat-fold, 

“one size fits all” models from a second manufacturer (Models E, F). Two models (A, C) 

were medium/large size, two (B, D) were small size versions of Models A and C, and three 

models (C, D, F) were equipped with an exhalation valve. Two models (E, F) feature a 

pliable nose bar for enhancing the seal of the N95 FFR around the nasal region, whereas the 

other models (A, B, C, D) have a defined, pre-molded nasal contour. Only respirators that 

passed fit testing were included in the study data (i.e., Model A = 5 subjects, Model B = 15 
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subjects, Model C = 5 subjects, Model D = 13 subjects, Model E = 20 subjects, Model F = 

20 subjects).

The tethering devices (straps) of the N95 FFRs were marked at 1-cm intervals along their 

entire length (Figure 1) to determine donning lengths for calculation of stretch and stress 

values used to compute the generated Z-forces (forces exerted front-to-back of the subject’s 

face), as described previously.(2)

SPG enables the determination of geometric properties from photographic images. This 

process involves estimating the three-dimensional (3D) coordinates of points on an object. 

Photographs are taken from multiple locations (lines of sight) and, using the principle of 

triangulation (mathematical intersection of lines of sight), the X, Y, and Z coordinates of 

each point of interest are determined. Study subjects underwent SPG with the 3dMD system 

(3dMD, Atlanta, Ga.) while wearing N95 FFR models that had passed fit testing. Other 

digital camera systems have been used in respirator research (e.g., Cyberware rapid 3-D 

digitizer, Monterey, Calif.), but scan times were ~45 sec and increased the possibility of 

motion artifact.(15) Reverse engineering techniques, using commercial software (i.e., LS-

DYNA) have also been used to evaluate respirator surface area characteristics and 

pressures.(8) The 3dMD SPG unit uses five precisely synchronized digital cameras set at 

various angles to capture simultaneous 3D images within 2 milliseconds (Figure 2). 

Proprietary algorithms integrate the multiple images to produce a single 3D image 

highlighting surface geometry and texture.(16)

It was first necessary to align the 3dMD scan of the subject not wearing an FFR and the scan 

of the same subject wearing an FFR. This was done by first importing the two scans into 

IMInspect of PolyWorks software (Innovmetric Software Inc., Quebec, Canada). IMInspect 

contains a function called “Best-fit Data Object” that automatically creates an alignment of 

all selected models. Once the two scans were aligned, they were imported into IMEdit of the 

Polyworks software that allows manipulation of the scans. By changing the view of the scan 

of the subject not wearing an FFR, the intersection of the two scans can be seen as a change 

in texture corresponding to the overlay of the skin and respirator frameworks that represents 

the FSA (Figure 3a). All regions of the scan in which the FFR was not in contact with the 

face were highlighted and removed, leaving the FSA (Figure 3b), which was measured via a 

function on IMEdit. The SPG data for three N95 FFRs (B, E, F) from the same subject were 

of poor quality due to movement artifact and could not be used for the data analysis (Table 

I).

Following calculation of the FSA, pressure derived from the tethering devices was 

calculated. The Z-forces and FSA are the subcomponents utilized to determine the seal 

pressure. Pressure is the distribution of force over a given area, and the force used in this 

determination is the force normal to the surface area that was calculated as  and 

reported in Pascal units (Newtons/m2). The donning lengths of the tethering devices of the 

N95 FFR were used to calculate the Z-forces (forces exerted front-to-back on the subject’s 

face), as previously described.(2) The direction of the force contained vertical (up and 

down), horizontal (front-to-back), and side-to-side (left or right) components. The decision 

was made to use only the horizontal component of the force for several reasons. It is by far 
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the largest component of the overall force generated by the tethering devices, the vertical 

component would be tangent to the face surface at almost every point (except possibly the 

underside of the chin), eliminating it from the pressure calculation, and any side-to-side 

component contributed on average less than 10% of the total force and was therefore 

considered negligible. The strap length data were unavailable for one subject (Table I).

Statistical analysis was carried out with a one-way analysis of variance to determine 

differences in the study variables of the FFRs from each of the six respirator models that 

passed fit testing, followed by Tukey’s post-hoc test for a significant F-value. The 

proportional relationship of seal pressure above or below 1000 Pa with achievement of a fit 

factor of 200 was evaluated with a Z-test for proportions of dependent groups. A statistical 

significance was accepted when p < 0.05 and analyses were performed using a statistical 

software package (SPSS v19.0; IBM, Somers, N.Y.)

RESULTS

There were significant differences in the Z-component (F = 39.565; p < 0.001), FSA (F = 

7.336; p < 0.001) and seal pressure (F = 32.692; p < 0.001) between the six models of N95 

FFRs. Two models (E, F) were significantly different from two other models (B, D) for FSA 

(p < 0.01) and from four models (A, B, C, D) for Z-component (p < 0.01) and seal pressure 

(p < 0.01) (Table I). A total of 78/120 (65%) fit tests achieved a passing score and there 

were no significant differences in geometric mean fit factors achieved by the FFRs of the six 

models that passed fit testing (p < 0.126), but more subjects passed fit testing with models E 

and F than with models A, B, C and D (Table I, Figure 4). There was no significant 

difference in the proportion of FFRs achieving a fit factor of 200 with seal pressures above 

or below 1000 Pa (Table I).

DISCUSSION

Recent studies investigating the FFR/contact surface have used non-human modeling 

techniques.(3,5,8,17) SPG enables the real-time study of human subjects wearing FFRs and 

can serve to validate non-human modeling studies. The SPG data from the current study 

indicate that the only significant differences in FSA (p < 0.01) were, understandably, 

between the regular size models (A, C, E, F) and the small size models (B, D) owing to the 

lesser dimensions of the latter (Table I). It is interesting to note that, despite the fact that the 

cup-shaped N95 FFRs (Models A, B, C, D) are more rigid than the flat fold models (E, F)—

because they incorporate a mesh plastic support skeleton (non-filtering) over the entire outer 

surface and between the inner and middle filter layers (2)—there was no significant 

difference in FSA between the standard size models of these two styles. This is likely due, at 

least partially, to the significantly greater seal pressures (p < 0.01) generated by the tethering 

devices of Models A, B, C, and D compared with Models E and F (Table I) that overcome 

some of the rigidity to allow for more FFR surface contact. The tethering devices of the six 

models consist of single upper and lower non-latex (polyisoprene) elastomeric bands,(10) but 

Models A, B, C, and D bands are of greater length, thickness, and cross-sectional area and 

have previously been shown to generate greater forces than the E and F devices.(2) The Z-

component, a summation of the horizontal (front-to-back) forces over the entire FSA, was 
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significantly less for Models E and F than for the other models (p < 0.01) and is attributable 

to the lesser forces generated by their tethering devices.

There were no significant differences in fit factors between the different N95 FFR models 

and no association with seal pressure noted, but the maximum reportable fit factor of 200 

with the fit tester configurations used in the study results in skewing of the fit factor data 

(Table I). Fit factors are not dependent solely on FSA and seal pressures but are impacted by 

many other features including, but not limited to, facial anthropometry, skin texture, 

respirator features (e.g., presence of inner flanges, pliable nose bars), and so on. However, 

more subjects were able to pass fit testing with the two flat fold models than the cup-shaped 

models, despite lower associated seal pressures for the former. Although there was no 

significant difference in the proportion of FFRs that attained a fit factor of 200 above or 

below a seal pressure of 1000 Pa, absolute greater numbers of FFRs achieving a fit factor of 

200 were noted above a seal pressure of 1000 Pa (Table I). Therefore, no conclusions of 

“better fit” can be made beyond acknowledging higher actual attained fit factors for some fit 

tests of N95 FFR models tested.

A larger study using multiple styles of FFRs would be needed to determine if higher seal 

pressures are associated with greater fit factors in significant numbers. More subjects passed 

fit testing with the small size models (B, D) than the same manufacturer’s medium/large 

models (A, C) despite no significant difference in seal pressures (Table I), highlighting the 

importance of facial anthropometry in respirator fit.(18) One prior investigation found that 

respirator design (4 flat fold vs. 14 cup –shaped N95 FFRs) was not a significant factor in 

respirator fit,(18) whereas another study noted one model of a flat fold respirator was 

associated with both the highest fit factor pass rate and level of comfort when compared to 

other N95 FFRs.(19)

Facial pressure from N95 FFRs is a common complaint among users that limits their wear 

over extended periods,(7) so if lower pressures equate with equal protection but greater 

comfort, users may be more inclined to wear N95 FFRs and this could conceivably translate 

to improved compliance. In addition, it has been reported that flat fold N95 FFRs can be less 

expensive to manufacture because they do not require molding or multiple manufacturing 

steps of a cup-shaped respirator, and that they are favored by some wearers because of their 

portability (e.g., fit easily into a shirt pocket).(20)

LIMITATIONS

Limitations of the current study include the low number of subjects who were able to pass fit 

tests on Models A and C (n = 5 for each). We did not evaluate N95 FFRs that failed fit 

testing and that might have offered information on differences in FSA and seal pressure that 

correlated with successful passage of a fit test. Only two styles of N95 FFR (flat fold, cup-

shaped) from two manufacturers were studied, so that we cannot comment on other styles 

(e.g., pleated, duck bill) or similar styles from other manufacturers. For the purposes of this 

study, the reported Z-component forces are presented as a mean for the entire FSA of the 

N95 FFR when, in fact, the Z-forces may be unequally distributed in different areas of the 

FSA as has been previously demonstrated by computer modeling.(17)
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The measurements reported in this study are mean values representing the entire FSA and do 

not describe the varying FSA widths that occur in real-time due to such issues as differing 

facial anthropometry and the impact of continually occurring facial movements (e.g., 

respirations, head turning). Similarly, the reported seal pressures are mean values that likely 

are not evenly distributed along the N95 FFR periphery. The fit tester used in the current 

study was configured to report a maximum fit factor of 200, irrespective of whether higher 

fit factors are achieved, so that it is possible that if actual attained fit factors were reported 

there might have been significant differences between N95 FFR models, but this is 

speculative. We did not take into account the contribution of other FFR components (e.g., 

pliable nose bars) to pressure, but the majority of the pressure occurs via the contribution of 

the tethering devices.(3) Facial comfort was not subjectively assessed during the study, so 

that we cannot determine if differences in FSA and seal pressure affected subjective 

perceptions of comfort. Future studies should evaluate any possible such relationship 

because if N95 FFRs with the lowest pressures are still capable of passing fit tests, they may 

also correlate with greater facial comfort and, by extension, improved compliance with use.

CONCLUSION

This study has demonstrated the utility of SPG in the determination of N95 FFR FSA and 

seal pressures, properties that impact comfort and fit. For the models tested, flat fold N95 

FFR with lower seal pressures were able to pass fit testing in greater numbers than molded 

cup-shaped N95 FFR with similar FSA. Inasmuch as N95 FFR comfort is related to 

compliance, and facial pressure is one complaint that is frequently voiced by N95 FFR 

wearers,(7) the ability to determine the minimum FSA contact pressure to achieve an 

adequate FFR/face seal offers the prospect of equivalent protection at the highest comfort 

level.(8) Further studies using SPG will be required to more fully elucidate its role in 

evaluating respiratory protective equipment and to validate the current study’s findings. SPG 

is a technology that is rapid, non-invasive, and relatively easy to perform that may assist in 

elucidating the role of FSA in optimizing N95 FFR fit.
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FIGURE 1. 
N95 filtering facepiece respirator with 1-cm gradations marked on the tethering devices for 

use in determining stress and strain for pressure calculations.
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FIGURE 2. 
Stereophotogrammetry unit.
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FIGURE 3. 
(A) Two overlaping 3D stereophotogrammetry images of a subject with and without 

wearing a molded, cup-shaped N95 filtering facepiece respirator demonstrating the 

increased texture at the respirator’s sealing surface area that represents the overlay of skin 

and respirator frameworks, and (B) isolated portion of a molded, cup-shaped N95 filtering 

facepiece respirator that represents the face seal area.
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FIGURE 4. 
Relationship of fit factors to seal pressure of six models of N95 filtering facepiece 

respirators.
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