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Abstract

Botulism is caused by exposure to botulinum neurotoxins (BoNTs). BoNTs are proteins secreted 

by some species of clostridia; these neurotoxins are known to interfere with nerve impulse 

transmission, thus causing paralysis. Botulism may be contracted through consumption of food 

either naturally or intentionally contaminated with BoNT. The human lethal dose of BoNT is not 

known but is estimated to be between 0.1 μg to 70 μg so, it is important to be able to detect small 

amounts of this toxin in foods to ensure food safety and to identify the source of an outbreak. Our 

laboratory previously reported on the development of Endopep-MS, a mass-spectrometric-based 

endopeptidase method for the detection and differentiation of BoNT. This method can detect 

BoNT at levels below the historic standard mouse bioassay in clinical samples such as serum, 

stool, and culture supernatants. We have now expanded this assay to detect BoNT in over 50 foods 

including representative products that were involved in actual botulism investigations. The foods 

tested by the Endopep-MS included those with various acidities, viscosities, and fat levels. Dairy 

and culturally diverse products were also included. This work demonstrates that the Endopep-MS 

method can be used to detect BoNT/A, /B, /E, and /F in foods at levels spiked below that of the 

limit of detection of the mouse bioassay. Furthermore, we successfully applied this method to 

investigate several foods associated with botulism outbreaks.

Introduction

Botulinum neurotoxin (BoNT) is generated by Clostridium botulinum in addition to some 

other clostridia species; exposure to the toxin causes botulism, a potentially fatal 

neuroparalytic disease. Botulism can be contracted through consumption of food containing 
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BoNT as certain clostridia grow well in an anaerobic environment, such as improperly 

stored or preserved foods.1, 2 Structurally, the neurotoxin is a dichain toxin, comprised of a 

light chain which has enzymatic activity, and a heavy chain responsible for receptor binding 

and delivery of the light chain to its target. The enzymatic activity of the light chain is 

responsible for toxicity of BoNTs as the light chain of BoNT cleaves proteins necessary for 

the release of the neurotransmitter, acetylcholine; the lack of acetylcholine causes flaccid 

paralysis.3–13

Although the case-fatality ratio of foodborne botulism has decreased dramatically over the 

last few decades, foodborne botulism continues to be problematic due to rapid food 

modernization. During the period of 1990 to 2000, for instance, there were 263 cases of 

foodborne botulism reported in the United States.14 There are seven confirmed serotypes of 

BoNT, A-G, and four of those serotypes, BoNT/A, /B, /E, and /F have been reported to 

cause foodborne botulism; serotypes E and A are the most common in the United States.14 

To date, there have been no known human foodborne botulism cases caused by serotypes C, 

D, or G. Foodborne botulism can be prevented by preserving foods through established 

practices such as high heat to reduce spores and/or use of additives, such as salt or sugar, to 

prevent toxin production and by storing minimally processed food at the required 

temperature and for no longer than recommended.1

There are a number of published in vitro techniques such as immunoassays for BoNT 

detection in foods.15–17 Our laboratory has previously described the development of the 

Endopep-MS method to detect BoNTs present in buffer.18 This method is an in vitro activity 

assay and detects the enzymatic action of the toxin light chain on a peptide substrate which 

mimics the toxin’s in vivo protein target. Cleavage of the peptide substrate is monitored by 

mass spectrometry such that the exact location of the substrate cleavage is determined by 

examining the mass of the cleavage products. Since the substrate cleavage location is 

serotype-specific, the various BoNTs can be differentiated by serotype. The use of an 

immunoaffinity step prior to incubation with the peptide substrate has proven effective at 

detecting and differentiating BoNT in clinical specimens19 and culture supernatants.20 The 

Endopep-MS method achieves limits of detection comparable to or below that of the 

historically used mouse bioassay.21

Based on our previous success in detecting and differentiating BoNT in clinical specimens 

and culture supernatants, we sought to extend the utility of the assay to foods. In this work, 

we used the Endopep-MS method to detect BoNT/A, /B, /E, and /F spiked into more than 50 

foods. In all cases, BoNT/A, /B, /E, and /F were detectable at levels spiked below the limit 

of detection of the mouse bioassay. For 10 diverse types of foods, the limit of detection was 

determined. Many of the foods evaluated were submitted during suspected botulism 

outbreaks over the past several years, and the foods account for a wide variety of 

characteristics such as pH, viscosity, fat content, and are representative of cuisines from 

varied ethnic cultures.
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Materials and Methods

Materials

Monoclonal antibodies to BoNT/A (CR2 and RAZ1)22, /B (2B18.2 and B12.1)23, /E 

(4E17.1)24, and /F (6F5)25 were obtained from Dr. James Marks at the University of 

California at San Francisco, and were used for immunoaffinity purification. Dynabeads 

(M-280/Streptavidin) were purchased from Invitrogen (Carlsbad, CA). BoNT/A (3.5 × 107 

mLD50/mg), /B (1.1 × 107 mLD50/mg), /E (3.0 × 107 mLD50/mg), and /F (3.6 × 106 

mLD50/mg) complex toxins at a concentration of 1 mg/mL where mLD50 is the mouse lethal 

dose, were purchased from Metabiologics (Madison, WI). Botulinum neurotoxin is very 

toxic and necessitates suitable safety measures (see below). All chemicals were from Sigma-

Aldrich (St. Louis, MO) except where indicated. Peptide substrates for evaluation of BoNT 

activity are listed in Table 1 and were synthesized by Midwest Bio-tech Inc. (Fishers, IN). 

Sulfo-NHS-Biotin was purchased from Thermo Fisher Scientific (Waltham, MA). 

Kingfisher plates (deep well and traditional 96 well) and tip combs were purchased from 

Thermo Fisher Scientific (Waltham, MA).

Preparation of food extracts

Foods were purchased from local stores. For the spiking studies, extracts were made from 

solid foods prior to analysis. The solid food was weighed and placed into a standard 80 mL 

stomacher bag. One mL of phosphate buffered saline with 0.05% tween-20 (PBST) was 

added for every gram of food, with a minimum of 10 g and a maximum of 60 g processed. 

Foods were processed using the Stomacher 80 Biomaster (Seward, Port Saint Lucie, FL) at 

maximum speed for 2 min. The mixture was then centrifuged at 12,000 × g in a refrigerated 

centrifuge (4 °C) for 20 min. The supernatant was recovered and centrifugation continued 

until a clear supernatant was obtained. The clear supernatant was used for testing. Liquid 

foods were not processed prior to use. BoNT was pipetted into the clear supernatant or 

liquid food in volumes varying from 2 μL to 20 μL.

For foods from outbreak investigations, 5–10 g (or 5–10 mL if liquid) of sample was 

transferred to a container, and 1 mL of gelatin phosphate buffered collecting fluid (GBS) per 

1 g (or 1 mL) of sample was added. After mixing, the sample was centrifuged at 4 °C for 20 

min at 23,000 g. The supernatant was then transferred into a 6 or 10 mL sterile syringe and 

filtered through a 0.45 μm filter.

Preparation of mAb-coated beads

The mAbs (20 μg) were biotinylated with 4 μL of the 300 μM sulfo-NHS-biotin in water, 

prepared immediately before use. The mAb/biotin was incubated overnight at room 

temperature with no mixing. Biotin labeled mAb (2 μg) was added to 100 μL of washed (two 

times with 1 ml PBST; resuspended in 100 μL PBST) streptavidin-coated beads and 

incubated at room temperature for 1 h with constant movement to keep the beads in solution. 

The beads then were washed twice in 1 mL each of PBST and then the mAb bound beads 

were reconstituted in 100 μL PBST. For a higher number of test samples, the volumes were 

increased proportionally.
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Spiking liquid foods and food extracts with BoNT

Biosafety Level-2 practices, processes, and facilities were used to ensure safety while 

working with BoNT. Additionally, toxin stock material and all samples containing BoNT 

were processed in a Class II biosafety cabinet containing HEPA filters to minimize the 

potential for aerosol exposure.

An aliquot of the liquid food or food extract of 0.5 or 1 mL was placed into a deep well 

plate. BoNT/A, /B, /E, or /F complexes were serially diluted in PBST from 1000 mLD50/μL 

down to 0.001 mLD50/μL immediately prior to spiking, using 2 μL of the stock solution and 

18 μL of PBST. For milk, the following levels were spiked: 10 mLD50, 1 mLD50, 0.5 

mLD50, 0.25 mLD50, 0.1 mLD50, 0.05 mLD50, and 0.01 mLD50 of BoNT. For infant 

formula, yogurt, broccoli, green bean liquid, salami, salmon, liquid egg, orange juice, and 

tomato juice, the following levels were spiked: 1 mLD50, 0.75 mLD50, 0.5 mLD50, 0.25 

mLD50, 0.1 mLD50, 0.05 mLD50, 0.025 mLD50, and 0.01 mLD50 of BoNT. The remaining 

foods were spiked with 0.75 mLD50, 0.5 mLD50, or 0.25 mLD50 of BoNT. The limit of 

detection was defined as the lowest level of toxin which could be detected during five 

separate analyses performed by a minimum of two analysts. Detection of the toxin consisted 

of the presence of mass spectrometric peaks with S/N of greater than 3 times above the S/N 

of the negative control (unspiked sample of same matrix).

Extraction of BoNT from foods

For spiked foods, 10X PBST was added to achieve a final volume of 0.55 (for 0.5 mL food 

extracts) or 1.1 mL (for 1 mL food extracts). All spiked foods were tested in parallel with 

the same volume of blank food matrix, diluted to the same level with 10X PBST. For foods 

from outbreak investigations, an aliquot of 100 μL was placed into a deep well plate along 

with 400 μL of 1X PBST. A negative control consisting of 100 μL of blank food matrix and 

400 μL of 1X PBST and a positive control consisting of 100 μL of blank food matrix, 400 

μL of 1X PBST, and 1 mLD50 of BoNT were run in parallel with the food from the outbreak 

investigation. The foods from outbreak investigations included salmon, kim chi, sofrito, 

salsa, rice, juice, steak, pebre, corn cake, chili sauce, tomatoes, tomato paste, tofu, soup, 

fish, sauerkraut, relish, tea grounds, sour cream dip, yogurt, rice, vegemite, chili peppers, 

and baked potato. In addition, acidic matrices were adjusted to a pH of 7.0 with the addition 

of ammonium hydroxide unless otherwise noted.

Antibody coated beads (20 μL) were added to the sample. The deep well plate was capped 

and placed on a plate shaker for 1 h at the minimal speed necessary to keep the beads in 

solution. The deep well plate was then uncapped and placed into a KingFisher flex magnetic 

particle processor (Thermo Fisher Scientific, Waltham, MA) for automated bead washing, 

which included two washes with 1 mL each of 2M NaCl (or 1X PBST as specified) 

followed by two washes with 1 mL each of 1X PBST. The beads were eluted into 80 μL of 

water and removed from the KingFisher flex. Replicate extracts were incubated with each 

serotype of mAb coated beads.
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Endopep-MS reaction with MALDI-TOF analysis

The aqueous extract was removed from the beads, and then the beads were reconstituted in 

18 μL of reaction buffer consisting of 0.05 M Hepes (pH 7.3), 25 mM dithiothreitol, and 20 

μM ZnCl2 and 2 μL of peptide substrate specific for the antibody extract (SubA, SubB, 

SubE, or SubF, respectively). The final concentration of each substrate was 50 pmol/μL. All 

samples were incubated at 37 °C for 4 h with no agitation. A 2-μL aliquot of each reaction 

supernatant was mixed with 18 μL of matrix solution consisting of α-cyano-4-hydroxy 

cinnamic acid (CHCA) at 5 mg/mL in 50% acetonitrile, 0.1% trifluoroacetic acid (TFA), 

and 1 mM ammonium citrate. A 0.5-μL aliquot of this mixture was pipeted onto one spot of 

a 384-spot matrix-assisted laser desorption/ionization (MALDI) plate (Applied Biosystems, 

Framingham, MA). Mass spectra of each spot were obtained by scanning from m/z 900 to 

5500 in MS-positive ion reflector mode on an Applied Biosystems 5800 Proteomics 

Analyzer (Framingham, MA). The instrument uses an Nd-YAG laser at 355 nm, and each 

spectrum is an average of 2400 laser shots.

Results and Discussion

Detection of BoNT/A, /B, /E, and /F in whole milk

The Endopep-MS method has been used successfully in the analysis of clinical specimens 

and culture supernatants for BoNT/A, /B, /E, and /F, demonstrating its potential to diagnose 

botulism, a potentially fatal disease. Although this method has limits of detection in clinical 

specimens and culture supernatants lower than that of the historically standard assay, the 

mouse bioassay, until now it was uncertain if the assay could be adapted to examine foods 

directly for the presence of BoNT/A, /B, /E, and /F. Detection of BoNT in foods is important 

as it allows for discovery of the vehicle of transmission in foodborne botulism cases, 

potentially preventing additional outbreaks. Foods represent a wider variety of different 

characteristics than clinical specimens. For example, foods can be protease-rich, low pH, 

high fat, and very viscous, all properties which could negatively affect any assay for 

detection of BoNT. We therefore wanted to test the Endopep-MS method on a wide variety 

of foods with varying properties in addition to foods which have been known to serve as 

causative agents of botulism in the past.

We began with the analysis of BoNT/A in whole milk. Various levels of BoNT/A were 

spiked into whole milk and analyzed. Comparison of the mass spectra of whole milk (Figure 

1A) with whole milk spiked with 10 mouse LD50 (mLD50) of BoNT/A (Figure 1B) shows 

two new peaks in the spiked sample which are absent in the untreated sample. These peaks 

circled in red at m/z 999 and 1427 correspond to the cleavage of SubA by BoNT/A, proving 

the presence of enzymatically active BoNT/A in the milk. The uncleaved substrate (SubA) is 

present at m/z 2406. Through repeated analysis, we could reliably detect as little as 0.25 

mLD50 of BoNT/A spiked into 1 mL of whole milk (Figure 2B).

BoNT/B, /E, and /F were also spiked into whole milk. By examining the differences 

between untreated whole milk (Figure 1C, E, and G) and whole milk spiked with 10 mLD50 

of BoNT/B (Figure 1D), BoNT/E (Figure 1F), and BoNT/F (Figure 1H), the spiked milk can 

be distinguished from the untreated milk in all cases. In the case of BoNT/B, the two peaks 
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at m/z 1760 and 2283 in Figure 1D correspond to cleavage of SubB by BoNT/B, peaks at 

m/z 1133 and 2501 in Figure 1F correspond to cleavage of SubE by BoNT/E, and peaks at 

m/z 1346 and 3784 in Figure 1H correspond to cleavage of SubF by BoNT/F. The uncleaved 

substrates are present at m/z 4025 for SubB, 3614 for SubE, and 5511 for SubF. Replicate 

analysis of whole milk spiked with BoNT/B, /E, and /F determined that we could detect as 

little as 0.1 mLD50 of BoNT/B (Figure 2D), 0.1 mLD50 of BoNT/E (Figure 2F), or 0.01 

mLD50 of BoNT/F (Figure 2H) spiked into 1 mL of whole milk. Intact SubF and the N-

terminal cleavage product produced by cleavage of the substrate by BoNT/F are long 

peptides with molecular weights of 5510 and 3783 Da and historically are rarely seen by 

MALDI-TOF/MS. However, the doubly-charged intact SubF is often visible at m/z 2556.

Detection of BoNT/A, /B, /E, and /F in additional foods

BoNT/A, /B, /E, and /F were spiked into infant formula, yogurt, broccoli, green bean liquid, 

salami, salmon, liquid egg, orange juice, and tomato juice. Through repeated analysis, we 

determined that the limits of detection of BoNT/A, /B, /E, and /F spiked into 1 mL of these 

matrices is below the limit of detection of the mouse bioassay, 1 mLD50, as seen in Table 2. 

The limits of detection ranged from 0.01 mLD50 of BoNT/F in infant formula, yogurt, 

broccoli, green bean liquid, salami, and salmon up to 0.75 mLD50 of BoNT/A in liquid egg.

Additional foods which were of interest as they had been investigated in previous years as 

suspect agents of foodborne botulism were also tested with the Endopep-MS assay. For 

these foods, BoNT/A, /B, /E, and /F at levels below the limit of detection of the mouse 

bioassay were spiked into 0.5 mL of the liquid food or food extract. The results listed in 

Table 3 indicate that BoNT/A, /B, /E, and /F were successfully detected in 44 additional 

foods at levels below that of the historical standard, the mouse bioassay.

Many of the food matrices presented no challenges for the Endopep-MS assay. The results 

from many viscous matrices such as corn syrup, honey, and molasses, looked identical to the 

results in PBST. Based on the similar results in buffer, it does not appear that the antibody-

coated beads lacked sufficient mobility in the viscous matrix to capture the toxin nor does it 

seem that any of the toxin/antibody-coated beads remained in the viscous matrix. Samples 

with low pH such as tomato juice, salsa, chili sauce, kimchi, pickled peppers, and sauerkraut 

also looked similar to the results in PBST provided that the sample was neutralized with 

ammonium hydroxide to physiological pH prior to antibody-bead addition (data not shown).

Foods which were protease-rich such as steak, dried beef, beef stew, and ham benefited 

greatly from washing the antibody-coated beads post toxin capture with 2M NaCl to remove 

all non-specific binding proteases from the antibody-coated beads. This technique was 

developed for the high protease environment of stool extracts,26 so it is not surprising that it 

works for other protease-rich matrices. The high salt washes however had a negative effect 

on high fat matrices. Although it was possible to detect BoNT/A, /B, /E, and /F spiked into 

high fat matrices such as mackerel, salami, salad dressing, and salmon when the antibody-

coated beads were washed in 2M NaCl post toxin capture, the limit of detection of the assay 

with these high fat matrices was improved by washing the beads in PBST only (data not 

shown).
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One of the more problematic matrices was the liquid egg matrix. Although the Endopep-MS 

assay could detect BoNT/A, /B, /E, and /F spiked into liquid egg at levels below the limit of 

detection of the mouse bioassay, the limit of detection in that matrix was elevated when 

compared to the other matrices for which a limit of detection was established (Table 2). It 

appeared that some of the antibody-coated beads remained behind in the matrix and the 

beads which were removed from the matrix had a clumpy appearance similar to the 

appearance of the beads from high fat matrices when washed in 2M NaCl. Altering the wash 

buffers from 2M NaCl to PBST did not improve the appearance of the beads when used with 

the liquid egg matrix.

It was suspected that perhaps the high level of biotin in the liquid egg interfered with the 

antibody-capture process as the beads used for antibody-capture are streptavidin coated, and 

biotin has a very strong affinity for streptavidin. Upon switching to protein-G coated beads 

which do not contain streptavidin however, similar limits of detection were obtained, 

indicating that the high level of biotin in eggs did not cause the bead retention or clotted 

appearance. Additionally, when BoNT was spiked into the extract of cooked eggs, lower 

levels of toxin could be detected. As little as 0.01 mLD50 of BoNT/F spiked into 1 mL of 

cooked egg extract produced a visible C-terminal cleavage product indicating the presence 

of active BoNT/F (Figure 3A); however cleavage product was absent when the same level of 

toxin was spiked into 1 mL of liquid raw egg (Figure 3B). A level of 0.01 mLD50 of 

BoNT/F could be detected by diluting the liquid egg matrix 1:10 in PBST; however, this 

step would negatively impact the limit of detection by an order of magnitude in a real 

outbreak sample as the limit of detection would be increased to 0.1 mLD50/mL of undiluted 

sample. Because as little as 0.05 mLD50 of BoNT/F could be detected in 1 mL of undiluted 

liquid egg (Table 2), a lower limit of detection was achieved by using 1 mL of liquid egg 

matrix with no dilution.

Another of the matrices with an increased limit of detection was orange juice (Table 2). 

Orange juice is very acidic, and it was thought that the low pH of the matrix had an effect on 

either the enzymatic activity of the toxin or the capture of the toxin by the antibody. One 

mLD50 of BoNT/B was spiked into 1 mL of orange juice or PBST and stored for 6 weeks at 

4°C. Endopep-MS of the samples proceeded both with and without neutralization of the pH 

of the orange juice immediately prior to antibody-bead addition. The peaks at m/z 1760 and 

2283 in Figure 4 correspond to BoNT/B cleavage of SubB, illustrating that even after being 

stored for 6 weeks at 4 °C, active toxin remained in all three samples. However, comparison 

of the intensity of the cleavage product peaks (particularly the peak at m/z 1760) compared 

to the intensity of the uncleaved SubB peak (at m/z 4024 and especially 2013) indicates that 

there is either less toxin or less active toxin in the untreated orange juice sample (Figure 4B) 

and, to a lesser degree, the neutralized orange juice sample (Figure 4C), when compared to 

the PBST sample.

Application of Endopep-MS to foods suspected of causing botulism outbreaks

Thirty one food extracts received for testing during botulism outbreak investigations were 

tested by Endopep-MS for BoNT/A, /B, /E, and /F in parallel with the mouse bioassay. 29 of 

these samples were below the limit of detection of BoNT/A, /B, /E, and /F with Endopep-
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MS as well as the mouse bioassay. One chili pepper sample tested positive for BoNT/B by 

Endopep-MS, and based on the intensity of the BoNT/B cleavage products, the level of 

toxin was very low, near the limit of detection for the Endopep-MS assay. This sample 

tested below the limit of detection of the mouse bioassay. The baked potato sample tested 

positive for both BoNT/A and /B by Endopep-MS as seen in Figure 5.

Peaks at m/z 999 and 1427 in Figure 5A indicate the presence of active BoNT/A in this 

sample, and peaks at m/z 1760 and 2283 indicate the presence of active BoNT/B in this same 

sample (Figure 5B), compared to the negative control of baked potato tested for BoNT/A 

(Figure 5C) and /B (Figure 5D). Mouse bioassay results on these food samples were 

identical to the Endopep-MS results. The finding of two serotypes of BoNT in a single 

sample is rare, although not completely unique as some strains of C. botulinum are known to 

make more than one BoNT serotype. These are called bivalent toxin producers and are 

named Ab, Ba, Af, or Bf, with the capital letter representing what is thought to be the main 

serotype produced. Based upon the intensity of the BoNT/A and /B cleavage products, it 

would appear that the baked potato contained a Ba strain of C. botulinum. Alternatively, the 

potato could have been contaminated with 2 strains of C. botulinum.

In conclusion, we have demonstrated that the Endopep-MS method is able to detect 

enzymatically active BoNT/A, /B, /E, and /F in a wide variety of foods. These foods 

represent different characteristics such as low pH, high viscosity, high fat, and varied 

ethnicities. Many of the foods were suspected of causing a botulism outbreak in the past and 

others have definitively caused prior botulism outbreaks. The limit of detection varies and is 

matrix and serotype dependent, but all matrices tested were able to detect BoNT/A, /B, /E, 

and /F spiked into foods at levels below the limit of the historical standard assay for 

botulism, the mouse bioassay. The method accurately identified BoNT/A and BoNT/B in a 

baked potato associated with a recent case of botulism. The combination of the ability to 

detect BoNT/A, /B, /E, and /F in foods as well as clinical specimens such as stool extracts 

make this assay a concrete alternative to the mouse bioassay for BoNT detection.
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Figure 1. 
Mass spectra of 10 mLD50 of B. BoNT/A; D. BoNT/B; F. BoNT/E; and H. BoNT/F spiked 

into 1 mL of milk. The cleavage products indicating the presence of BoNT are circled in red. 

Negative controls consisted of 1 mL of milk tested for A. BoNT/A; C. BoNT/B; E. BoNT/E; 

and G. BoNT/F.
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Figure 2. 
Mass spectra of 0.25 mLD50 B. BoNT/A; D. 0.1 mLD50 of BoNT/B; F. 0.25 mLD50 of 

BoNT/E; and H. 0.01 mLD50 of BoNT/F spiked into 1 mL of milk. Negative controls 

consisted of 1 mL of milk tested for A. BoNT/A; C. BoNT/B; E. BoNT/E; and G. BoNT/F. 

Spectra are zoomed to display the dominant cleavage product.
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Figure 3. 
Mass spectra of Endopep-MS reactions containing A. 0.01 mLD50 of BoNT/F spiked into 

cooked egg; and B. 0.01 mLD50 of BoNT/F in raw egg.
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Figure 4. 
Mass spectra of Endopep-MS reactions containing BoNT/B spiked into A. PBST; B. orange 

juice with no neutralization; and C. orange juice with neutralization. All were stored for 6 

weeks at 4 °C prior to testing.
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Figure 5. 
Mass spectra of Endopep-MS reactions testing for A. BoNT/A; and B. BoNT/B in baked 

potato. Negative controls of baked potato were also tested for C. BoNT/A; and D. BoNT/B.
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Table 1

Peptide Sequences for the Endopep-MS Method Listed Along with the Observed (M+H) + of Substrate and 

Cleavage Products for Each Serotype. X Represents Norleucine and hR Represents Homoarginine.

Peptide Sequence m/z observed

SubA Acetyl-RGSNKPKIDAGNQRATRXLGGR-NH2 2406

SubA NT product Acetyl-RGSNKPKIDAGNQ 1427

SubA CT product RATRXLGGR-NH2 999

SubB LSELDDRADALQAGASQFESSAAKLKRKYWWKNLK 4025

SubB NT product LSELDDRADALQAGASQ 1760

SubB CT product FESSAAKLKRKYWWKNLK 2283

SubE WWWAKLGQEIDTRNRQKDhRIMAKADSNKR-NH2 3614

SubE NT product WWWAKLGQEIDTRNRQKDhR 2501

SubE CT product IMAKADSNKR-NH2 1133

SubF TSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADAL 5111

SubF NT product TSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQ 3784

SubF CT product KLSELDDRADAL 1346
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